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ABSTRACT

Static linear mixtures with more sources than sensors are
considered. The Blind Source Identification (BSI) of under-
determined mixtures problem is addressed by taking advan-
tage of Sixth Order (SixO) statistics and the Virtual Array
(VA) concept. It is shown how SixO cumulants can be used
to increase the effective aperture of an arbitrary antenna
array, and so to identify the mixture of more sources than
sensors. A computationally simple but efficient algorithm,
named BIRTH, is proposed and enables to identify the steer-
ing vectors of up toP = N2−N +1 sources for arrays of
N sensors with space diversity only, and up toP = N2 for
those with angular and polarization diversity.

1. INTRODUCTION

If high performance joint Second Order (SO) and Fourth Or-
der (FO) Blind Source Identification and Extraction (BSIE)
methods can be found in signal processing literature, most
of them [3] [5] [7] can only identify overdetermined mix-
tures (that means mixtures of fewer sources than sensors)
because of the SO prewhitening step. However, in practical
situations, such as in HF (High Frequency) radiocommuni-
cations contexts, the reception of more sources than sensors
is possible and its probability increases with the reception
bandwidth.

To face such situations, several BSIE methods, able to
identify underdetermined mixtures (i.e.P >N ) of sources,
have been developed. Some papers focus on blind source
extraction [11] [8], which is a difficult problem since the
underdetermined mixture is not invertible, while others, as
herein, favour BSI of the mixture matrix [2] [6] [9] [11]
[13]. The methods proposed in [2] [6] [9] only exploit the
information contained in the data FO statistics whereas the
one proposed in [13] exploits the information contained in
the second characteristic function of the observations. As
for Lee et al. [11], they maximize the probability of the
data conditionally to the mixture matrix. However, all these

methods have drawbacks in operational contexts. Indeed,
the method [2] is still very difficult to implement and does
not ensure the BSI of the source steering vectors when the
sources have the same kurtosis. The BSI methods [6] [9]
assume non FO circularity and thus fail in separating FO
circular sources. Besides, the theory developed in [6] only
confines itself to three sources and two sensors. Although
the method [11] succeeds in identifying the steering vectors
of up to four speech signals with only two sensors, the au-
thors need to assume temporal independence of the samples
and that all sources have a sparse distribution. Finally, the
method [13] has been developed only for real mixtures of
real-valued sources and robustness issue to an over estima-
tion of the number of sources is still to analyse.

To overcome the previous drawbacks a new BSI method,
named BIRTH (Blind Identification of mixtures of sources
usingRedundancies in the daTa Hexacovariance matrix), is
proposed, able to blindly identify the steering vectors of up
toP = N2−N+1 sources for arrays ofN sensors with space
diversity only, and up toP = N2 for those with angular
and polarization diversity. The sources are assumed to have
non zero SixO marginal cumulants with the same sign (the
latter assumption is generally verified in radiocommunica-
tions contexts). Besides, BIRTH exploits the VA concept
described in [10] [4] and redundancies in the SixO statisti-
cal matrix of the data, calledhexacovariance, without SO
or FO prewhitening.

2. ASSUMPTIONS AND NOTATION

Assume that for any fixed time indexk, N complex outputs
xn(k) of a noisy mixture ofP statistically sourcessp(k) are
available. The vectorx(k) of the measured array outputs is
given by

x(k) = A s(k) + ν(k) (1)

whereA, s(k), ν(k) are the(N×P ) constant mixing ma-
trix, the source and noise random vectors, respectively. In
addition, for any fixed time indexk, s(k) andν(k) are sta-



tistically independent.

