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ABSTRACT

A new Blind Source Separation (BSS) algorithm, called
ICAR and using only Fourth Order (FO) statistics of the
data, is proposed. The latter method is compared by com-
puter experiments with the well-known methods COM1,
COM2, JADE, FastICA and SOBI. Since ICAR has given
very good convergence results and has performed the source
separation in the presence of a Gaussian noise with un-
known spatial correlation, it appears as being one of the
most attracting BSS algorithms.

1. INTRODUCTION

Blind Source separation (BSS) or Independent Component
Analysis (ICA) have lately raised great interest. These pro-
blems find their place in numerous applications including
telecommunications, speech processing, or biomedical en-
gineering. For instance, in antenna array processing, if se-
veral sources impinge of an array of discrete sensors, and
if the channel time spread associated with every source and
every sensor is negligible compared to the symbol period,
then the signals received can be modeled as a static mix-
ture of the transmitted sources. BSS aims at extracting the
sources from the sole observation of the mixtures received
on the array. Several techniques are available, depending on
the assumptions made. In this paper, it will be assumed that
sources are mutually statistically independent. Contraryto
Principal Component Analysis (PCA), which exploits only
statistics of order 2, ICA resorts to statistics of higher order,
and is thus able to impose some stronger statistical indepen-
dence than just a mere decorrelation. This is made possible
if sources are not Gaussian, and made easier if there are at
least as many sensors as sources.

Since the early works of Jutten [11], the concept of ICA
has evolved, and most of the material has been presented
in the seminal paper of Comon [7], where it is proposed
to maximize contrast functionals; an algorithm is proposed
there, which shall be referred to as COM2, for Contrast-
based Maximization of squared fourth order cumulants.
Some years later, he also proposed a simple algorithm [8],
which will be called COM1 in the sequel, maximizing a

squares-free criterion [13]. On the other hand, Cardoso
and Souloumiac have proposed [4] slightly later an effi-
cient algorithm performing Joint Approximate Diagonaliza-
tion of Eigen cumulant matrices (JADE). Later, Hyvarinen
and others propose the so-called FastICA fixed point algo-
rithm, which extracts one source at a time, first for real sig-
nals [12], then for complex [3]. All these methods can be
sensitive to the presence of additive Gaussian noise, of un-
known spatial coherence; such a noise is frequent in appli-
cations such as HF radiocommunications. In fact, they per-
form as a preliminary stage an exact second-order decorre-
lation by a preliminary “spatial whitening”; this operation
is sub-optimal in several respects, because it puts too much
emphasis on second order statistics.

The solution (also sub-optimal though) proposed in this
paper consists of getting rid of this whitening stage, and
of using exclusively higher order statistics, namely fourth
order cumulants. More precisely, the redundancy theoreti-
cally present in the quadricovariance of the observations is
exploited. This concept can be extended to statistics of or-
der strictly higher than 4, allowing for instance to address
the case ofunderdetermined mixtures, in which the num-
ber of sources present exceeds in permanence the number
of sensors. Such extensions to order 6, or more generally
to orderm=2q (q≥2), have been recently proposed by the
authors under the names of BIRTH [2] and BIOME [1].

2. NOTATIONS AND ASSUMPTIONS

Let N sensors be available, and denotexn(k) the noisy ob-
servations received on these sensors,1≤n≤N . The vector

of observationsx(k)
def
= [x1(k) x2(k) · · · xN (k)]T can be

modeled in the form below:

x(k) = As(k) + ν(k) =
P∑

p=1

ap sp(k) + ν(k) (1)

wheresp(k) denotes the unknown sources, andA
def
= [a1

a2 · · · aP ], s(k)
def
= [s1(k) s2(k) · · · sP (k)]T , ν(k)

def
=

[ν1(k) ν2(k) · · · νN (k)]T denote respectively theN ×P
mixing matrix, and the source and noise random vectors,



assumed to be independent. Also define for very indexk
the entries of the4-th order cumulant tensor,Cx, of a ran-
dom processx(k), stationary and ergodic up to order 4:

Cfg
de,x

def
= Cum{xd(k), xe(k), xf(k)∗, xg(k)∗} (2)

It is then possible to store every entry of tensorCx in a
matrixQx, sometimes called thequadricovariance:

∀ 1≤d, e, f, g≤N, Qx(N(d−1)+g, N(f−1)+e)=Cfg
de,x (3)

whereQx(r, q) corresponds to the(r, q)-th component of
Qx. Note that this arrangement is of course not unique, but
this is the one that yields the best performances in terms of
identifiability [6]. Matrix Qx can be denoted more generally
asC

1
4, x [1].

