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ABSTRACT methods have drawbacks in operational contexts. Indeed,
the method [2] is still very difficult to implement and does

Static dlmegr rr;:xtu:gsdwnh morg so#r ces than sen?ors dare not ensure the BSI of the source steering vectors when the
considered. The Blind Source Identification (BSI) of under- o\ ces have the same kurtosis. The BSI methods [6] [9]

determined mixtures problem is addressed by taking advan-assume non FO circularity and thus fail in separating FO

tage of Sixth Order (SixO) statistics and the Virtual Array circular sources. Besides, the theory developed in [6] only

(VA) concept. Itis shown how SixO cumulants can be usedq,qineq jtself to three sources and two sensors. Although
to increase the effective aperture of an arbitrary antenna

i . . the method [11] succeeds in identifying the steering vectors
array, and so to identify the mixture of more sources than

A ionallv simle but effic lorith of up to four speech signals with only two sensors, the au-
sensors. A computationally simple but efficient algorithm, 1,5 need to assume temporal independence of the samples

pamed BIRT'f_" is proposeg and enables to ic:entify the s';eer-and that all sources have a sparse distribution. Finally, the
Ing vectors of up tad” = N°—N+1 sources for arrays of  a1hq4 [13] has been developed only for real mixtures of

. N o
Jz sensqrhs with lspaceddwtlers_lty (_)nlyafand upie= = for real-valued sources and robustness issue to an over estima-
those with angular and polarization diversity. tion of the number of sources is still to analyse.

1. INTRODUCTION To overcome the previous drawbacks a new BSI method,
named BIRTH (Bind Identification of mixtures of sources

If high performance joint Second Order (SO) and Fourth Or- usingRedundancies in the da Hexacovariance matrjxis

der (FO) Blind Source Identification and Extraction (BSIE) Pproposed, able to blindly identify the steering vectors of up
methods can be found in signal processing literature, mostto P = N°—N~1 sources for arrays a¥ sensors with space

of them [3] [5] [7] can only identify overdetermined mix- diversity only, and up ta®> = N? for those with angular
tures (that means mixtures of fewer sources than sensorspnd polarization diversity. The sources are assumed to have
because of the SO prewhitening step. However, in practicalnon zero SixO marginal cumulants with the same sign (the
situations, such as in HF (High Frequency) radiocommuni- latter assumption is generally verified in radiocommunica-
cations contexts, the reception of more sources than sensorions contexts). Besides, BIRTH exploits the VA concept

is possible and its probability increases with the reception described in [10] [4] and redundancies in the SixO statisti-
bandwidth. cal matrix of the data, calledexacovariancewithout SO

or FO prewhitening.
To face such situations, several BSIE methods, able to

|dent|fy underdetermined mixtures (|P> N) of sources, 2. ASSUMPTIONS AND NOTATION
have been developed. Some papers focus on blind source

extraction [11] [8], which is a difficult problem since the assume that for any fixed time indéx N complex outputs
underdetermined mixture is not invertible, while others, as ;. () of a noisy mixture of statistically sources, (k) are

herein, favour BSI of the mixture matrix [2] [6] [9] [11]  ayailable. The vectar (k) of the measured array outputs is
[13]. The methods proposed in [2] [6] [9] only exploit the given by

information contained in the data FO statistics whereas the z(k) = As(k) + v(k) L

one proposed in [13] exploits the information contained in

the second characteristic function of the observations. Aswhere A, s(k), v(k) are the(NxP) constant mixing ma-
for Lee et al. [11], they maximize the probability of the trix, the source and noise random vectors, respectively. In
data conditionally to the mixture matrix. However, all these addition, for any fixed time indek, s(k) andv (k) are sta-



tistically independent. where the( N3x P) A; matrix, assumed full rank, is given
by:
For the sake of convenience we need to define, for any
k, the entries of the SixO cumulant ten€@y of a random A = [a®a®d - ap@ap@ap)

vector,z(k), stationary and ergodic up to ordér = [[A®] [A:®]" --- [A2®N]]"  (6)

Cili . = Cum{zfk), k) z(k) (k)" (k)" 2(k)"} (2) with the (N2xP) A, matrix, assumed full rank, defined by:

Such components may be ordered in Bighexacovariance A,

. = [al(g)aik ap®a*P]
matrix as follows:

[A®] [AR]" - [ABN]']"  (7)
. N(N(g—1)+h—1)+f hi
Vi<de f,gmi<N, Hyinig_1yte—1)+iz = =Cir. () and:
where H! . denotes ther, q)th component ofH,. Note & — diag([ a(n) an) - ap(n) D @8)
that SixO cumulants are given as a function of moments in "
statistics text books, but only in the real case [12]. Never- |y other words, the non zero elements of the diagerad

theless, their expressions in the complex case can be foung>) &, matrix are thex'™ components of thé a, steering
in [1] for zero-mean variables which are distributed sym- yectors.

