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ABSTRACT

For about two decades, many Second Order (SO) and Fourth
Order (FO) blind methods have been developed to separate
overdetermined mixtures of statistically independent Narrow-
band (NB) sources.
limitations of these methods, Sixth Order methods have been

Besides, mainly to overcome some

developed recently. Nevertheless, despite of this great number of
of the latter for
electromagnetic sources are still almost unknown, which limits

methods, the performance arbitrary
their use in operational contexts. The purpose of this paper is to
fill the gap previously mentioned by presenting a comparative
performance analysis of eight Blind Source Separation (BSS)
methods for arbitrary overdetermined mixtures of sources
borrowed from the radiocommunications context, and to show

off both the advantages and the drawbacks of these methods.

1 INTRODUCTION

For about two decades, many blind methods have
been developed to separate overdetermined (P < N)
mixtures of P statistically independent NB sources
received by an array of N sensors. Among these methods,
the SOBI method [4] exploits the SO data statistics only
whereas other methods such as COM1 [10], COM2 [9],
JADE [6] or Fast ICA [5] exploit both the SO and the FO
data statistics. Very recently, new promizing BSS
methods exploiting either the FO data statistics only, such
as ICAR [1] or FOBIUM [11], or the Sixth Order data
statistics only, such as BIRTH [2], have been developed
to overcome the limitations associated with the SO
whitening step of the older methods. Nevertheless,
despite of the great number of BSS methods currently
available, the performance of the latter for arbitrary
electromagnetic sources are still almost unknown, which
prevents from choosing the best method for a given
application, and which obviously limits the use of these
methods in operational systems. To overcome these
limitations, the purpose of this paper is to present a
comparative performance analysis of the eight previous
methods for arbitrary overdetermined mixtures of sources
borrowed from the radiocommunications context and to
show off both the advantages and the drawbacks of each
method.

2  PROBLEM FORMULATION

A noisy mixture of P statistically independent
narrow-band (NB) sources is assumed to be received by
an array of N sensors such that P < N. The vector, x(?), of
the complex envelopes of the signals at the output of the
sensors is thus given by

,
X = mp)a,+b0) Cam) by (1)
p=1

where m,, (1) = mp(t)e](sz’ﬁ%) is the p-th component of
the vector m(¢); m,(?), Af,, ¢, and a, correspond to the
complex envelope, assumed cyclostationary, the carrier
residu, the phase and the steering vector of the source p
respectively, 4 is the (NXP) matrix whose columns are the
vectors a,. The noise vector, b(?), is assumed to be zero-
mean, stationary, Gaussian and independent of the
sources.

The BSS problem addressed in this paper consists of
finding, from the data statistics, the (NxP) Linear and
Time Invarignt source separator W, whose (Px1) output
vector p(f) 2 W x(f) corresponds, to within a diagonal
matrix A and a permutation matrix Il, to an estimate,
l/i\lc(t), of the vector m(f), where superscript H means
conjugate transposition. In this paper, eight separators W
are compared to each other for the restitution of the
sources.

3 STATISTICS OF THE DATA
3.1 Second order statistics

The SO data statistics used by some of the
considered BSS methods correspond to the temporal
mean, R(t) = < R(t, t) >, over an infinite observation
interval, of the data correlation matrix, Rz, 1) = E[x(?)
x(t — ©)"], defined by

R(1) & <ELx(0) x(t-0)"> = A R, (1) A" + OV (2)

where V denotes the (NxN) noise spatial coherence
matrix such that Tr[V] = N, n, is the mean power of the
noise per sensor, d(t) is the Kronecker function and
R,(t) = < E[m.¢) m(t — ©)""] > is the temporal mean of
the correlation matrix of m(¢), diagonal for zero-mean



statistically independent sources.
R.(t=0) is noted R,.

