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ABSTRACT squares-free criterion [13]. On the other hand, Cardoso
and Souloumiac have proposed [4] slightly later an effi-
cient algorithm performing Joint Approximate Diagonaliza
tion of Eigen cumulant matrices (JADE). Later, Hyvarinen
“and others propose the so-called FastICA fixed point algo-
rithm, which extracts one source at a time, first for real sig-
nals [12], then for complex [3]. All these methods can be
§ensitive to the presence of additive Gaussian noise, of un-
‘known spatial coherence; such a noise is frequent in appli-
cations such as HF radiocommunications. In fact, they per-
form as a preliminary stage an exact second-order decorre-
lation by a preliminary “spatial whitening”; this operatio

1. INTRODUCTION is sub-optimal in several respects, because it puts too much

emphasis on second order statistics.

Blind Source separation (BSS) or Independent Component The solution (also sub-optimal though) proposed in this
Analysis (ICA) have lately raised great interest. These pro paper consists of getting rid of this whitening stage, and
blems find their place in numerous applications including of using exclusively higher order statistics, namely fourt
telecommunications, speech processing, or biomedical enorder cumulants. More precisely, the redundancy theoreti-
gineering. For instance, in antenna array processing; if se cally present in the quadricovariance of the observatisns i
veral sources impinge of an array of discrete sensors, ancexploited. This concept can be extended to statistics of or-
if the channel time spread associated with every source andler strictly higher than 4, allowing for instance to address
every sensor is negligible compared to the symbol period,the case otinderdetermined mixturegn which the num-
then the signals received can be modeled as a static mixber of sources present exceeds in permanence the number
ture of the transmitted sources. BSS aims at extracting theof sensors. Such extensions to order 6, or more generally
sources from the sole observation of the mixtures receivedto orderm=2q (¢>2), have been recently proposed by the
on the array. Several techniques are available, depending o authors under the names of BIRTH [2] and BIOME [1].
the assumptions made. In this paper, it will be assumed that
sources are mutually statistically independent. Contrary 2. NOTATIONS AND ASSUMPTIONS
Principal Component Analysis (PCA), which exploits only
statistics of order 2, ICA resorts to statistics of highetesy ~ Let IV sensors be available, and denotgk) the noisy ob-
and is thus able to impose some stronger statistical indepenservations received on these sensbrsn < N. The vector
dence than just a mere decorrelation. This is made possiblg,s observations: (k) def [z1(k) z2(k) -~ xx(k)]" can be

A new Blind Source Separation (BSS) algorithm, called
ICAR and using only Fourth Order (FO) statistics of the
data, is proposed. The latter method is compared by com
puter experiments with the well-known methods COM1,
COM2, JADE, FastICA and SOBI. Since ICAR has given
very good convergence results and has performed the sourc
separation in the presence of a Gaussian noise with un
known spatial correlation, it appears as being one of the
most attracting BSS algorithms.

if sources are not Gaussian, and made easier if there are g{,ggeled in the form below:
least as many sensors as sources.

Since the early works of Jutten [11], the concept of ICA L
has evolved, and most of the material has been presented (k) = As(k) +v(k) = Z"?’ sp(k) +v(k) (1)
in the seminal paper of Comon [7], where it is proposed p=1
to maximize contrast functionals; an algorithm is proposed of
there, which shall be referred to as COM2, for Contrast- Wheres,(k) denotes the unknown sources, and™' [a,
based Maximization of squared fourth order cumulants. a; --- ap], s(k) def [s1(k) s2(k) -+ sp(k)]", v(k) def
Some years later, he also proposed a simple algorithm [8],[v1 (k) va2(k) --- v (k)]" denote respectively th&’ x P
which will be called COM1 in the sequel, maximizing a mixing matrix, and the source and noise random vectors,



assumed to be independent. Also define for very inklex 3. THE CORE OF THE ICAR METHOD
the entries of the-th order cumulant tenso€;,,, of a ran- _ _ _
dom process:(k), stationary and ergodic up to order 4: 3.1. Properties of the quadricovariance

dof The multilinearity property enjoyed by cumulants allows to
Ciey © Cum{afk), alk), af(h), ok)} () wite

It is then possible to store every entry of ten€gy in a
matrix Q,,, sometimes called thguadricovariance

