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ICAR: A Tool for Blind Source Separation
Using Fourth-Order Statistics Only
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Abstract—The problem of blind separation of overdetermined
mixtures of sources, that is, with fewer sources than (or as many
sources as) sensors, is addressed in this paper. A new method,
called Independent Component Analysis using Redundancies in
the quadricovariance (ICAR), is proposed in order to process
complex data. This method, without any whitening operation,
only exploits some redundancies of a particular quadricovariance
matrix of the data. Computer simulations demonstrate that ICAR
offers in general good results and even outperforms classical
methods in several situations: ICAR i) succeeds in separating
sources with low signal-to-noise ratios, ii) does not require sources
with different second-order or/and first-order spectral densities,
iii) is asymptotically not affected by the presence of a Gaussian
noise with unknown spatial correlation, iv) is not sensitive to an
over estimation of the number of sources.

Index Terms—Blind source separation, fourth-order statistics,
independent component analysis, overdetermined mixtures.

I. INTRODUCTION

I NDEPENDENT component analysis (ICA) plays an impor-
tant role in various application areas, including radiocom-

munications, radar, sonar, seismology, radio astronomy, data
analysis, speech [4], and medical diagnosis, [20]. In digital ra-
diocommunications contexts, for instance, if some sources are
received by an array of sensors, and if the channel delay spread
associated with the different sensors is significantly smaller than
the symbol durations for each source, a static mixture of com-
plex sources is observed on the sensors. On the other hand, in
electrocardiography (ECG), it is possible to record the electrical
activity of a fetal heart from ECG recordings measured on the
mother’s skin. These cutaneous recordings can also be consid-
ered, in a first approximation, as instantaneous linear mixtures
of potential signals generated by underlying bioelectric phe-
nomena [20], hence, again, the static model considered.

The goal of blind source separation (BSS) is to restore trans-
mitted sources from the sole observation of sensor data. In some
applications, however, sources are not sought, and it is sufficient
to identify the (static) mixture. Direction-of-arrival (DOA) es-
timation problems belong to this class [37] since the column
vectors of the mixture contain all the information necessary to
determine the location of transmitters. The column vectors of
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the mixture are the so-called source steering vectors. It is thus
legitimate to distinguish between blind identification of source
mixtures and blind extraction of sources; we will go back to this
in Section II.

Some algorithms utilize second-order (SO) statistics as the
classical principal component analysis (PCA) in factor analysis.
In contrast, ICA attempts to restore the independence of outputs
using higher order statistics. The consequence is that the inde-
terminacy is reduced so that ICA allows blind identification of
the static mixture, and transmitted sources can eventually be ex-
tracted. More precisely, the ICA concept relies on the core as-
sumption that i) sources should be independent in some way.
Additionally, when a contrast functional is sought to be maxi-
mized, ii) the mixture has to be overdetermined, which means
that there should be at most as many sources as sensors [40]. In
fact, there must exist a linear source separator [15] in the latter
framework.

On the other hand, the more general case where there may be
more sources than sensors is often referred to as blind identifica-
tion of underdetermined mixtures and is not considered in this
paper but is addressed elsewhere; see [3], [7], [17], [19], [22],
[25], [35], and references therein.

Since the first paper related to higher order (HO) BSS, pub-
lished in 1985 [30], many concepts and algorithms have come
out. For instance, the ICA concept was proposed a few years
later, as well as the maximization of a fourth-order (FO) con-
trast criterion (subsequently referred to as COM2) [15]. At the
same time, a matrix approach was developed in [8] and gave
rise to the joint diagonalization (JAD) [9]. A few years later,
Hyvarinen et al. developed the FastICA method: first for signals
with values in the real field [31] and later for complex signals
[6], using the fixed-point algorithm to maximize an FO contrast.
This algorithm is of deflation type, as is that of Delfosse et al.
[21], and must extract one source at a time, although some ver-
sions of FastICA extract all sources simultaneously. In addition,
Comon proposed a simple solution [16], named COM1 in this
paper, to the maximization of another FO contrast function pre-
viously published in [18], [33], and [36]. Another algorithm of
interest is SO blind identification (SOBI), based only on SO sta-
tistics, developed independently by several authors in the 1990s
and addressed in depth later in [5].