Let us add that the expression of4-th order cumulants
of zero-mean complex variables as a function of moments
appears in many papers; see for instance [10] for non zero
mean variables. We also assume the following:

H1. For every indexk, the source vectors(k) is stationary
and ergodic (extension to cyclostationary and cycloer-
godic is straightforward), with complex values, mutu-
ally independent at order 4 (i.e. all cross cumulants of
order 4 are null);

H2. For everyk, the noise vectorν(k) is stationary and
ergodic;

H3. For everyk, s(k) andν(k) are statistically indepen-
dent;

H4. Sourcekurtoses(standardized autocumulants of order
4), κppp

ppp,s = Cppp
ppp,s/π2

p , are non zero and have all the

same sign (πp
def
= E[|sp(k)|

2
] denotes the power of the

p-th source);

H5. The number of sources is smaller than the number of
sensors:P ≤ N . The mixture is then referred to as
overdetermined;

H6. The mixing matrixA is full rank and does not contain
any null entry.

The goal is to determine a separating matrix,W , such
that

y(n)
def
= W H x(n) (4)

is an estimate of vectors(k) up to a multiplicativetrivial
matrix (i.e. of the formΛΠ whereΛ is invertible diagonal
andΠ is a permutation). In ICAR, as in numerous other
BSS algorithms, the construction ofW requires the identi-
fication of mixtureA.

3. THE CORE OF THE ICAR METHOD

3.1. Properties of the quadricovariance

The multilinearity property enjoyed by cumulants allows to
write

Qx = [A⊗A∗] Qs [A⊗A∗]H (5)

whereQx andQs denote quadricovariance matrices ofx(k)
ands(k), of sizeN2×N2 andP 2×P 2, respectively. Because
sources are independent,Qs is diagonal. However, it is not
full rank. Another decomposition,

Qx = AQ Qs AQ
H (6)

exhibits two new matrices. The first one,Qs

def
= diag([

C11
11,s C22

22,s · · · CPP
PP,s

])
, is diagonal of sizeP ×P , and

invertible from (H4). The second one,AQ, of sizeN2×P ,
is also of full rank from (H6) and [1, prop. 1], can be written
as:

AQ
def
= [a1⊗a∗

1 a2⊗a∗
2 · · · aP ⊗a∗

P ]

= [[A∗
Φ1]

T [A∗
Φ2]

T · · · [A∗
ΦN ]T]T (7)

where

Φn
def
= diag([A(n, 1) A(n, 2) · · · A(n, P )]) (8)

EntriesA(n, · ) of the diagonal matrixΦn, of sizeP ×P ,
form then-th line ofA. (MatricesQs andAQ are referred
to asζ4,s etA1

2 in [1]).

3.2. Principle of ICAR

the principle is similar to that described in [2] with the dif-
ference that statistics of order 4 are utilized instead of 6.
This difference is important because4-th order statistics do
not allow any more to addressunderdetermined mixtures, at
least in the present framework. Since sources have the same
kurtosis sign, it is possible to determine a unique real square
root matrix ofQx or −Qx. Without restricting the genera-
lity, assume source kurtoses are all positive. The square root
of Q

x
can be computed by an Eigen Value Decomposition

(EVD), from (6):

Q1/2
x = Es L1/2

s = AQ Q1/2
s V H (9)

whereLs (L1/2
s denotes a square root ofLs) is theP ×P

diagonal matrix containing theP non-zero eigenvalues of
Qx, andEs is theN2×P matrix of associated normalized
eigenvectors. BecauseAQ is full rank, it can be shown that
(H4) amounts to assuming that diagonal elements ofLs are
non zero and have the same sign [1, prop. 2], here posi-
tive. Moreover, (9) establishes a link betweenQ1/2

x
andAQ,

whereV is a unitary matrix, uniquely defined onceLs and
Es are fixed. Next, (9) and (7) relateQ1/2

x
andA such that:

