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ABSTRACT

Static linear mixtures with more sources than sensors are
considered. Blind Identification (BI) of underdetermined
mixtures is addressed by taking advantage of Sixth Order
(SixO) statistics and the Virtual Array (VA) concept. Sur-
prisingly, identification methods solely based on the hexa-
covariance well succeed, despite their expected high esti-
mation variance; this is due to the inherently good condi-
tioning of the problem. A computationally simple but effi-
cient algorithm, named BIRTH, is proposed and enables to
identify the steering vectors of up toP = N2 − N + 1
sources for arrays ofN sensors with space diversity only,
and up toP = N2 for those with angular and polarization
diversities. Five numerical algorithms are compared.

1. INTRODUCTION

Linear mixtures of independent random sources are referred
to asunderdeterminedif the number of sources,P , always
exceeds the number of sensors,N . In other words, underde-
termined mixtures do not enjoy sparsity properties such as
disjoint source spectra, or sources non permanently present
(property often exploited in Speech applications [1]).

Blind Source separation (BSS) algorithms performing a
Second Order (SO) prewhitening in order to identify a uni-
tary separator in a second stage, or extracting sources lin-
early by deflation, are not able to identify underdetermined
mixtures [2] [3] [4] [5]. With our terminology, these tech-
niques address theoverdeterminedcase, that is, when the
number of sensors is larger than or equal to the number of
sources.

Identifiability of linear mixtures received on a single
sensor requires source distributions to have an indecom-
posable characteristic function [6] [7]; for instance in digi-
tal communications, BPSK sources are indecomposable but
QPSK are not. This condition can be deflated for underde-
termined mixtures received on 2 sensors [8]. On the other
hand, for overdetermined mixtures, the only pathological
distributions are Gaussian [9] [10] [7] [3]. In the sequel, it
is assumed that an underdetermined mixture is available on
more than one sensor, viz1 < N < P .

Blind source extraction from underdetermined mixtures

is a difficult problem since these mixtures cannot be lin-
early inverted [1] [11]. On the other hand, Blind Identifi-
cation (BI) of the mixture matrix can be performed without
extracting the sources (at least in a first stage), as in [12]
[13] [14] [1] [15] [16]. More precisely, the methods pro-
posed in [12] [13] [14] [16] only use the data FO statistics,
whereas the one proposed in [15] exploits the information
contained in the second characteristic function of observa-
tions.

However, all these methods have drawbacks in opera-
tional contexts. Indeed, the method [12] is still very difficult
to implement and does not ensure the BI of the source steer-
ing vectors when the sources have the same kurtosis. The BI
methods [13] [14] assume FO non-circularity and thus fail
in separating FO circular sources. Besides, the theory de-
veloped in [13] only confines itself to three sources and two
sensors. The method [1] requires sparsity conditions, and
thus does not address the general case when all sources are
always present. In addition, the method [15] has been de-
veloped only for real mixtures of real-valued sources, and
the issue of robustness with respect to an over estimation of
the number of sources remains open. Eventually, although
the FOBIUM algorithm [16] performs BI of up toP = N2

sources for arrays ofN different sensors, it requires sources
with different FO spectral densities.

In this paper, five algorithms using solely Sixth Order
(SixO) statistics are compared; two are entirely new, while
the others have been already presented in [17] [18] under the
name of BIRTH (Blind Identification of mixtures of sources
using Redundancies in the daTa Hexacovariance matrix),
but not all implemented however. It is assumed through-
out that sources have nonzero marginal 6th order cumulants
with the same sign (verified in most radio communications
contexts). We have also recently shown [18] that the prin-
ciples theoretically extend to statistics of arbitrary order2q,
q > 2, but computer simulations still remain to be com-
pleted forq > 3.

2. ASSUMPTIONS AND NOTATION

Assume that for any fixed time indexk, N complex out-
putsxn(k) of a noisy mixture ofP statistically independent
sourcessp(k) are available. The vectorx(k) of the mea-



sured array outputs is modeled by

x(k) = As(k) + ν(k) (1)

whereA, s(k), ν(k) are theN×P constant mixing matrix,
and the source and noise random vectors, respectively. In
addition, for any fixed time indexk, s(k) and ν(k) are
statistically independent. Vectors and matrices are denoted
in bold.