Each of these methods suffers from limitations. To start with,
the SOBI algorithm is unable to restore components that have
similar spectral densities. Moreover, the JADE method is very
sensitive to an overestimation of the number of sources, as
shown in the simulation section of this paper and in [2]. Note
that in electronic warfare contexts, the number of sources needs
to be estimated and may be overestimated, especially for low
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signal-to-noise ratios [38], [41]. On the other hand, although
the previous methods [6], [8], [15], [16], [31] perform under
some reasonable assumptions, they may be strongly affected by
a Gaussian noise with unknown spatial correlation, as shown
in the simulation section of this paper. Such a noise appears,
for instance, in some radiocommunications applications. It is,
in particular, the case for ionospheric radiocommunications in
the high-frequency (HF) band where the external noise, which
is composed of multiple emitting sources (industrial noise,
atmospheric noise…) is much stronger than the thermal noise
generated by the receivers. In order to deal with the correlated
noise problem, Ferréol et al. [26] and Abed-Meraim et al. [1]
have proposed a new family of BSS methods, respectively, ex-
ploiting the potential cyclostationarity of the received sources.
In fact, the latter family of algorithms uses cyclic statistics of
the data. Note that a cyclic covariance matrix associated with a
stationary noise is null for nonzero cyclic frequencies. Conse-
quently, these cyclic methods allow the optimal separation of
independent cyclostationary sources, even in the presence of
a stationary noise with unknown spatial correlation. However,
the use of cyclic methods is more complex because of the
estimation of cyclic frequencies and time delays. To overcome
this drawback, Ferréol et al. have recently introduced the FO
blind identification of underdetermined mixtures of sources
(FOBIUM) algorithm [25], which, without an SO whitening
step, performs BSS, even in the presence of a Gaussian noise
with unknown spatial correlation. Nevertheless, since FOBIUM
is an extension of the SOBI method to FO statistics, it requires
sources with different FO spectral densities. FOBIUM also
allows us to address the underdetermined case, but this is out
of the scope of the present paper.

In order to overcome the limitations of the previous algo-
rithms, the method called Independent Component Analysis
using Redundancies in the quadricovariance (ICAR) shortly
presented in [2] is proposed in this paper and addresses the
case of complex mixture and sources in the presence of ad-
ditive (possibly spatially correlated) Gaussian noise. Only
based on FO statistics, ICAR skips the SO whitening step,
in contrast with classical methods [5], [6], [8], [15], [16],
[31] and, consequently, is asymptotically not affected by the
presence of a Gaussian noise with unknown spatial correla-
tion. Actually, ICAR exploits redundancies in a particular FO
statistical matrix of the data, called quadricovariance. The
latter algorithm assumes sources to have nonzero FO marginal
cumulants with the same sign, which is an assumption that is
verified in most radiocommunications contexts. Indeed, the
kurtosis of most of radiocommunications signals is negative.
For example, -phase shift keying (PSK) constellations have
a kurtosis equal to for and to for . Con-
tinuous-phase modulations (CPMs), among which we find the
GMSK modulation (GSM standard), are such that their kurtosis
is smaller than or equal to , due to their constant modulus.
Furthermore, the performance of ICAR is also analyzed in
this paper, in different practical situations through computer
simulations, and compared to those of classical algorithms,
namely SOBI, COM1, COM2, JADE, FastICA, and FOBIUM.
It appears that ICAR exhibits good results in most cases, even
when classical methods fail.

The paper is organized as follows. Section II introduces the
BSS problem and assumptions needed in ICAR. Section III
defines the SO and FO statistics considered in the paper, and
Section IV describes the ICAR concept in detail. Computer re-
sults are reported in Section V. Section VI concludes the paper.

II. ASSUMPTIONS AND PROBLEM FORMULATION

A noisy mixture of statistically independent narrowband
(NB) sources is assumed to be received by an array of
sensors. In accordance with the usual practice [34], only com-
plex envelopes of NB signals are considered. The vector of com-
plex envelopes of the signals at the sensor outputs is thus
given by

(1)

where , , and are the constant mixing ma-
trix, the 1 source with components , and 1 noise
random vectors, respectively. In addition, for any fixed index ,

and are statistically independent. We further assume
the following hypotheses:

A1) Vector is stationary and ergodic1 with components
a priori in the complex field and mutually uncorrelated
at order 4.