metrically with respect to the origin. Moreover, we further

assume the following hypothesis: 32 Data structure

Al. For any fixed time index, sourcess,(k) are sta- : : . .
tionary, ergodic and mutually uncorrelated at order 6, If SixO marginal source cumulants are strictly positiday,

with values a priori in the complex field:; then a square root dl,,, calledHY?, has to be computed (if
these cumulants are strictly negative, théf,, matrix has
A2. For any fixed time index, noise values,(k) are sta-  to be considered for computing the square root) for example
tionary, ergodic and gaussian with values a priori in as following :
the complex field too;

. . HP =E L= AH?V" 9)
A3. SixO marginal source cumulants)?? , are not null
and have all the same sign; where L, (L denotes a square root &) is the (PxP)
A4. The number of sources is such tHag N2 real-valued diagonal matrix of thB non zero eigen-values

of H, and E; is the (N3xP) matrix of the associated or-
The goal of BSI consists of determining an estimate of the thonormalized eigen-vectors. For a full raglq matrix, it

mixture matrix A of the sources. is possible to verify thatA3) is equivalent to assume that

the diagonal elements di; are not null and have also the
3. THE BIRTH METHOD same sign. In addition, (9) shows the link betwelﬁ‘,}ﬁ2 and

A; whereV is an unitary matrix. Finally, (9) and (6) allow

3.1. Hexacovariance property to prove the link betweefify> and.As, as follows:

The BIRTH mgthod exploits several matrix redundancies in wo P I

the hexacovariance of the data especially thanks to the mul- H” = [['A?‘I’lﬂs VI A iV }

tilinearity property under changes of coordinate systems, = D" - N (10)

which enjoy cumulants. This property can be expressed by

the following equation: wherel, = A,®, HY? V" is thent” (N><P) matrix block

H, = [A® AR A H, [A® A A" @ OfHL

where the( N*xN?®) H, and the(P°xP?) H, matrices are 3.3 SixO blind identification step

the hexacovariance matricesofk) ands(k) respectively.

Furthermore, theH; matrix is diagonal since the sources In this section, the purpose is to exploit the information con-
are independent but is not full rank. So it is possible to tained in theF> matrix to bIdey identify A. Indeed, the
write the H,, matrix as a function of the full rank diagonal V' matrix diagonalizes theV(N —1) ©,, ,, matrices de-
(PxP) M, = diag([C1i1 , 333 5 - - - Chpp | ) Matrix: scribed, for alll <ny #ny <N, by:

H, = A Hs; A" (5) O, =i, =VH & '@, HAV"  (11)



wheret denotes the pseudo-inverse operator and where the 4. IDENTIFIABILITY
D, ., = 7—(8_1/2<I>;11<I>,L2’)-é/2 matrices are diagonal. Thus,

by construction, the rank @, .., denoted byk(®,,,,),  41. The BIRTH approach

cannot exceed thein (rk(I,,), rk(T,,)) = min(P, rk(Ay) Following the development of the previous sections, it ap-
value, hen'ce another bound of the maxi number of SOUrCeSpears that the BIRTH method is able to identify, from an
P. The unitaryV,,; = VT matrix, solution to the previous array of N sensors, the steering vectorsi{ P < N'2) non

problem of joint diagonalization to within an unitary trivial - Gayssian sources having SixO marginal cumulants with the
matrix 7~ (a trivial matrix is of the formATII whereA is an same sign, provided that thé, matrix has full rankP, i.e.

invertible diagonal matrix an#ll a permutation), allows, in = {hat thevirtual steering vector$ap®a;;] (1 <p< P)for
accordance with (9), to recovet; to within a trivial matrix the considered array of sensors remain linearly indepen-
as follows: dent. In addition, it has been shown in [4] that the vector
HPV,,=AHPT (12) [a,®a;] can also be considered atrae steering vectobut
for avirtual array of N, different sensors. This especially
Since, consistent with (6) and (7), the (12) equation can alsomeans thatv2— N, components of each vect{wp®a;§] are

be written as follows: redundant elements which bring no information. The rank
T of A, cannot therefore be greater thah and is equal to
HPV = |[AQOH]] - [A Sy OHT min(N,, P) when A is full rank. In these conditions, since
S SRD SRS SN (13) As has full rankP, min(N;, P) is equal toP, which im-

plies P < N,. So the BIRTH algorithm is able to process up

So, theX; matrix block made up of the first*” rows of the to N, sources, wheréV, is the number of different Virtual
H2V , matrix corresponds to within a trivial matrix td* Sensors (VS) of the VA associated with the chosen array of
suf:h ;‘é N sensors. So, it is shown in [4] that using an array with

. 2 space diversity only, as for instance an Uniformly spaced
N =A@ HST (14)  cCircular Array (UCA), N, may be equal taVZ — N +1,

12 ) ] whereas using an array with angular and polarization diver-
whereH;” and®,, for all 1 <n < N, are diagonal matrices. sity, the N, number may attaitv2.