For the sake of convenience we need to define, for any
k, the entries of the SixO cumulant tensorCx of a random
vector,x(k), stationary and ergodic up to order6:

Ci4,i5,i6
i1,i2,i3,x

=Cum{xi1(k), xi2(k), xi3(k), xi4(k)∗, xi5(k)∗, xi6(k)∗}
(2)

Such components may be ordered in theHx hexacovariance
matrix as follows:

Hx(j1, j2) = Ci4, i5, i6
i1, i2, i3, x

(3)

j1 = i6+N(i2+N(i1−1)), j2 = i3+N(i5+N(i4−1)). (4)

Expressions of SixO cumulants, in the complex case, as a
function of moments, can be found in [18, appendix D]
for zero-mean variables which are distributed symmetrically
with respect to the origin. Note that the impact of the chosen
way to arrange them in the hexacovariance matrix is anal-
ysed in [18, section 5]. More generally, it is shown in [19]
that there exists an optimal matrix arrangement of the SixO
cumulants with respect to the maximal number of statisti-
cally independent sources to be processed by a method ex-
ploiting the algebraic structure of the hexacovariance. Es-
pecially for the BIRTH method, this optimal arrangement is
shown [18, section 5] to correspond to the one described by
(3). Now, we further assume the following hypotheses:

A1. Vectors(k) is stationary, ergodic (orcyclostationary
and cycloergodic, respectively), with components a
priori in the complex field and mutually uncorrelated
at order6 (the cyclostationaritycase has been ad-
dressed in [18, section 3.3]);

A2. Noise vectorν(k) is stationary, ergodic and Gaussian
with components a priori in the complex field too;

A3. SixO marginal source cumulants,Cp, p, p
p, p, p, s

, are not
null and have all the same sign;

A4. Column vectorsap of A, also called steering vectors,
are not collinear and have not any null component;

A5. TheN2×P matrix A2 = A�A
∗, where� denotes

the Khatri-Rao product [20] [18, section 3.2.1], is full
column rank (this implies thatP ≤N2);

The goal of BI consists of determining an estimate of the
mixture matrixA.

3. ALGEBRAIC PRELIMINARY

Consider the following mathematical problem:

Problem: Given M matricesΞm, 1 ≤ m ≤ M , each
of sizeN×P , find aN×P matrix A, andP×P diagonal
matricesDm such that||Dm|| = 1 and

Ξm Dm ≈ A (5)

MatricesA andDm can be obtained as stationary values of
the Least Squares (LS) criterion below:

ε =

M∑

m=1

‖ΞmDm − A‖
2
F (6)

where‖B‖F is the Frobenius norm of matrixB. As a con-
sequence, they satisfy the following system of equations,
obtained by cancelling the gradient ofε with respect toDm

andA:
{

∀m, ∀ p, {Ξ
H

m(ΞmDm − A) }(p, p) = 0

∀ (n, p),
∑M

m=1 {ΞmDm − A }(n, p) = 0
(7)

whereB(n, p) is the(n, p)-th component of matrixB. It is
then not hard to obtain the closed form expression forA:

A =
1

M

M∑

m=1

ΞmDm (8)

By plugging back this solution in system (7), one gets after
some manipulations:

∀p, 1 ≤ p ≤ P, Fp dp = 0 (9)

where

Fp(m1, m2) =

{
(M−1)

{
Ξ

H

m1
Ξm1

}
(p, p) if m1 =m2

−
{
Ξ

H

m1
Ξm2

}
(p, p) otherwise

(10)
and wheredp =

[
D1(p, p) D2(p, p) · · · DM(p, p)

]
T

. In
other words, the solution to the LS problem under the con-
straint that, for any fixed indexp,

∑
m |Dm(p, p) |2 = 1 is

obtained when the vectordp is the right singular vector of
matrixFp associated with the minimal singular value. Once
every entryDm(p, p) is obtained, matrixA can be calcu-
lated thanks to (8). This solution is thus not iterative (though
we could possibly run alternate iterations).

4. APPLICATION TO BLIND IDENTIFICATION OF
UNDERDETERMINED MIXTURES

Under assumptions (A1)-(A5), the BIRTH algorithm suc-
ceeds [17, section 3.3] [18, section 4.2.1] in identifying ma-
trix A3, defined by the triple columnwise product

A3 = A�A�A
∗ = [a1⊗a1⊗a

∗
1 · · · aP ⊗aP ⊗a

∗
P ] (11)



up to a multiplicative trivial matrixT (a trivial matrix is
of the formΛΠ whereΛ is invertible diagonal andΠ a
permutation), where⊗ denotes the Kronecker product. The
five methods described below allow to estimate matrixA

from the estimateA3 output by the core of the BIRTH al-
gorithm. We do not describe this core step here for reasons
of space. Anyway, our contribution lies mainly in methods
4 and 5, and the comparisons, not in the core itself.

Three methods have been proposed in [18, section
4.2.2] in order to extract mixtureA from the estimatêA3

of matrixA3:

Method 1: Take as estimate the matrix block made up
of theN first rows of the conjugate of matrix̂A3.

Method 2: Define theN matrix blocksΞn, of sizeN×
P , made up of the successive rows of the conjugate of matrix
Â3; take as estimate the average of theseN blocks.