A2) Noise vector is stationary, ergodic, and Gaussian
with components a priori in the complex field as well.

A3) FO marginal source cumulants, called kurtosis (if nor-
malized) and defined in Section III-B, are not null, and
all have the same sign.

A4) The mixture matrix does not contains no null entry.
A5) is a full column rank matrix.

Note that sources with null kurtosis are tolerated but cannot be
seen and processed by ICAR. Such sources will be considered
to be noise. Moreover, the second part of A3) will be discussed
in Section IV-C1. Assumption A4) is not a strong assumption,
in particular, in digital radiocommunications contexts, since it is
more than just reasonable to assume the array of sensors in good
repair. On the other hand, if the th sensor is defective, the th
row of will be null. It is then necessary to erase the contri-
bution of this sensor and to assume that we have sensor
outputs instead of . As far as the masking phenomenon is con-
cerned, it is more rare and may produce at most one null compo-
nent in each column of for arrays with space diversity. Forth-
coming works will consist of studying the ICAR robustness with
respect to this pathological phenomenon. As far as A5) is con-
cerned, it implies necessarily that . Under the previous
assumptions, the problems addressed in this paper are both the
blind identification and the blind extraction of the sources using
solely the FO statistics of the data. The goal of blind mixture
identification (BMI) is to blindly identify the mixing matrix
to within a trivial matrix ; recall that a trivial matrix is of the
form , where is invertible diagonal, and is a permutation.
On the other hand, the goal of blind source extraction (BSE) or
BSS is to blindly find a matrix , yielding a 1 output vector

corresponding to the best estimate of the
vector up to a multiplicative trivial matrix. Superscript ( )
denotes the complex conjugate transpose of a matrix.

1The cyclostationary and cycloergodic case is addressed in Section III-D.
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III. SO AND FO DATA STATISTICS

A. SO Statistics

The SO statistics considered in the paper are given by

(2)

Function (2) is well known as the SO cumulant of . Con-
sequently, the SO marginal cumulant of source is defined
by

(3)

B. FO Statistics

The FO statistics considered in the paper are given by

(4)

where two terms are not conjugate, and two terms are
conjugate. Function (4) is well known as the FO cumulant of

. Consequently, the FO marginal cumulant of source
is defined by

(5)

Likewise, the kurtosis of source is given by

(6)

where is the variance of source . Note that in the
presence of stationary sources, SO (2) and FO (4) statistics do
not depend on time ; therefore, they can be denoted by
and , respectively.

C. Matrix Arrangement

1) SO and FO Statistical Matrices: SO and FO statistics
computed according to (2) and (4) may be arranged in two
Hermitian statistical matrices and
of size and , respectively. These matrices
are called the covariance and the quadricovariance of ,
respectively. We limit ourselves to arrangements of SO and FO
statistics that give different results in terms of the maximum
number of processed sources at the output of the BSS methods.
The impact of the chosen way to arrange statistics in a matrix
is analyzed in [12]. It is shown in [12], through extensions
of the Virtual Array concept initially introduced in [23] and
[14] for the FO data statistics, that there exists an optimal
arrangement of the FO cumulants in a quadricovariance matrix
with respect to the maximal number of statistically independent
sources to be processed by a method exploiting the algebraic
structure of this quadricovariance. As far as SO statistics are
concerned, there is a unique nonredundant way to store them in
a matrix under constraints of hermicity. Consider, indeed,
the following arrangement:

(7)

where is the th entry of matrix ; the other
possible arrangement just leads to and,

hence, to the same result in terms of the maximum number of
processed sources. On the other hand, there are two distinct
nonredundant ways associated with FO statistics under con-
straints of hermicity, which can be indexed by the integer
( ). Each way yields a statistical matrix such that
its th entry ( ) is given by

(8)

where for any belonging to {0, 1} and for all , , ,
( )

if
if

(9)

and

if
if

(10)

Note that the optimal arrangement is shown in [12] to corre-
spond to , and for this reason, we consider this arrange-
ment in the following sections. Therefore, matrices ,
will be denoted by and , respectively.