For the sake of convenience we need to define, for any
k, the entries of the SixO cumulant tensorCz of a random
vector,z(k), stationary and ergodic up to order6:

Cghi
def,z = Cum{zd(k),ze(k),zf(k),zg(k)∗,zh(k)∗,zi(k)∗} (2)

Such components may be ordered in theHz hexacovariance
matrix as follows:

∀ 1≤d, e, f, g, h, i≤N, H
N(N(g−1)+h−1)+f
N(N(d−1)+e−1)+i,z = Cghi

def,z (3)

whereHq
r,z denotes the(r, q)th component ofHz. Note

that SixO cumulants are given as a function of moments in
statistics text books, but only in the real case [12]. Never-
theless, their expressions in the complex case can be found
in [1] for zero-mean variables which are distributed sym-
metrically with respect to the origin. Moreover, we further
assume the following hypothesis:

A1. For any fixed time indexk, sourcessp(k) are sta-
tionary, ergodic and mutually uncorrelated at order 6,
with values a priori in the complex field;

A2. For any fixed time indexk, noise valuesνn(k) are sta-
tionary, ergodic and gaussian with values a priori in
the complex field too;

A3. SixO marginal source cumulants,Cppp
ppp,s, are not null

and have all the same sign;

A4. The number of sources is such thatP ≤N2;

The goal of BSI consists of determining an estimate of the
mixture matrixA of the sources.

3. THE BIRTH METHOD

3.1. Hexacovariance property

The BIRTH method exploits several matrix redundancies in
the hexacovariance of the data especially thanks to the mul-
tilinearity property under changes of coordinate systems,
which enjoy cumulants. This property can be expressed by
the following equation:

Hx = [A⊗A⊗A∗]Hs [A⊗A⊗A∗]H (4)

where the(N3×N3) Hx and the(P 3×P 3) Hs matrices are
the hexacovariance matrices ofx(k) ands(k) respectively.
Furthermore, theHs matrix is diagonal since the sources
are independent but is not full rank. So it is possible to
write theHx matrix as a function of the full rank diagonal
(P×P ) Hs = diag

([
C111

111,s C222
222,s · · ·CPPP

PPP,s

])
matrix:

Hx = A1 Hs A1
H (5)

where the(N3×P ) A1 matrix, assumed full rank, is given
by:

A1 = [a1⊗a1⊗a∗1 · · · aP ⊗aP ⊗a∗P ]
= [[A2Φ1]T [A2Φ2]T · · · [A2ΦN ]T]T (6)

with the(N2×P ) A2 matrix, assumed full rank, defined by:

A2 = [a1⊗a∗1 · · · aP ⊗a∗P ]
= [[A∗Φ1]T [A∗Φ2]T · · · [A∗ΦN ]T]T (7)

and:

Φn = diag
([

a1(n) a2(n) · · · aP(n)
])

(8)

In other words, the non zero elements of the diagonal(P×
P ) Φn matrix are thenth components of theP ap steering
vectors.

3.2. Data structure

If SixO marginal source cumulants are strictly positive (A3),
then a square root ofHx, calledH

1/2
x , has to be computed (if

these cumulants are strictly negative, the−Hx matrix has
to be considered for computing the square root) for example
as following :

H1/2
x = Es L1/2

s = A1 H1/2
s V H (9)

whereLs (L1/2
s denotes a square root ofLs) is the(P×P )

real-valued diagonal matrix of theP non zero eigen-values
of Hx andEs is the(N3×P ) matrix of the associated or-
thonormalized eigen-vectors. For a full rankA1 matrix, it
is possible to verify that (A3) is equivalent to assume that
the diagonal elements ofLs are not null and have also the
same sign. In addition, (9) shows the link betweenH

1/2
x and

A1 whereV is an unitary matrix. Finally, (9) and (6) allow
to prove the link betweenH1/2

x andA2, as follows:

H1/2
x =

[
[A2Φ1H1/2

s V H]T · · · [A2ΦNH1/2
s V H]T

]
T

= [ Γ1
T Γ2

T · · · ΓN
T ]T (10)

whereΓn = A2Φn H1/2
s V H is thenth (N2×P ) matrix block

of H
1/2
x .