Method 3: Fully exploit each column vector̂bp of

Â3. In order to do this, first extract, from vector̂bp,
the N vectors b̂p(n) of sizeN2 × 1, then remodel them
into N matricesB̂p(n) of sizeN ×N , and finally build
the matrix whosep-th column vector is the eigenvector
(approximately) in common within theN matricesB̂p(n)∗

(1 ≤ n ≤ N ) and associated with the largest eigenvalue
using the Joint Approximate Diagonalization (JAD) algo-
rithm described in [21].

Methods1 and2 ensue immediately from the structure
of matrixÂ3. In fact, it can be shown [18, equation 34] that
matrixÂ3 may be written as:

Â3 = A3 T = [[A∗
T1]

T [A∗
T2]

T · · · [A∗
TN2 ]T]T (12)

where theN2 matricesTn (1≤ n≤N2) of sizeP ×P are
trivial. As for method3, it is shown in [18, appendix C] that

∀n, 1 ≤ n ≤ N, b̂p(n) ∝
[
aξ(p) ⊗ a

∗
ξ(p)

]
(13)

whereξ (·) is a bijective function of{1, 2, . . . , P} into itself
(i.e. a permutation function). Then it is straightforward to
show that

∀n, 1 ≤ n ≤ N, B̂p(n) ∝
[
aξ(p) aξ(p)

H
]∗

(14)

and hence the method3 result. Note that, although the JAD
algorithm [21] is restricted to unitary joint diagonalizers, it
can be used in method3 since matriceŝBp(n)∗ are of rank
1, from (14).

Method 4: The fourth method we consider performs an
unrestricted (non-unitary) LS joint diagonalization scheme,
as for instance the one described by Yeredor in [20], yield-
ing a better LS fit.

Method 5: Follow the approach given in section 3 in
order to extract mixturêA from Â3, with matricesΞn de-
fined as in Method 2.

The latter algorithm does not take into account the fact that
diagonal matricesDm should contain products of entries of
A, and is therefore expected to yield less accurate results.
However, subsequent simulations demonstrate that the loss
in performance is little compared to the gain in computa-
tional complexity.

5. COMPUTER RESULTS

We proceed in this section to two types of simulations. First,
in order to test the five BI methods previously described
independently of the BIRTH algorithm, we have generated
P vectorŝbp such that

b̂p = bp + νp (15)

wherebp is thep-th column vector of matrixA3 and where
theN3×1 noise random vectorsνp are chosen to be Gaus-
sian spatially and temporally white such that their covari-
ance matricesRνp

verify Rνp
= σ2

IN3 . We took a uni-
formly spaced circular array ofN = 3 identical sensors,
of radiusR such thatR/λ = 0.55, andP = 12 directional
vectors. The chosen BI performance criterion is as follows.
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Fig. 1. Mean of theP =12 gapsαp

As in [17], for each estimated column̂ap, one computes the
gapαp:

αp = min
1≤i≤P

d(âp, ai)

whered(·, ·) denotes the pseudo-distanced(u, v) = 1 −
|〈u, v〉|2/||u||2||v||2. We report the average of theP gaps
obtained by the five methods in figure 1, as a function of the
noise level. It can be seen that method 5 is almost as good
as the most complex one, namely method 3.

Second, we now incorporate the BIRTH core step in the
comparison. Sources are BPSK modulated, with a raised
cosine pulse shape of roll-off equal to 0.25, and assumed
synchronized. Figure 2 shows BI results obtained when7
BPSK sources are received by the same array as above.
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Their symbol periods are equal to twice the sample pe-
riod and their carrier residuals are all null. In this figure,the
label “BIRTHm” corresponds to the BIRTH algorithm fol-
lowed by methodm of section 4. Again, it can be seen that
the five methods can be sorted in the same way: method 3,
the most complex, is followed by method 5. The latter thus
appears to exhibit the best trade-off between performance
and computational complexity.

6. CONCLUSION

As surveyed in introduction, there are few algorithms able
to identify blindly underdetermined mixtures (i.e. in the ab-
sence of sparsity). The algorithm BIRTH3 has been recently
proposed by the authors, but had not been implemented nor
tested yet. Next, the alternate estimation algorithm of Yere-
dor has also been implemented (BIRTH4). Last, we have
devised a simpler algorithm, BIRTH5, by relaxing the struc-
ture of the problem, and compared its performances with the
former methods; according to the computer results reported
above, BIRTH5 appears to be the most attractive.

These algorithms, and in particular BIRTH3 and
BIRTH5, can be used for blind beamforming. Yet, there ex-
ist techniques based on the array manifold knowledge that
can handle underdetermined mixtures, such as the so-called
4−MUSIC. It could be interesting to compare its perfor-
mances with the above as well, which could yield a per-
formance bound. On the other hand, identifiability issues
remain to be addressed for the most general cases of under-
determined mixtures.
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