Remark 1: Another perhaps more intuitive (especially for
readers familiar with Matlab) way to present the construction of

is the following: First, construct a four-dimensional (4-D)
tensor , whose elements are given by

The matrix is then given by a simple Matlab reshape oper-
ation as follows:

2) Multilinearity Property: The SO and FO statistical ma-
trices of the data and have a special structure, due to
the multilinearity property under change of coordinate systems,
which is enjoyed by all moments and cumulants. Since sources
and noise are independent, this property can be expressed, for
SO statistical matrices and according to (7), by

(11)

Similarly, according to (8)–(10), and since noise is Gaussian
and independent of sources, the FO cumulant matrix can be ex-
pressed as follows, using the multilinearity property associated
with :

(12)

The matrix and the matrix are the SO
and FO statistical matrices of , respectively. denotes the

SO statistical matrix of .

D. Statistical Estimation

In practical situations, SO and FO statistics have to be esti-
mated from components of . If components are stationary
and ergodic, sample statistics may be used to estimate (2) and
(4). Nevertheless, if sources are cyclostationary, cycloergodic,
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and potentially nonzero-mean, SO and FO continuous time av-
erage statistics have to be used instead of (2) and (4), such as

(13)

and

(14)

where is the continuous time average operation defined by

(15)
These continuous-time temporal mean statistics need some
knowledge on cyclic frequencies of the received signal and
are thus computed using, for instance, the unbiased and con-
sistent estimators described in [27], [29], and [28]. Moreover,
by ordering these continuous-time temporal mean statistics
in matrices and by means of (7)–(10), respectively,
expressions (11) and (12) remain valid.

IV. ICAR METHOD

In this section, we present a new method of BSS named
ICAR, which exploits the algebraic structure of an alternative
expression of matrix .

A. Matrix Notation

Define a columnwise Kronecker product denoted and re-
ferred to as the Khatri–Rao product [24], [39]. For any
rectangular matrices and , the columns of the ma-
trix are defined as , where denotes the usual
Kronecker product, if and denote the columns of and

, respectively.

B. Core Equation

The ICAR method exploits several redundancies present in
the quadricovariance matrix of the data . Although most BSS
algorithms, such as JADE, exploit expression (12), the ICAR
method uses an alternative form, which is described by

(16)

where the diagonal matrix Diag

(i.e., , ,

if , 0 otherwise) is full rank, in contrast to
in (12), and where the matrix is defined by

(17)

and can be written as

(18)

with

Diag (19)

In other words, the nonzero elements of the diagonal
matrix are the components of the th row of matrix . In
addition, note that (16) can be easily derived from (12). Indeed,

the latter equation straightly implies, in view of the structure
of the diagonal noninversible matrix , that the only column
vectors of matrix , which generate matrix , are
( ); hence, we have the result (16).

C. ICAR Concept

The algorithm proposed proceeds in three stages. First, a uni-
tary matrix is estimated in the Least Square (LS) sense and
allows the estimation of from (16). In a second stage,
several algorithms may be thought of in order to compute an es-
timate of from . Finally, an estimation of sources
is computed using the estimate of .

1) Identification of : Matrix is an unobserv-
able square root of to within a diagonal matrix, as shown
by (16). In this context, the idea is to build an observable square
root , of , differing from only by a unitary
matrix and then to identify the latter from the exploitation of
the algebraic structure of . Therefore, consider the following
proposition.

Proposition 1: If is of full column rank and contains no
null entries, then the matrix is full column rank.

The proof is given in Appendix A. Therefore, Proposition 1
and assumption A3) together prove that matrix , which is
given by (16), is of rank . Moreover, assumption A3) and (16)
imply that is positive if the FO marginal source cumulants
are positive, which we assume in the following. Thus, a square
root of , which is denoted and defined such that

, may be computed. If the FO marginal source
cumulants are negative, matrix can be considered instead
for computing the square root. In the case where there are terms
with a different sign, our derivation can be reformulated in terms
of an unknown -unitary matrix2 instead of unitary. Then, we
deduce from (16) that matrix is a natural square
root of . Yet, another possibility is to compute this square
root via the eigenvalue decomposition (EVD) of , which is
given by

(20)

where is the real-valued diagonal matrix of the nonzero
eigenvalues of . Since matrix is of rank , is of size

. Besides, is the matrix of the associated or-
thonormalized eigenvectors. Consequently, a square root of
can be computed as

(21)

where denotes a square root of .
Proposition 2: For a full-rank matrix , source

kurtoses are not null and have all the same sign if and only
if the diagonal elements of are not null and have also the
same sign, corresponding to that of the FO marginal source
cumulants.