In the following,

3.2 Fourth order statistics

In a same way, the FO data statistics used by some
of the considered BSS methods correspond to the
temporal mean, O.(11,72,T3) = < O\(£,71,T2,T3) >, over an
infinite observation interval, of the (Nszz) data
quadricovariance matrix Q.(¢,71,7,,T3) whose elements,
O.(t,11,72,73)[4, /, k, I], are defined by
Qx(tsTI:TZsTS)[is js ks l]=Cum(x,»(t), xj(t"cl)*s xk(t'TZ)*’ xyt-
73)) 3)

where * means complex conjugate and x,(7) is the i"

component of the vector x(f). Using (1) into (3) and
assuming that Q.(¢,11,75,03)[i, J, k, [] is the element [N(i
—1)+j, N(k— 1) + [] of the matrix Q.(¢,71,7,,73), we obtain
the expression of O,(t1,7,,73) given by

Ou(11,12,13) = (A ®4) Ope(11,72,73) (4 @A) “

where Q,,.(t1,15,73) is the temporal mean of the (P2XP2)
quadricovariance matrix of m(¢) and ® is the Kronecker
product. In the following, 0,(0,0,0) is noted Q..

3.3 Sixth order statistics

Finally the Sixth Order data statistics used by the
BIRTH method correspond to the temporal mean, H, = <
H(f) >, over an infinite observation interval, of the
(M°xN3) data hexacovariance matrix H,() whose
elements, H(?)[i, J, k, [, m, n], are defined by

Hv(t)[lajs ka l: m, n]:Cum(xi(t)sxj(t),xk(t)*rxl(t)*ﬂxm(t)*’xn(t))

(%)
Plugging (1) into (5) and assuming that H.(¢)[i, j, k, I, m,
n] is the element [N(i —1) + N(j —1) + k, N*(I =1) + N(m
— 1) + n] of the matrix H.,(¢), we obtain the expression of
H, given by

H =A®AQA)H, . (A®ARQAH)" (6)

where H,. is the temporal mean of the (P3XP3)
hexacovariance matrix of m_(?).

3.4 Statistics estimation

In situations of practical interests, the data statistics
temporal mean are not known a priori and have to be
estimated from L samples of data x(/) =x(I/T,), 1 </ <L,
where 7, is the sample period.

Empirical estimators of the data statistics temporal
means may be built from the well-known Leonov-
Shiryaev [14] formula, giving the expression of the n-th
order cumulant of x(¢) as a function of its p-th order
moments (1 < p < n). The idea is to replace in this
formula all the moments by their sample estimate. More
precisely, the Leonov-Shiryaev formula is given by

n
Cum(x;p, X > Xi) = 2, (DD E[ T x;] ....E[ TT x;]
p=1 Jjesl JESp
(7
where (S1, S2, ..., Sp) describes all the partitions in p sets
of (1, 2, ..., n) and an empirical estimate of (7) is
obtained by replacing in (7) all the moments E[x;; x;
.. X;p] (1 <p <n) by their sample estimate given by
A Al L
Elxii xip . x3p)(L) = IZ xi1(D) xip(D) ... xip(0) (8)
I=1

For zero-mean stationary and ergodic observations,
these sample estimators generate asymptotically unbiased
and consistent estimates of the data statistics temporal
means. However, for zero-mean cyclostationary and
cycloergodic observations, the previous empirical
estimators are generally biased for statistics higher than
or equal to 4 [12] but, in most cases, this bias does not
prevent from separating the sources [12] but simply
degrades the performance of the latter. For these reasons,
the sample statistics estimators are used in this paper.
Note that asymptotically unbiased second and FO
statistics estimators, using the cyclic frequencies of the
observations, can be found in [12] and [13] for zero-mean
and non-zero mean cyclostationary signals respectively.