3.3. SixO blind identification step

In this section, the purpose is to exploit the information con-
tained in theH1/2

x matrix to blindly identifyA. Indeed, the
V matrix diagonalizes theN(N − 1) Θn1,n2 matrices de-
scribed, for all1≤n1 6=n2≤N , by:

Θn1,n2 = Γ]
n1

Γn2 = V H−1/2
s Φ−1

n1
Φn2 H1/2

s V H (11)



where] denotes the pseudo-inverse operator and where the
Dn1,n2 = H−1/2

s Φ−1
n1

Φn2H
1/2
s matrices are diagonal. Thus,

by construction, the rank ofΘn1,n2 , denoted byrk(Θn1,n2),
cannot exceed themin(rk(Γn1), rk(Γn2)) = min(P, rk(A2))
value, hence another bound of the maxi number of sources,
P . The unitaryVsol = V T matrix, solution to the previous
problem of joint diagonalization to within an unitary trivial
matrixT (a trivial matrix is of the formΛΠ whereΛ is an
invertible diagonal matrix andΠ a permutation), allows, in
accordance with (9), to recoverA1 to within a trivial matrix
as follows:

H1/2
x Vsol = A1 H1/2

s T (12)

Since, consistent with (6) and (7), the (12) equation can also
be written as follows:

H1/2
x V =

[
[A∗Φ1Φ1H1/2

s ]T · · · [A∗ΦNΦNH1/2
s ]T

]
T

= [Σ1
T Σ2

T · · ·ΣN2
T]T (13)

So, theΣ1 matrix block made up of the firstN th rows of the
H

1/2
x Vsol matrix corresponds to within a trivial matrix toA∗

such as:

Σ1 = A∗ [Φ1]
2 H1/2

s T (14)

whereH1/2
s andΦn, for all 1≤n≤N , are diagonal matrices.

3.4. Implementation of the BIRTH method

The different steps of the BIRTH method are summarized
hereafter whenK samples of the observations,x(k) (1 ≤
k≤K), are available.

Step1: Compute the estimatêHx of Hx from theK sam-
plesx(k) using for instance [1] and the empirical estimate
of moments, unbiased and consistent for ergodic stationary
sources.
Step2: Eigen Value Decomposition (EVD) of the matrix
Ĥx, estimation of the number of sourcesP and restric-
tion of this EVD to theP principal components:̂Hx =
Ês L̂s Ês

H, whereL̂s is the diagonal matrix of theP eigen-
values with the strongest modulus andÊs is the matrix of
the associated eigen-vectors.
Step3: Computation of a square root matrix̂H1/2

x of Ĥx:
Ĥ

1/2
x = Ês |L̂s|1/2, where|·| denotes the complex modulus

operator.

Step4: Computation from̂H
1/2
x of the Θ̂n1,n2 = [Γ̂

]

n1
Γ̂n2 ]

matrices for all1≤ n1 6= n2 ≤N , and estimation,̂Vsol, of
the unitary matrixVsol from the joint diagonalization of the
N(N−1) matricesΘ̂n1,n2 .
Step5: EstimationÂ of the A mixture matrix taking the
matrix block made up of the firstN th rows of[Ĥ1/2

x V̂sol]∗.

4. IDENTIFIABILITY

4.1. The BIRTH approach

Following the development of the previous sections, it ap-
pears that the BIRTH method is able to identify, from an
array ofN sensors, the steering vectors ofP (P ≤N2) non
Gaussian sources having SixO marginal cumulants with the
same sign, provided that theA2 matrix has full rankP , i.e.
that thevirtual steering vectors[ap⊗a∗p] (1 ≤ p ≤ P ) for
the considered array ofN sensors remain linearly indepen-
dent. In addition, it has been shown in [4] that the vector
[ap⊗a∗p] can also be considered as atrue steering vectorbut
for a virtual array of Ne different sensors. This especially
means thatN2−Ne components of each vector

[
ap⊗a∗p

]
are

redundant elements which bring no information. The rank
of A2 cannot therefore be greater thanNe and is equal to
min(Ne, P ) whenA is full rank. In these conditions, since
A2 has full rankP , min(Ne, P ) is equal toP , which im-
pliesP ≤Ne. So the BIRTH algorithm is able to process up
to Ne sources, whereNe is the number of different Virtual
Sensors (VS) of the VA associated with the chosen array of
N sensors. So, it is shown in [4] that using an array with
space diversity only, as for instance an Uniformly spaced
Circular Array (UCA),Ne may be equal toN2 −N +1,
whereas using an array with angular and polarization diver-
sity, theNe number may attainN2.