The proof is given in Appendix B. In addition, (34) can be
rewritten as

(22)

2A JJJ-unitary matrix VVV is such that VVV JJJ VVV = JJJ , where JJJ is a sign diagonal
matrix.
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showing the link between and . Plugging (18) into
(22), matrix can be eventually rewritten as

(23)
where the matrix blocks of size are given by

(24)

Proposition 3: For any ( ), matrix is full
column rank.

The proof is given in Appendix C. Using Proposition 3, the
pseudo-inverse of the matrix is defined by

(25)

Then, consider the matrices in

(26)

which can be rewritten, from (24) and (25), as

(27)

where , , , and are diag-
onal full-rank matrices [the full-rank character of matrices ,

, and is due to assumption A4)]. It appears from
(27) that matrix jointly diagonalizes the matrices

.
Proposition 4: If is of full column rank and contains no

null entries, then for all pairs , , at
least one pair , exists such that

.
The proof is given in Appendix D. Under Proposition 4, [5]

allows the assertion that if jointly diagonalizes matrices
, then and are related through , where

is a trivial unitary matrix. Therefore, matrix allows, in
accordance with (22), the recovery of up to a multiplica-
tive trivial matrix:

(28)

2) Identification of Mixture : Three algorithms are pro-
posed in this section to identify from the estimate
of . These algorithms optimize differently the compro-
mise between performance and complexity.

Note that (28) can be rewritten from (18) in the form of
matrix blocks of size as

(29)

Therefore, a first approach to estimate up to a trivial matrix,
called ICAR1 in the sequel, consists of merely keeping the ma-
trix block made up of the first rows of such
that

(30)

where and are diagonal matrices, and where is a
unitary trivial matrix.

It is also possible to take into account all the matrix blocks
and to compute their average. This yields a second algorithm,
named ICAR2, of higher complexity.

A third algorithm, called ICAR3, is now described, and
yields a more accurate solution to the BMI problem: Since
matrix , which is given by (17), has been identified from
the previous section by to within a trivial matrix,
ICAR3 consists first of mapping each 1 column vector

of into an matrix (the th column of
is made up from the consecutive entries of vector ,

between and ) and, second, of diagonalizing
each matrix .

Proposition 5: For any matrix ( ) built from
, there exists a unique column vector ( )

of such that the eigenvector of associated with the largest
eigenvalue corresponds, up to a scale factor, to .

The proof is given in Appendix E. In addition, the indeter-
minacy of the norms of columns of is related to matrices

, , a unitary diagonal matrix (whose product by a per-
mutation matrix gives ), and the way to identify from ma-
trix . As far as the permutation indeterminacy is con-
cerned, it is related to matrix .

3) Extraction of the Independent Components: Finally, to
estimate the signal vector for any value , it is sufficient,
under A5), to apply a linear filter built from the identified ma-
trix ; such a filter may be the Spatial Matched Filter (SMF)
given by [11] , which is optimal in the presence of
decorrelated signals. In practical situations, since matrix is es-
timated up to a trivial matrix according to Section IV-C2, neither
the order of sources nor their amplitude can be identified.

D. Implementation of the ICAR Methods

The different steps of the ICAR method are summarized here-
after when samples of the observations ( )
are available.