4 OPTIMAL AND BLIND SOURCE
SEPARATORS

4.1 Source separator performances

The concept of performance at the output of a (N x
P) source separator W has been introduced in [7]. It
corresponds to the P-uplet P(#) defined by

P(W) = (SINRMI[W], ......, SINRMP[/¥])  (9)

where SINRMKA[W] corresponds to the maximum Signal
to Interference plus Noise Ratio (SINR) of the source & at
the output of W, defined by the maximum value of the
SINR of the source k, over all the outputs of the
separator. If we note w; the i-th column of W,
SINRMA[ W] corresponds to the maximum value of
SINRA[w,] when i varies from 1 to P, where SINRA[w;] is
defined by

it @

SINRA[w;] = m; m
Wi Ry w;

(10)

where 15 is the temporal mean of the source &k input
power received by an omnidirectional sensor and Rp; =
R, — m; a; a" is the temporal mean of the noise plus
interference correlation matrix for the source .

4.2 Optimal source separator

The optimal source separator is the one that gives the
best performance for the restitution of each source. It
maximizes the quantity SINRMA[W] for each source k
and corresponds to the separator W whose columns are



the Spatial Matched Filters (SMF) associated with the
different sources. It is defined to within a diagonal matrix
A and a permutation matrix [T and can be written as

Wong = R4 ATL (11

4.3 Considered blind source separators

The blind source separators considered in the paper
aim at implementing, to within a diagonal and a
permutation matrix, an estimate, Wsmf = ﬁx_l A, of the
optimal separator (11) from both an estimate, R,, of R,,
common to all the separators, and the blindly estimated
matrix 4, noted A, specific of each separator. In the
SOBI method [4], after a SO data prewhitening step, the
A matrix is generated from the joint diagonalization of an
estimate of several R.(t) matrices, where z(¢) is the
whitened observation vector and R.(t) is defined by (2)
with z instead of x. In the JADE method [6], 4 is obtained
from the joint diagonalization of P eigenmatrices of an
estimate of Q., the temporal mean of the quadricovariance
of z(#). In COM1 [10] and COM2 [9] methods, 4 is
obtained from the maximization of a FO contrast function
built from the FO autocumulant of the outputs and the
square modulus of the latter respectively. In Fast ICA 4
is generated from a deflation process, optimizing a FO
contrast function under a decorrelation constraint of the
outputs. The FOBIUM method [11], which is the
extension of the SOBI method at the FO, generates A
from a FO prewhitening step followed by the joint
diagonalization of the estimate of several Q.(t,7,,T3)
matrices. Finally ICAR [1] and BIRTH [2] correspond to
the FO and Sixth order version of a family of 2¢-order
methods, named BIOME [3], generating A4 from the
exploitation of the redundancies of a 2g-th order
statistical matrix of the data.

5 COMPARATIVE PERFORMANCE ANALYSIS

A parametric comparative performance analysis of
the eight previous methods is presented in this section.
For this purpose, we consider a Uniform Linear Array
(ULA) of N = 4 sensors, equispaced half a wavelength
apart. The P sources are linearly modulated with a pulse
shape filter corresponding to a % Nyquist filters with a
roll off p. The background noise is temporally and
spatially white except for section 5.6. For the SOBI
method, two matrices R.(t) are jointly diagonalized, with
t =T, and t = 27,. For the FOBIUM method, two
matrices Q.(1,T5,73) are jointly diagonalized with
(11,72,13) = (T, 0, 0) and (71,72,73) = (27,, 0, 0). Finally,
the SINRM of the sources is averaged over 200
realizations.

5.1 SNR influence

Figures 1 and 2 show the variations of SINRM1 at
the output of the eight separators (similar results are
obtained for the source 2) as a function of the number of

snapshots L, when P = 2 QPSK sources with the same
roll-off p = 0.3, same symbol period 7 and same Signal to
Noise ratio (SNR) equal to 15 and 0 dB respectively, are
received by the array. The sources are assumed to be well
angularly separated (61 = 0° and 62 = 20°), which
generates a spatial correlation coefficient of 0.16, with
carrier residues such that Af; x 7= 0, Af; x T'= (1 + p)/2.
The sample period 7, corresponds to the symbol period 7.
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Figure 1 shows that for strong and well angularly
non Gaussian sources, all the methods succeed in
separating the 2 sources from a limited number of
snapshots. However, the convergence speed is not the
same for all of the methods. Methods exploiting both the
SO and FO statistics such as JADE, COM1, COM2 and
Fast ICA have the best behavior. Indeed, the SINRM of
the sources at the output of these methods is greater than
the optimal one minus 3 dB as soon as L is greater than
30. To obtain similar results, ICAR requires about 100
snapshots whereas FOBIUM and BIRTH require about
120 snapshots, due to a higher variance of the statistics
estimators. Finally the SOBI method requires about 400
snapshots to obtain such results, due to a mild difference
between the spectral densities of the sources. We note
that the FOBIUM method seems to be more robust than
SOBI with respect to a weak spectrum difference of the
sources.