4.2. Impact of the hexacovariance structure

According to [4], theNe number is directly related to both
kind of sensors and geometry of the true array ofN sensors.
For example, an Uniform Linear Array (ULA) of identi-
cal sensors generates a VA ofNe = 2N −1 different VS,
whereas for most of other arraysNe = N2−N +1. Never-
theless, both kind of sensors and geometry of the true array
are not the only factor which theNe number depends on.
Indeed the way data SixO cumulants are mapped inHx is
also a parameter which affects the number of VS. To show
this, consider the following way to sort SixO Cumulants in
the hexacovariance matrix:

∀ 1≤d, e, f, g, h, i≤N, H
N(N(g−1)+h−1)+i
N(N(d−1)+e−1)+f,z = Cghi

def,z (15)

what implies:

Hx = [A⊗A⊗A]Hs [A⊗A⊗A]H (16)

The FO virtual array associated with this expression (the
correspondingvirtual steering vectors, for all 1≤p≤P , are
thus of the form[ap⊗ap]) is generally different from the one
obtained from (4). In particular, the VA associated with (16)
and an UCA of oddN identical sensors, is caracterized by
Ne = N(N +1)/2 different VS, whereas the one associated
with (4) and an UCA of oddN identical sensors, is carac-
terized byNe = N2−N+1 different VS. For anyN≥2, the



N2−N+1 value is obviously greater thanN(N+1)/2.

Proof: Note that the(r, q)th VS associated with thepth

source and the UCA ofN sensors is such that:

[ap⊗ap]
q
r =exp{j2π[xq

r cos(θp)cos(φp)+yq
rsin(θp)cos(φp)]} (17)

(xq
r , yq

r , 0) = ((Rq
r/λ)cos(ϕq

r) , (Rq
r/λ)sin(ϕq

r) , 0) are the co-
ordinates of the(r, q)th VS (1 ≤ r, q ≤ N ) whereRq

r =
2Rcos((ϕr−ϕq)/2) and ϕq

r = (ϕr+ϕq)/2 since it is always
possible to choose a coordinate system in which thenth

sensor of the true array has the coordinates(xn, yn, 0) =
(Rcos(ϕn) , Rsin(ϕn) , 0) whereR is the radius andϕn =
2π(n−1)/N . It is thus easy to deduce from the previous
equations that the VS that are not at coordinates(0, 0, 0)
lie on (N+1)/2 different circles ifN is odd orN/2 if N is
even and that there are VS at coordinates(0, 0, 0) only if
N is even. Moreover, for odd values ofN , N different VS
lie on each circle of the VA uniformly spaced. As a conse-
quence, this VA, for odd values ofN , hasNe = N(N+1)/2
different VS. As to the second result, it is given by [4].

It is important to explain that if both FO VA obtained from
(4) and (16) are not equivalent, however, they have the same
radiation pattern.

Proof: The radiation pattern of a[b(θp, φp)]1≤p≤P VA
is defined by:

∀ (θ, φ), ∀1≤p≤P,

c((θ, φ), b(θp, φp)) =
|〈 b(θ, φ), b(θp, φp) 〉|
‖b(θ, φ)‖2 ‖b(θp, φp)‖2 (18)

whereθp, φp, |·|, 〈·, ·〉, ‖·‖ denote azimuth and elevation
angles of thepth source, the complex modulus, the scalar
product and the norm operators, respectively. Since for any
(θ, φ) and for each sourcep, bothc

(
(θ, φ),

[
ap⊗a∗p

])
and

c((θ, φ), [ap⊗ap]) values are equal.

These results are illustrated by figures 1 to 3, which show
the identical radiation pattern of both FO VA of an UCA of
five identical sensors, and the geometry of each VA, respec-
tively.