Step 1 Compute an estimate of FO statis-
tics from the samples and
store them, using the ( )-arrangement,
into matrix , which is an estimate of

.
Step 2 Compute the EVD of the Hermitian
matrix , and estimate (the number of
sources) from this EVD. Restrict to
the principal components: ,
where is the diagonal matrix of the
eigenvalues of largest modulus, and is
the matrix of the associated eigenvectors.
Step 3 Estimate the sign of the diagonal
elements of .
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Step 4 Compute a square root matrix
of : , where

denotes the absolute value operator.
Step 5 Compute from the matrices

, construct matrices for
all , , and compute

, which is an estimate of , from
the joint diagonalization of the
matrices ; one possible joint diago-
nalization algorithm may be found in [9].
Step 6 Compute an estimate of the mix-
ture from the matrix
by either one of the following:
1) (ICAR1) taking the matrix block made up
of the first rows of ;
2) (ICAR2) taking the average of the
matrix blocks, of size , made up of
the successive rows of ;
3) (ICAR3) taking each column vector of

, remodeling them into ma-
trices , and building the matrix whose
th column vector is the eigenvector of
matrix associated with the largest
eigenvalue.
Step 7 Estimate the signal vector for
any value by applying to a linear
filter built from , like, for example,
the SMF defined by .

V. COMPUTER RESULTS

In this section, a comparative performance analysis of
seven BSS methods (SOBI, COM1, COM2, JADE, FastICA,
FOBIUM, and ICAR) in various scenarios is presented. For this
purpose, we consider a Uniform Linear Array (ULA) of
sensors, except for Fig. 2, where , equispaced half a
wavelength apart [32]. quadrature phase shift keying
(QPSK) sources are linearly modulated with a pulse shape filter
corresponding to 1/2-Nyquist filters with a rolloff equal to 0.3
[34]. In addition, the sources have the same symbol
period and the same signal-to-noise ratio (SNR) equal to
15 dB, except for Fig. 4(a) and (b). The sources are assumed
to be well angularly separated, except for Fig. 6, where the
other cases are also considered. The source carrier residuals are
such that , , except for Fig. 2, where

. The sample period corresponds to the symbol
period . As a result, the used SO and FO statistics are time
invariant so that classical sample estimators may be employed.
As far as the background noise is concerned, it is temporally
and spatially white, except for Section V-A2. Eventually, the
simulation results are averaged over 200 realizations. Note
that we resample the sources and the noise between these
200 experiments. On the other hand, the mixing matrix does
not change, except for Fig. 6, where its influence on the BSS
methods performance is pointed out.

Moreover, the criterion used in this paper, in order to eval-
uate the performance of BSS algorithms, is the well-known
signal-to-interference plus noise matio maximum (SINRM)

Fig. 1. Behavior of BSS methods in the presence of a white noise. (a) Case I.
(b) Case II.

criterion defined in [11, Sec. 3]. In other words, for each source
( ), the SINR for the source at the output of

a spatial filter is defined by

SINR (31)

where is the variance of the th source. Moreover,
is the total noise covariance matrix for source , corresponding
to matrix in the absence of source . In these conditions,
the restitution quality of source at the output of separator ,
whose columns are the , can be evaluated by the maximum
value of SINR when varies from 1 to and may be
denoted SINRM .

1) White Noise Case: The performance of ICAR at the
output of the considered source separator is first illustrated in
the presence of a spatially and temporally white Gaussian noise
and compared with some well-known BSS algorithms. Fig. 1(a)
and (b) and 2 show the variations of SINRM (source 2 per-
formance) at the output of the previous methods as a function
of the number of samples. Fig. 1(a) and (b) show the good per-
formance of the ICAR algorithm, especially ICAR3 (the third
method given in Section IV-C2), facing the well-known SOBI,
COM1, COM2, JADE, FastICA, and FOBIUM methods. As
for the SOBI method, it requires about 450 snapshots to obtain
good results, due to a mild difference between the spectral
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Fig. 2. Behavior of BSS methods for sources with identical trispectra.

Fig. 3. Behavior of BSS methods for different SNRs.