The results of figure 1 remain qualitatively valid for
weak sources, as shown by Figure 2, except for Fast ICA



which does not succeed in separating the sources. This
result is due to the decorrelation constraint of the outputs
imposed in the method, which prevents from identifying
the 4 matrix since, as shown in [8], the outputs of both
the optimal and the Least Square separators become
strongly correlated for weak sources.

To complete the previous results, Figure 3 shows, in
the same context, the variations of SINRM2 at the output
of the eight separators as a function of the input SNR of
the two QPSK sources for L = 400.
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Figure 3 shows that for SNR values such that — 5 dB
< SNR < 15 dB, the performance at the output of all the
separators are approximately optimal for L = 400, except
for Fast ICA whose performance become suboptimal for
weak sources and more precisely for SNR values such
that — 5 dB < SNR < 5 dB. However, for SNR values
greater than 15 dB, the convergence speed of the eight
methods decreases and the output performance, although
good, becomes sub-optimal for L = 400. Similar results
have been reported in [15] for the convergence of the
optimal separator when A4 is known. In this context, we
find again that JADE, COMI1, COM2, Fast ICA and
ICAR seem to be better than FOBIUM and BIRTH, the
latter remaining better than SOBI.

5.2 Source spatial correlation influence

To evaluate the influence of the spatial correlation
coefficient between the sources, we consider the scenario
of Figure 1 but where the angular separation of the
sources is now equal to 5° (61 = 0° and 62 = 5°), which
generates a spatial correlation coefficient of 0.9. In this
context, Figure 4 shows the variations of SINRM1 at the
output of the eight separators as a function of L. We note
the very good behavior of COMI1, COM2 and JADE
whose output SINRM is equal to the optimal one minus 3
dB with less than 30 snapshots. Such performances are
obtained for a number of snapshots equal to less than 50
for ICAR, 100 for SOBI, 130 for BIRTH and 150 for
FOBIUM. Note also the absence of source separation for
Fast ICA due again to the decorrelation constraint
imposed by the algorithm while the outputs of the

ultimate source separators are strongly correlated for
strong sources spatial correlation [8].
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5.3 Source non gaussiannity degree influence

To evaluate the influence of the non Gaussiannity
degree of the sources, we consider the scenario of Figure
1 but where the QPSK sources are replaced by sources
whose complex envelope are linear combination of 2
Nyquist QPSK sources and filtered Gaussian noise. This
allows the generation of sources with arbitrary FO and
Sixth order normalized autocumulant between [-0.96, 0]
and [3.75, 0] respectively. Under these assumptions,
Figure 5 shows the variations of SINRM1 at the output of
the eight separators as a function of L for sources having
a normalized FO autocumulant ¢ equal to — 0.5, instead of
—0.96 for Figure 1. We note the decreasing convergence
speed of all the methods, except SOBI, as the Gaussianity
degree of the sources increases. Note again that the
methods that do not use the SO data statistics (FOBIUM,
ICAR, BIRTH) are more affected by the non Gaussianity
than the others (Fast ICA, JADE, COM1, COM2), SOBI
being the most robust since it is not dependent on the
Gaussianity degree of the sources.
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To complete the previous results, Figure 6 shows, in
the same context, the variations of SINRMI at the output



of the eight separators as a function of the source
normalized autocumulant for L = 400.
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Figure 6 shows the performance degradation of all
the methods using Higher Order data statistics as the non
Gaussiannity degree of the sources increases. More
precisely, COM1, COM2, JADE and Fast ICA are weakly
changed as long as |c| remains greater than or equal to
0.4. For ICAR, FOBIUM and BIRTH, the lower bound
on |c| is comprised between 0.6 and 0.75. The apparent
increasing performance as |c| decreases under 0.2 is due
to the high variance of the estimated statistics for L = 400.