Q1/2
x =

[
[A∗

Φ1Q
1/2
s V H]T · · · [A∗

ΦNQ1/2
s V H]T

]
T

def
= [ Γ1

T
Γ2

T · · · ΓN
T ]T (10)



whereΓn = A∗
Φn Q

1/2
s V H is then-th matrix block ofQ1/2

x ,
of sizeN ×P . Consequently, matrixV diagonalizes the
N(N−1) matricesΘn1,n2

given by

∀ 1≤n1 6=n2≤N, Θn1,n2
= Γ

]
n1

Γn2
(11)

where] denotes pseudo-inversion. In fact, from the expres-
sion of Γn yielded by (10), and under assumptions (H5)-

(H6), the pseudo-inverse ofΓn can be written asΓ]
n

def
=

(Γn
H
Γn)−1

Γn
H. As a consequence, matricesΘn1,n2

can be
rewritten in the form below:

∀ 1≤n1 6=n2≤N, Θn1,n2
= V Dn1,n2

V H (12)

where matricesDn1,n2

def
= Φ

−1
n1

Φn2
are diagonal. Denote

Vsol the unitary matrix that jointly diagonalizes matrices
Θn1,n2

. ThenVsol = V T with T unitary. Thus, from (9),
Vsol allows to identifyAQ up to a unitary matrix:

Q1/2
x

Vsol = AQ Q1/2
s

T
def
= ÂQ (13)

On the other hand, from assumptions (H5)-(H6), for every
pair (p1, p2)|p1 6=p2

belonging to{1,2, . . . ,P}
2, there exists at

least a pair(n1, n2)|n16=n2
belonging to{1,2, . . . ,N}

2 such
that Dn1,n2

(p1, p1) 6= Dn1,n2
(p2, p2). This implies thatT is

trivial. Then from (13), matrix̂AQ is consequently an esti-
mate ofAQ, up to a trivial matrix.

Next from (10), equation (13) can be rewritten as

Q1/2
x

Vsol =
[
[A∗

Φ1Q
1/2
s

T ]T · · · [A∗
ΦNQ1/2

s
T ]T

]
T

def
= [Σ1

T
Σ2

T · · ·ΣN2
T]T = ÂQ (14)

The matrix blockΣ1, formed of theN first rows ofQ1/2
x

Vsol, corresponds toA∗, up to a trivial matrix:

Σ1 = A∗
Φ1 Q1/2

s
T (15)

whereQ
1/2
s andΦn are diagonal for everyn, 1 ≤ n ≤ N .

This method is named ICAR1. One could also think of se-
veral improvements, for instance by averaging theN blocks
Σn for estimatingA∗, giving rise to ICAR2.

3.3. Refinement of the method

In order to fully exploit the information contained in matrix
ÂQ (14), namely its redundancies ofAQ in (7), it is pos-
sible to mimic the last step of FOBIUM [9]. Indeed, from
(13) and (7):

ÂQ =
[
λξ(1)

[
aξ(1)⊗a∗

ξ(1)

]
· · · λξ(P )

[
aξ(P )⊗a∗

ξ(P )

]]

def
=

[
bξ(1) · · · bξ(P )

]
(16)

where|λp| =
∣∣Cppp

ppp,s

∣∣1/2, andξ is a permutation mapping on
{1, 2, . . . , P}. It is then possible to associate every vector

bξ(p) of sizeN2×1 with a matrixBξ(p) of sizeN×N , whose
columns are precisely theN successive vectorsbξ(p) formed
of N values:

Bξ(p) = λξ(p)

[
aξ(p)a

H

ξ(p)

]∗
(17)

A mere diagonalization of matricesB∗
ξ(p) allows to yield the

P directional vectorsap, by retaining each time the eigen-
vector associated with the dominant eigenvalue, and up to a
permutation and a scalar multiplicative factor. The method
with the latter improvement is named ICAR3.