densities of the sources. Note that similar results have been
obtained for the other source. In addition, since the best results
between the three ICAR methods are obtained, in particular,
for ICAR3, we report in the following sections the comparison
results only for this third method. Contrary to the other figures,
Fig. 2 shows performance results when the two QPSKs are
chosen in baseband, i.e., taking , which
implies that the two source signals have identical trispectra.
Consequently, the SOBI and FOBIUM algorithms are unable
to separate them correctly. However, we note that the FOBIUM
method seems to be more robust than SOBI with respect to a
spectrum difference of the sources. Moreover, other simulations
have shown that the FOBIUM results are better as quotient

increases, even if they remain suboptimal.
Fig. 3 shows, for a number of 400 samples, the variations

of SINRM at the output of the previous methods as a func-
tion of the input SNR, which are identical for the two sources.
All the BSS methods have approximately the same behavior.
First, when the SNR is very small, they do not succeed per-
fectly in extracting the third source. On the contrary, for SNRs
between 4 and 20 dB, the source separation is optimal. Fi-
nally, although the variations of SINRM for SNRs greater than
20 dB are somewhat surprising, this result has already been ob-
served by Monzingo and Miller in [32] for optimal separators

Fig. 4. Behavior of BSS methods for a colored noise. (a) Case I: an SNR of
5 dB. (b) Case II: an SNR of 0 dB.

when mixture is known. Note that similar results have been
obtained for the other source.

2) Colored Noise Case: Then, the ICAR3 method is com-
pared with the other algorithms in the presence of a Gaussian
noise with unknown spatial correlation. Fig. 4(a) and (b) shows
the variations of SINRM at the output of the previous methods
as a function of the noise spatial correlation factor . The SNR
of the two sources is taken to be equal to 5 dB [see Fig. 4(a)] and
then 0 dB [see Fig. 4(b)]. In addition, 400 samples are used to
extract the two sources. Note that the Gaussian noise model em-
ployed in this simulation is the sum of an internal noise
and an external noise of covariance matrices and

, respectively, such that

(32)

where , are the total noise variance per sensor and the noise
spatial correlation factor, respectively. Note that

is the th component of the total noise
covariance matrix. It appears in Fig. 4(a) that FOBIUM and
ICAR3 are insensitive to a Gaussian noise with unknown spatial
correlation, whereas ICAR3 seems to be a bit more robust than
FOBIUM. On the other hand, the well-known COM1, COM2,
JADE, and SOBI methods are strongly affected as soon as the
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Fig. 5. Behavior of BSS methods for an overestimated number of sources.

noise spatial correlation increases beyond 0.5. In fact, the clas-
sical BSS methods require a prior spatial whitening based on SO
moments. This stage theoretically needs the perfect knowledge
of the noise covariance. If this is not the case, a whitening of
the observed data is performed instead, which is biased. ICAR
does not suffer from this drawback since it uses only FO cumu-
lants, which are (asymptotically) insensitive to Gaussian noise,
regardless of its space/time color. Note the poor performance of
FastICA due to the presence of weak sources. Besides, similar
results have been observed for source 1. As far as Fig. 4(b) is
concerned, it confirms the fact that the performance differences
between ICAR3 and the classical BSS methods increases as the
source SNR decreases.

3) Overestimation of the Number of Sources: On the other
hand, in operational contexts, the number of sources may be
overestimated. It is then interesting to compare the ICAR
method with other algorithms in such situations. To this aim,
we assume that the estimated number of sources is equal to

. Fig. 5 shows the variations of SINRM (source 2 per-
formance) at the output of the previous methods as a function
of the number of samples, whereas the input SNR of the two
sources is assumed to be equal to 15 dB. Similar results have
been observed for source 1. More particularly, it appears that
the FastICA and ICAR3 methods are robust with respect to
an overestimation of the number of sources, whereas, in this
simulation configuration, the JADE algorithm loses 15 dB, for
less than 1000 samples, with respect to the case where .
As for the other methods, such as the FOBIUM algorithm, they
are also affected by this overestimation, but less than the JADE
algorithm since they lose, on average, 3 dB. The explanation of
this surprising phenomenon is not easy and is beyond the scope
of this paper. However, a similar behavior had been observed
in [10] and [13] when comparing JADE and COM algorithms.
The lack of robustness of JADE stems from the fact that only
a subset of cross-cumulants are minimized, which means that
some cross-cumulants are implicitly maximized along with
marginal ones.

4) Mixing Matrix Influence: Finally, the performance of the
seven BSS methods (SOBI, COM1, COM2, JADE, FastICA,

Fig. 6. Behavior of BSS methods for different source spatial correlations.