5.4 Sample period influence

To evaluate the influence of the sample period on the
separators performance, we consider the scenario of
Figure 1 but where the sample period 7, is now a fraction
of the symbol period 7. In this context, Figures 7 and 8
show the variations of SINRM1 at the output of the eight
separators as a function of L for 7, = 7/2 and T, = T/4
respectively. Note that due oversampling, the snapshots
are no longer independents.
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When T, < T, the cyclostationary character of the
QPSK sources appears explicitly and the empirical
statistics estimators become biased at the FO and the
Sixth Order [12]. This bias is weak for QPSK sources and

Figures 7 and 8 show that the convergence speed, in
terms of required independent snapshots, of all the
considered methods does not seem to be very affected by
the oversampling operation. Note even a better behavior
of SOBI in the presence of oversampling due to an

increase of the spectral difference of the sources.
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5.5 Source number estimation influence

To evaluate the influence of the source number
overestimation, we consider the scenario of Figure 1 but
where we assume that 3 sources are received on the array.
In this context, Figure 9 shows the variations of SINRM1
at the output of the eight separators as a function of L.
Note that Fast ICA, BIRTH and ICAR are not perturbed
by the source overestimation. On the contrary the
convergence speed of all the other methods decreases
when the number of sources is overestimated. In
particular, the performance of COM2, FOBIUM, SOBI
and COM1 seem to be degraded of about 4 dB by the
overestimation for L = 200. Finally JADE is the most
perturbed and looses about 16 dB.
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5.6 Noise spatial coherence influence

To evaluate the influence of the noise spatial
coherence, we consider the scenario of Figure 2 but
where we assume that 61 = 20°, 62 = 45° and the



background noise is no longer spatially white but such
that its spatial coherence V' is equal to V' = (I + 0)/2 where
I is the identity matrix and O is a matrix such that O[i, /]
= p‘i ~Jl where 0 < p < 1. This model corresponds to the
presence of both white thermal noise and potentially non
white external noise with the same power. Under these
assumptions, Figure 10 shows the variations of SINRM2
at the output of the eight separators as a function of p for
L = 400. Note the poor performance of Fast ICA due to
the presence of weak sources. Note the increasing
performance degradation of JADE, COM2, COM1 and
SOBI as pincreases beyond 0.4. Note finally the
robustness of ICAR, FOBIUM and BIRTH to non
identity noise spatial coherence.
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6 CONCLUSION

In this paper, a comparative performance analysis of
eight methods has been presented for the blind separation
of overdetermined instantaneous mixtures of statistically
independent sources. This analysis shows that when the
sources are far from Gaussianity, strong and not too close
to each other, COM2, COMI, Fast ICA, ICAR and JADE
show off a very good behavior whatever the spectral
difference between the sources, the latter being very
sensitive to the source number overestimation while Fast
ICA and ICAR being the more robust to this criterion. As
the variance of methods that use HO data statistics only is
stronger than the variance of the other ones and increases
with statistics order, ICAR is better than BIRTH but also
than FOBIUM since the latter is sensitive to weak
spectral difference between the sources. As SOBI is very
sensitive to the latter criterion, it is mainly well suited for
Gaussian or quasi-Gaussian contexts when the sources
are strongly spectrally separated. For sources approaching
Gaussiannity, SOBI is unaltered while ICAR, FOBIUM
and BIRTH are the more altered. For weak or close
sources, Fast ICA fails in separating the sources while the
behavior of the other methods is not altered provided the
noise spatial coherence is not a cause of problem. If it is
(unknown noise spatial coherence, very correlated noise
and weak sources) ICAR and BIRTH seem to be the best
methods.
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