4. SIMULATIONS

Two computer experiments show the performances of ICAR
and some efficient BSS techniques (COM1, JADE, Fast-
ICA, SOBI). P =4 statistically independent sources, i.e.2
BPSK and2 QPSK, all with a raised cosine pulse shape of
roll-off equal to0.25, are received by a UCA ofN =4 iden-
tical sensors of radiusR such thatR/λ = 0.55 (λ: wave-
length). The four sources, assumed synchronized, have the
same input SNR (Signal to Noise Ratio) of20dB and the
noise is spatially and temporally white Gaussian. The sym-
bol periodT1 associated with the first BPSK is equal to
three times the sample periodTe. The other sources have
a symbol period equal to twice the sample period. The di-
rections of arrival of the sources are such that the source
steering vectors are orthogonal and the associated carrier
residus are such thatfc1 Te =0, fc2 Te =0.3, fc3 Te =0.2 and
fc4 Te =0.1. The performance measure assumed to evaluate
the quality of the extraction of sourcep is the maximal sig-
nal to interference plus noise ratio associated with source
p, denotedSINRMp [5]. It can be compared to the optimal
SINRMp computed using the exact mixing matrix instead
of the estimated one and denoted byOptimum SMF. These
are precisely the comparisons that are drawn now. Figure 1
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Fig. 1. SINRM3 for a SNR of20 dB

displays the SINRM of source3 averaged over200 realiza-
tions, associated with ICAR3, and BSS techniques JADE,
COM1, FastICA and SOBI, as a function of the number
of samples. Figure 1 shows the good performance of the
ICAR3 algorithm facing the other methods. Note that the
SOBI method gives in this simulation good results since
sources have been chosen with different spectral densities,



especially taking different carrier residus. Similar results
are observed for the other sources, and are not reported here.

The influence of the noise spatial coherence coefficient
ρ is next studied. Now we have 3 sources, i.e.2 BPSK
and1 QPSK, all with a raised cosine pulse shape of roll-
off equal to0.25, are assumed to be received by a UCA of
N = 5 identical sensors of radiusR such thatR/λ = 0.55.
Their symbol periods are equal toT1 = 2Te, T2 = 3Te and
T3 =4Te respectively. Their carrier residus are chosen equal
to zero. The source steering vectors are built orthogonal,
the SNR is0 dB and1500 samples are used for separa-
tion in this scenario. We apply the COM1, COM2, JADE,
SOBI and ICAR3 methods, and the SINRM associated with
each source is computed and averaged still over200 reali-
zations. The Gaussian noise is modeled as a sum of two
noises,νin(k) andνout(k), of covarianceRin

ν andRout
ν

respectively, such that:

Rin
ν (r, q)

def
= σ2δ(r−q)/2 Rout

ν (r, q)
def
= σ2ρ|r−q|/2 (18)

whereσ2 is the global noise variance per sensor. Note that

Rν (r, q)
def
= Rin

ν (r, q) + Rout
ν (r, q) is the(r, q)-th compo-

nent of the global noise covariance. Contrary to COM1,
COM2, JADE and SOBI, algorithm ICAR3 is totally insen-
sitive to the increase in coefficientρ. In fact, the classical
methods such as COM1, COM2, JADE, FastICA and SOBI
require a prior spatial whitening based on second order mo-
ments. This stage theoretically needs the perfect knowledge
of the noise covariance. If this is not the case, a white-
ning of the observed data is performed instead, which is
biased. ICAR3 does not suffer from this drawback, since it
uses only4-th order cumulants, which are (asymptotically)
insensitive to Gaussian noise, regardless of its space/time
color. Again, similar results have been observed for sources
1 and2.
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5. CONCLUSION

The new algorithm proposed in this paper, referred to as
ICAR, utilizes only fourth order statistics of observations,
and seems to be much more attractive than previous (clas-
sical) BSS techniques needing prior second order decorre-
lation, according to our computer simulations.We currently
work on another solution to the problem presented in sec-
tion 3.3, in other words, on another technique to extract the
mixing matrixA contained inAQ (7).
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