3.4. Implementation of the BIRTH method 4.2. Impact of the hexacovariance structure

According to [4], theN. number is directly related to both
kind of sensors and geometry of the true arrayvaensors.
For example, an Uniform Linear Array (ULA) of identi-
cal sensors generates a VA df = 2N —1 different VS,
whereas for most of other arrayé = N2 — N +1. Never-
theless, both kind of sensors and geometry of the true array
are not the only factor which tha, number depends on.
IyIndeed the way data SixO cumulants are mappeHjnis
also a parameter which affects the number of VS. To show
this, consider the following way to sort SixO Cumulants in
the hexacovariance matrix:

The different steps of the BIRTH method are summarized
hereafter wheri{ samples of the observations(k) (1 <
k<K), are available.

Stel: Compute the estima@m of H, from the K sam-
plesx(k) using for instance [1] and the empirical estimate
of moments, unbiased and consistent for ergodic stationa
sources.

Ste@: Eigen Value Decomposition (EVD) of the matrix
ﬁm, estimation of the number of sourcés and restric-
tion of this EVD to theP principal components:H,, =

E, L, E}, whereL, is the diagonal matrix of th@ eigen- Vi<de fghi<N, Hﬁ%ﬁfﬁfﬁﬁﬁi = oo (15)
values with the strongest modulus aBH is the matrix of o ’ '

the associated eigen-vectors. what implies:

§Ilep8: CAomPutation of a square root matrJSIi/2 of Hy: H, = [A9 AR A H, [A® A® A]" (16)
H =E, |Ls| 2, where|-| denotes the complex modulus . ) ) . .
operator. The FO virtual array associated with this expression (the

) . — ~ EN PN correspondingirtual steering vectordorall 1<p< P, are
Step’%' Computation fromH? of the ®m,_nz = [Fgl Lo, ] thus of the forma,®a,]) is generally different from the one
matrices for alll <n, #ny <N, and estimationy,,, of obtained from (4). In particular, the VA associated with (16)
the unitary matrixy;,; from the joint diagonalization of the 534 an UCA of oddV identical sensors, is caracterized by
N(N —1) matrices8,, ., N, = N(N+1)/2 different VS, whereas the one associated
Sterb: EstimationA of the A mixture matrix taking the  with (4) and an UCA of oddV identical sensors, is carac-
matrix block made up of the firs¥*" rows of [Hﬁfz Viol]*. terized byN, = N2—N+1 different VS. For anyV>2, the



N?—N+1 value is obviously greater thasi(N +1)/2.

Proof: Note that the(r, q)th VS associated with the"
source and the UCA a¥ sensors is such that:

°
@
3

_Real array

(@20, ] =exp{j2atcosros@ ) ylsinGros@)) (A7) 200 |
o FO virtual array
(zf,97,0) = (BE/Ncos() , (BY/Nsin(z) , 0) are the co- 204
ordinates of the(r,¢)™ VS (L <r,q < N) where R = E '

2Rcos((a-—¢,)/2) and ! = (. +y)/2 since it is always
possible to choose a coordinate system in whichtte
sensor of the true array has the coordinaies, y,,0) =

©
[N}

(RCOS(%) ,RSiIl(QD,L) s 0) where R is the radius andpn = 00 160 260 300 400
2n(n—1)/N. It is thus easy to deduce from the previous 0
equations that the VS that are not at coordinat@so, 0) Fig. 1. FO virtual array radiation patteriV( = 5)

lie on (N +1)/2 different circles ifNV is odd or N2 if N is
even and that there are VS at coordinat€s0, 0) only if
N is even. Moreover, for odd values df, N different VS

lie on each circle of the VA uniformly spaced. As a conse- 2/ FO virtual array® Real array
quence, this VA, for odd values&T, hasN, = N(N+1)/2 15 AN -
different VS. As to the second result, it is given by [4]. ] AN o /
\ @
VN
It is important to explain that if both FO VA obtained from 05 m o\ “
(4) and (16) are not equivalent, however, they have the same £ 0
radiation pattern. 05 I g
- [E] o
Proof: The radiation pattern of ab(6,, ¢,)], ., p VA 1 B
is defined by: o 1.5 a
2
V(0,9), VI<p<P, 2 A 0 1 2
[(b(6, ), b(6, ¢) )| %
c((0,6),b(0,,4,)) = 18 - - - . _
((6,),b(6p, ) 160, )2 66, )| (18) Fig. 2. FO* virtual array defined bya,2a;| (N = 5)

whered,, ¢,, |-, (-,-), ||-|| denote azimuth and elevation
th

angles of they™ source, the complex mgdulus,_the scalar distances between the vectats and a,. Moreover, it is

product and the norm operators, respectively. Since for any . i Pl .