Q,=[AA" Qs [Ar A" (5)
where@,, andQs denote quadricovariance matricesugk)
ands(k), of sizeN?xN? andP?xP?, respectively. Because

p sources are independefy, is diagonal. However, it is not
V1<de f,g<N, Qo N(d—1)+g N(f-1)+e)=C;7, (3)  full rank. Another decomposition,

— H
where Q(r;, q) corresponds to thér, ¢)-th component of Q= Ag & Ag ©)
Q.z. .Note that this ar_rangement is of course not unique, bUtexhibits two new matrices. The first ong, def diag(
this is the one that yields the best performances in terms of [0111 Cc2_ ... CEE
s ,8

identifiability 161, Matri be d d I , ths) ), is diagonal of sizeP x P, and
;Segltl I?l]l ity [6]. Matrix @, can be denoted more generally invertible from H4). The second oned,, of sizeN?x P,
4 @ :

is also of full rank f 6)and[1, 1], be writt
Let us add that the expression #th order cumulants Is also of full rank from £46) and [1, prop. 1], can be written

of zero-mean complex variables as a function of moments et
appears in many papers; see for instance [10] for non zero Ag = [m®aq mea) --- apRa}]
mean variables. We also assume the following: = [A®][AB] - [AB]T ()

H1. For every indes, the source vectas(k) is stationary ~ Where
and ergodic (extension to cyclostationary and cycloer- & % Giao(lA(n. 1) A(n.2) --- A(n. P 8
godic is straightforward), with complex values, mutu- " iag([A(n, 1) A(n,2) (n, P))) (8)
ally independent at order 4 (i.e. all cross cumulants of EntriesA(n, -) of the diagonal matrix®,, of size P x P,
order 4 are null); form then-th line of A. (MatricesQ, and.A, are referred
to as¢y , et.A; in [1]).

H2. For everyk, the noise vector (k) is stationary and
ergodic; 3.2. Principle of ICAR

the principle is similar to that described in [2] with the-dif
ference that statistics of order 4 are utilized instead of 6.
This difference is important becauseh order statistics do
not allow any more to addressiderdetermined mixtureat
least in the present framework. Since sources have the same
ppp:s i ) kurtosis sign, it is possible to determine a unique real sgjua
same sign#, = E[|s,(k)|] denotes the power of the  root matrix ofQ, or —@Q,. Without restricting the genera-
p-th source); lity, assume source kurtoses are all positive. The squate ro
of Q,, can be computed by an Eigen Value Decomposition
H5. The number of sources is smaller than the number of (EVD), from (6):
sensors:P < N. The mixture is then referred to as
overdeterminep Q=B L =Aq QP V" ©)

H3. For everyk, s(k) andv(k) are statistically indepen-
dent;

H4. Sourcekurtoseqstandardized autocumulants of order
4), kbpp = Crpr /72, are non zero and have all the

. o ~ WherelL, (Li/2 denotes a square root df) is the P x P
H6. The mixing matrixA is full rank and does not contain diagonal matrix containing th& non-zero eigenvalues of
any null entry. Q,, and E is the N2 x P matrix of associated normalized
) ] ] eigenvectors. Becauséy, is full rank, it can be shown that

The goal is to determine a separating mat#k, such  (H4) amounts to assuming that diagonal elementE,cdre

that non zero and have the same sign [1, prop. 2], here posi-
y(n) < W z(n) 4) tive. Moreover, (9) establishes a link betwe@fi* and. A,
whereV is a unitary matrix, uniquely defined ondg and
is an estimate of vectas(k) up to a multiplicativetrivial E, are fixed. Next, (9) and (7) rela@/? and A such that:
matrix (i.e. of the formAII whereA is invertible diagonal .
andII is a permutation). In ICAR, as in numerous other Q;/Q = {[A*@Q};/ZVH]T e [A*@NQ/QVH]T}

BSS algorithms, the construction W requires the identi-
fication of mixtureA. = [T - TN T (10)



wherel,, = A*®, ng V*is then-th matrix block onzl/Q,
of size N x P. Consequently, matri% diagonalizes the
N(N —1) matrices®,, ,,, given by