FOBIUM, and ICAR3) are compared for different mixing ma-
trices. Indeed, Fig. 6 shows the variations of SINRM at the
output of the previous methods as a function of the source spa-
tial correlation , which is defined as the normalized modulus
of the scalar product between the two steering vectors, i.e., the
two column vectors of matrix :

(33)

The input SNR of the two sources is assumed to be equal to
15 dB. Similar results have been observed for source 1. More
particularly, it appears that ICAR3 presents results that are
generally close to the optimum SMF, except for some isolated
values. In addition, FastICA seems to be more sensitive to
sources that are not angularly separated enough. On the other
hand, this simulation section allows the evaluation of the robut-
ness of the previous methods with respect to assumption A5),
which is a basic but needed assumption in BSS, as shown in
Fig. 6.

VI. CONCLUSION

The ICAR algorithm, exploiting the information contained in
the data statistics at fourth order only, has been proposed in this
paper. This algorithm allows the processing of overdetermined
(including square) mixtures of sources, provided the latter have
marginal FO cumulants with the same sign, which is generally
the case in radio communications contexts. Three conclusions
can be drawn: First, in the presence of a Gaussian noise that
is spatially and temporally white, the proposed method yields
satisfactory results. Second, contrary to most BSS algorithms,
the ICAR method is not sensitive to a Gaussian colored noise,
whose spatial coherence is unknown. Last, the ICAR algorithm
is robust with respect to an overestimation of the number
of sources, which is not the case for some methods such as
JADE. Forthcoming works include the search for a contrast
criterion associated with ICAR in order to accurately analyze
its performance.
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APPENDIX A
PROOF OF PROPOSITION 1

The proof of Proposition 1 follows immediately from (18),
(19), and assumption A4), i.e., matrix contains no null entry.
In fact, suppose that is not full column rank. Then, there
exists some 1 vector such that ,
which, due to the structure of (18) implies that for all

, . Therefore, it implies that cannot
be full column rank [since matrices are diagonal with
nonzero entries, due to (19) and assumption A4)], which contra-
dicts the fact that is of full column rank A5).

APPENDIX B
PROOF OF PROPOSITION 2

The proof is straightforward. In fact, two square roots of a
matrix (here ) are always equal to within a unitary matrix,
which yields

(34)

for some unitary matrix . Equation (34) shows that
the right-hand side is the SVD of the left-hand side, hence, the
Proposition 2 result, since
is a real positive matrix.

APPENDIX C
PROOF OF PROPOSITION 3

is a full column rank matrix according to A5). The di-
agonal matrices and (note that the diagonal elements
of the latter are components of ), are invertible according to
A3) and A4), respectively (in other words, because source kur-
toses are not null and because matrix contains no null entry).
As far as the square matrix is concerned, it is invertible be-
cause of its unitary structure. Therefore, matrices are the
product of a full column rank matrix and an invertible ma-
trix . The fact that this particular product is
of full column rank remains to be proven. In fact, suppose that

is not of full column rank. Then, there exists some 1
vector such that . Therefore, it implies that

cannot be full column rank (since matrices are
invertible), which contradicts the first sentence of this section.

APPENDIX D
PROOF OF PROPOSITION 4

If assumptions A4) and A5) are equivalent to assuming that
with no null entries and of full column rank, respectively, then
Proposition 4 may be rewritten as

A4 A5

s.t. (35)

where s.t. means such that. To prove assertion (35), assume the
contrary:

A4 A5

s.t. (36)

This implies, since are diagonal full
rank matrices, that , , ,

s.t.

(37)

which is equivalent, according to (19), to

(38)

This means that

s.t. (39)

In other words, assuming (36) under A4) and A5) implies that at
least two column vectors of are collinear, which contradicts
A5). Consequently, assertion (35) and, hence, Proposition 4 are
true.

APPENDIX E
PROOF OF PROPOSITION 5

Each column of is defined, according to (28), by

(40)

where is a bijective function of into itself
(i.e., a permutation), and where , de-
notes the complex modulus operator. Therefore, we transform
the vectors of size 1 into matrices , where
the th component of corresponds to the

th component of such that

(41)

Note that is a rank one matrix. Consequently, a simple diag-
onalization of each matrix indeed allows the extraction in a
unique way up to a scale and permutation factor, of each column
vector of .
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