5. SIMULATIONS

5.1. Performance criterion

Most of the existing performance criteria used to evaluate
the quality of the BSI process [5], [6] [13] are global cri-
teria, which evaluate a distance between the true mixing
matrix A and its blind estimatêA . Although practical, a
global performance criterion necessarily contains a part of
arbitrary considerations in the manner of combining all the

Fig. 1. FO virtual array radiation pattern (N = 5)

Fig. 2. FO∗ virtual array defined by
[
ap⊗a∗p

]
(N = 5)

distances between the vectorsap and âp. Moreover, it is
possible to find that an estimatêA1 of A is better than an
estimatêA2, with respect to the global criterion, while some
columns ofÂ2 estimate the associated true steering vectors
in a better way than̂A1. For these reasons, it may be more
appropriate to use a non global criterion for the evaluation
of the BSI process, which is defined by theP -uplet:

D
(
A, Â

)
= (α1, α2, . . . , αP ) (19)

where
αp = min︸︷︷︸

1≤i≤P

[d(ap, âi)] (20)

and whered(u,v) is the pseudo-distance between the vec-
torsu andv, defined by:

d(u,v) = 1− |〈u,v〉|2

‖u‖2‖v‖2
(21)



Fig. 3. FO virtual array defined by[ap⊗ap] (N = 5)

5.2. Computer results

Fig. 4. α3 for aSNR = 20 dB

To illustrate the previous results, we assume thatP = 2
statistically independent sources, i.e.2 non filtered QPSK
and1 non filtered BPSK, are received by a linear array of
N = 2 sensors of radiusR such thatR/λ = 0.55 (λ: wave-
length). The3 sources, assumed synchronized, have the
same input SNR (Signal to Noise Ratio) of20 dB with a
symbol periodT = 4Te, whereTe is the sample period. The
normalized marginal source cumulants areκ111

111,QPSK =
κ222

222,QPSK = 4 and κ333
333,BPSK = 16 [1]. The direction

of arrival of the sources are such thatθ1 = 50◦, θ2 = 136◦,
θ3 = 29.5◦, φ1 = φ2 = φ3 = 0◦ and the associated carrier
frequencies verify∆f1Te = 1/3, ∆f2Te = 1/2 and∆f3Te =
0. We apply the COM1 [7], COM2 [5], JADE [3], S3C2 [6]
and BIRTH methods, and the performanceαp for p = 1 . . . 3
is computed and averaged over200 realizations.

Under the previous assumptions, figure 4 shows the vari-

Fig. 5. D
(
A,Â

)
associated with the BIRTH method

Fig. 6. α3 for one thousand samples

ations ofα3 (source3 performance) at the output of the
COM1, COM2, JADE, S3C2 and BIRTH algorithms as a
function of the number of samples. The COM1, COM2,
JADE methods obviously find difficulties in well identifying
the steering vector of the source3 in an underdetermined
context. The S3C2 method gives better results. As to the
BIRTH process, it completely succeeds in identifying the
steering vector. Figure 5 shows, in the same context, all
theαp at the output of the BIRTH method as a function of
samples. Note the decreasing values toward zero of all the
previous coefficients as the number of samples increases. In
addition, figure 6 displays the variations ofα3 (source3 per-
formance) at the output of the COM1, COM2, JADE, S3C2
and BIRTH methods as a function of SNR. Likewise, the
COM1, COM2, JADE algorithms do not identify the steer-
ing vector of the source3 in an underdetermined context
even when the SNR increases. The S3C2 results are more
pleasing. As to the BIRTH process, it performs the identifi-
cation of the steering vector even for a small value of SNR.



Fig. 7. α3 for aSNR = 20 dB

Finally, consider theP = 3 previous sources are re-
ceived by a circular array ofN = 3 sensors such thatR/λ =
0.55. Figure 7 shows the variations ofα3 (source3 per-
formance) at the output of the COM1, COM2, JADE and
BIRTH methods as a function of the number of samples :
the BIRTH method obviously works in overdetermined con-
texts and although SixO cumulants have to be estimated, the
BIRTH algorithm converges fast enough compared with the
other algorithms.

6. CONCLUSION

This paper presents a new simple BSI method, BIRTH, in
an underdetermined context, i.e. allowing to identify the
steering vectors of more sources than sensors, using SixO
cumulants and the FO VA concept. The BIRTH algorithm
succeeds in recovering the mixture matrix even for a small
number of samples or a weak SNR. Moreover, new results
as for the VA are given : both FO VA, described in this pa-
per, are proved to be not equivalent. As a consequence, the
way to store cumulants in the corresponding matrix affects
the performance of the method. Finally, the BIRTH algo-
rithm can be improved, in particular the fifth step of (3.4).
This will be the subject of a forthcoming paper.
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