(6, ¢) and for each source, bothc((& ®), [ap®a;}) and pos_SIbIe/tEJ f|r?d that an estimat® of A .|s l?etter than an

c((0,9), [a,®a,]) values are equal. estimated,, with respect to the global criterion, while some
columns ofA, estim/a\te the associated true steering vectors

These results are illustrated by figures 1 to 3, which showin a better way tham,. For these reasons, it may be more

the identical radiation pattern of both FO VA of an UCA of appropriate to use a non global criterion for the evaluation

five identical sensors, and the geometry of each VA, respec-of the BSI process, which is defined by tReuplet:

tively.

D<A71/4\) :(alaQQa"'aaP) (19)
5. SIMULATIONS
where
5.1. Performance criterion ap = min [d(ay, @)] (20)
1<i<P

Most of the existing performance criteria used to evaluate ] )
the quality of the BSI process [5], [6] [13] are global cri- and wherel(u, v) is the pseudo-distance between the vec-
teria, which evaluate a distance between the true mixingtorsu andv, defined by:

matrix A and its blind estimated . Although practical, a 2

global performance criterion necessarily contains a part of d(u,v) =1— % (21)
arbitrary considerations in the manner of combining all the [[wl[ o]l



2t FO virtual array Ret;l array

-2 -1 0 1 2

Fig. 3. FO virtual array defined bjg,®a,] (N = 5)

5.2. Computer results
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To illustrate the previous results, we assume fhat 2
statistically independent sources, iZnon filtered QPSK
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Fig. 5. D(A,X) associated with the BIRTH method
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ations of o3 (source3 performance) at the output of the
COM1, COM2, JADE, S3C2 and BIRTH algorithms as a
function of the number of samples. The COM1, COM2,
JADE methods obviously find difficulties in well identifying

and1 non filtered BPSK, are received by a linear array of the steering vector of the sour8ein an underdetermined

N = 2 sensors of radiu® such thatR/A = 0.55 (\: wave-

context. The S3C2 method gives better results. As to the

length). The3 sources, assumed synchronized, have theBIRTH process, it completely succeeds in identifying the

same input SNR (Signal to Noise Ratio) 24 dB with a
symbol periodl" = 41;, whereT;, is the sample period. The
normalized marginal source cumulants MHiQPSK =
K355.qpsk = 4 and ki3 ppgx = 16 [1]. The direction
of arrival of the sources are such tifat= 50°, & = 136°,

6 = 29.5°, ¢ = ¢» = ¢ = 0° and the associated carrier
frequencies verifAA T, = 1/3, ART. = 1/2 andART, =

0. We apply the COM1 [7], COM2 [5], JADE [3], S3C2 [6]
and BIRTH methods, and the performangdorp = 1...3

is computed and averaged 0@ realizations.

steering vector. Figure 5 shows, in the same context, all
the oy, at the output of the BIRTH method as a function of
samples. Note the decreasing values toward zero of all the
previous coefficients as the number of samples increases. In
addition, figure 6 displays the variations®@f(source3 per-
formance) at the output of the COM1, COM2, JADE, S3C2
and BIRTH methods as a function of SNR. Likewise, the
COM1, COM2, JADE algorithms do not identify the steer-
ing vector of the sourc8 in an underdetermined context
even when the SNR increases. The S3C2 results are more
pleasing. As to the BIRTH process, it performs the identifi-

Under the previous assumptions, figure 4 shows the vari-cation of the steering vector even for a small value of SNR.
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Finally, consider theP = 3 previous sources are re-

ceived by a circular array d¥ = 3 sensors such th&/\ =
0.55. Figure 7 shows the variations of (source3 per-

formance) at the output of the COM1, COM2, JADE and
BIRTH methods as a function of the number of samples :
the BIRTH method obviously works in overdetermined con-

(3]

(4]

(5]

(6]

(7]

texts and although SixO cumulants have to be estimated, the g

BIRTH algorithm converges fast enough compared with the

other algorithms.

6. CONCLUSION

This paper presents a new simple BSI method, BIRTH, in
an underdetermined context, i.e. allowing to identify the

9]

steering vectors of more sources than sensors, using SixO
cumulants and the FO VA concept. The BIRTH algorithm [10]

succeeds in recovering the mixture matrix even for a small
number of samples or a weak SNR. Moreover, new results
as for the VA are given : both FO VA, described in this pa-

per, are proved to be not equivalent. As a consequence, the

way to store cumulants in the corresponding matrix affects
the performance of the method. Finally, the BIRTH algo-
rithm can be improved, in particular the fifth step of (3.4).

This will be the subject of a forthcoming paper.
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