G)"an = I‘,’ill_‘nz

wheref denotes pseudo-inversion. In fact, from the expres-
sion of I',, yielded by (10), and under assumptioh$5}-

(H6), the pseudo-inverse df,, can be written ad} def
(L,"T,)~'L,". As a consequence, matric€, ,, can be

rewritten in the form below:

V1<ni#ns <N, (11)

V 1 S ny 75712 S ]\f7 ®n17n2 = V Dm,nz VH (12)

where matriced,, ,,, def <I>;11 ®,, are diagonal. Denote
Vior the unitary matrix that jointly diagonalizes matrices
©®,, n,. ThenV,,, = VT with 7 unitary. Thus, from (9),
V;oi allows to identify. A up to a unitary matrix:

QP Vi = Ao QP T Y 4,

On the other hand, from assumptiomtb)-(H6), for every
pair (p, p2)|p175p2 belonging to{1,2, . .. ,P}Q, there exists at
least a pair(m, n2),,.4,, belonging to{1,2,... N such
that D, no(p1, 1) # Diyno(p2, p2). This implies thatT is

<

trivial. Then from (13), matrixAg is consequently an esti-
mate of.A, up to a trivial matrix.
Next from (10), equation (13) can be rewritten as

(13)

QU Vi = [[ABQPT] - [ABQPT]]
def A

The matrix blockY;, formed of theN first rows on;ﬂ
Vso1, COrresponds tet*, up to a trivial matrix:

=A% QT

DXED VIR Y (14)

(15)

where @Y and ®, are diagonal for every,, 1 < n < N.
This method is named ICAR One could also think of se-
veral improvements, for instance by averagingihblocks
33, for estimatingA*, giving rise to ICAR.

3.3. Refinement of the method

In order to fully exploit the information contained in matri
XQ (14), namely its redundancies &g in (7), it is pos-
sible to mimic the last step of FOBIUM [9]. Indeed, from
(13) and (7):

XQ = [)\5(1)[05(1)®ag(1)} A [aﬁ(P)@ag(P)”
= b - b)) (16)

ChoP o \1/2, and¢ is a permutation mapping on

., P}. Itis then possible to associate every vector

where|)\,| = |
1,2,..

b, of size N2 x 1 with a matrix By, of size N x N, whose
columns are precisely th¥ successive vectots, formed
of N values:

By = ey |acipaly | (17)
A mere diagonalization of matricd?g(p) allows to yield the
P directional vectorsy,, by retaining each time the eigen-
vector associated with the dominant eigenvalue, and up to a

permutation and a scalar multiplicative factor. The method
with the latter improvement is named ICAR

4. SIMULATIONS

Two computer experiments show the performances of ICAR
and some efficient BSS techniques (COM1, JADE, Fast-
ICA, SOBI). P =4 statistically independent sources, i.
BPSK and2 QPSK, all with a raised cosine pulse shape of
roll-off equal to0.25, are received by a UCA oV =4 iden-

tical sensors of radiu® such thatkR/A = 0.55 (\: wave-
length). The four sources, assumed synchronized, have the
same input SNR (Signal to Noise Ratio) 26dB and the
noise is spatially and temporally white Gaussian. The sym-
bol period7; associated with the first BPSK is equal to
three times the sample peri@d. The other sources have

a symbol period equal to twice the sample period. The di-
rections of arrival of the sources are such that the source
steering vectors are orthogonal and the associated carrier
residus are such thgt 7; =0, f. 7. =0.3, f.3 7. =0.2 and

fea T =0.1. The performance measure assumed to evaluate
the quality of the extraction of sourgeis the maximal sig-

nal to interference plus noise ratio associated with source
p, denotedSINRM [5]. It can be compared to the optimal
SINRN computed using the exact mixing matrix instead
of the estimated one and denoted®gtimum SMEThese

are precisely the comparisons that are drawn now. Figure 1
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displays the SINRM of sourceaveraged ove200 realiza-
tions, associated with ICAR and BSS techniques JADE,
COM1, FastICA and SOBI, as a function of the number
of samples. Figure 1 shows the good performance of the
ICARS algorithm facing the other methods. Note that the
SOBI method gives in this simulation good results since
sources have been chosen with different spectral densities



especially taking different carrier residus. Similar désu 6. REFERENCES
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