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ABSTRACT is a difficult problem since these mixtures cannot be lin-
- . . early inverted [1] [11]. On the other hand, Blind Identifi-
Static linear mixtures with more sources than sensors are .o, (BI) of the mixture matrix can be performed without
considered. Blind ldentification (BI) of underdetermined extracting the sources (at least in a first stage), as in [12]
mixtures is addressed by taking advantage of Sixth Order[13] [14] [1] [15] [16]. More precisely, the methods pro-

(SixO) statistics and the Virtual Array (VA) concept. Sur- posed in [12] [13] [14] [16] only use the data FO statistics,

prisingly, identification methods solely based on the hexa_— whereas the one proposed in [15] exploits the information

covariance well succeed, despite their expected high esti-,qained in the second characteristic function of observa
mation variance; this is due to the inherently good condi- tions

tioning of the problem. A computationally simple but effi- However, all these methods have drawbacks in opera-
p|ent_algor|thm, ngmed BIRTH, is proposeannd enaples to tional contexts. Indeed, the method [12] is still very diffic
identify the steering vectors of up B =N o N +1 to implement and does not ensure the Bl of the source steer-
sogrcest f%r arr]%é/sf of\tfhsensolr;q with slpaceddlvelrSIW ?nly, ing vectors when the sources have the same kurtosis. The BI
gir\]/eruspi)tigs. F_ive nucrzzerif:):\?arl\gori?r?r?]z g::::lorﬁg;gg? 1on _methods [_13] [14] assume FO non—cirCL_llarity and thus fail
in separating FO circular sources. Besides, the theory de-
veloped in [13] only confines itself to three sources and two
1. INTRODUCTION sensors. The method [1] requires sparsity conditions, and
thus does not address the general case when all sources are
Linear mixtures of independent random sources are referrec@lways present. In addition, the method [15] has been de-
to asunderdetermined the number of sources?, a|Ways veloped onIy for real mixtures of real-valued sources, and
exceeds the number of sensa¥s, In other words, underde-  the issue of robustness with respect to an over estimation of
termined mixtures do not enjoy sparsity properties such asthe number of sources remains open. Eventually, although
disjoint source spectra, or sources non permanently presenthe FOBIUM algorithm [16] performs Bl of up t& = N?

(property often exploited in Speech applications [1]). sources for arrays a¥ different sensors, it requires sources
Blind Source separation (BSS) algorithms performing a With different FO spectral densities. .
Second Order (SO) prewhitening in order to identify a uni- __In this paper, five algorithms using solely Sixth Order

tary separator in a second stage, or extracting sources lin{SixO) statistics are compared; two are entirely new, while
early by deflation, are not able to identify underdetermined the others have been already presented in [17][18] under the
mixtures [2] [3] [4] [5]. With our terminology, these tech- name of BIRTH (Blind Identification of mixtures of sources
niques address theverdeterminedtase, that is, when the using Redundancies in the daTa Hexacovariance matrix),

number of sensors is larger than or equal to the number ofbut not all implemented however. It is assumed through-
sources. out that sources have nonzero marginal 6th order cumulants

sensor requires source distributions to have an indecom-contexts). We have also recently shown [18] that the prin-

posable characteristic function [6] [7]; for instance igidi  CiPles theoretically extend to statistics of arbitraryen®y,

tal communications, BPSK sources are indecomposable but > 2, but computer simulations still remain to be com-

QPSK are not. This condition can be deflated for underde-Pleted forg > 3.

termined mixtures received on 2 sensors [8]. On the other

hand, for overdetermined mixtures, the only pathological 2. ASSUMPTIONSAND NOTATION

distributions are Gaussian [9] [10] [7] [3]. In the sequeél, i

is assumed that an underdetermined mixture is available onAssume that for any fixed time indeéx N complex out-

more than one sensor, viz< N < P. putsz,, (k) of a noisy mixture ofP statistically independent
Blind source extraction from underdetermined mixtures sourcess, (k) are available. The vecta(k) of the mea-



sured array outputs is modeled by 3. ALGEBRAIC PRELIMINARY

x(k) = As(k) +v(k) (1) Consider the following mathematical problem:

whereA, s(k), v(k) are theN x P constant mixing matrix, ~ Problem: Given M matricesE,,, 1 < m < M, each
and the source and noise random vectors, respectively. IrPf sizeN x P, find aN x P matrix A, and P x P diagonal
addition, for any fixed time inde%, s(k) and v(k) are ~ matricesDy, such that| D, || = 1 and

statistically independent. Vectors and matrices are aehot _
in bold. Em D ~ A ®)

MatricesA and D,, can be obtained as stationary values of

For the sake of convenience we need to define, for aNYine east Squares (LS) criterion below:

k, the entries of the SixO cumulant tenggy of a random
vector,z(k), stationary and ergodic up to ordgr

M
i €= Z 1Em D — A”?«“ (6)
Citinina = Cum{a (), 3iy(k), ai,(k), 23,(k)", ai,()", %(k)(z}) m=1
Such components may be ordered in Highexacovariance ~ Where|| Bl is the Frobenius norm of matri. As a con-
matrix as follows: sequence, they satisfy the following system of equations,
obtained by cancelling the gradientoWith respect taD,,
Haljr,j2) = Ci i (3 and4

V(WPL Z%md{Emlkz_fakmp)zo

Expressions of SixO cumulants, in the complex case, as avhereB(n, p) is the(n, p)-th component of matriB. It is

function of moments, can be found in [18, appendix D] then not hard to obtain the closed form expressiondor
for zero-mean variables which are distributed symmetsical

=i+ N(ia+N(ii—1)), jo—is+N(is+N(ia—1)). (4) (7)

with respect to the origin. Note that the impact of the chosen 1 M
way to arrange them in the hexacovariance matrix is anal- A= i EmDp, (8)
ysed in [18, section 5]. More generally, it is shown in [19] m=1

that there exists an optimal matrix arrangement of the SixO
cumulants with respect to the maximal number of statisti-
cally independent sources to be processed by a method e
ploiting the algebraic structure of the hexacovariance. Es
pecially for the BIRTH method, this optimal arrangement is
shown [18, section 5] to correspond to the one described by,yhere
(3). Now, we further assume the following hypotheses:

By plugging back this solution in system (7), one gets after
,S0me manipulations:

M-1 EHm Em , if i1 =1mg
Al. Vectors(k) is stationary, ergodic (aryclostationary Ejma, my) = {(— E;'n) Em;}(p, ;)}(gtﬁgrwise

and cycloergodic respectively), with components a ' (10)
priori in the complex field and mutually uncorrelated gng whered,, = [D1(p,p) Dyp,p) --- Dudp,p) ]T_ In

at order(6 (the cyclostationaritycase has been ad- other words, the solution to the LS problem under the con-
dressed in [18, section 3.3]); straint that, for any fixed index, 3°, |Dw(p,p)|? = 1is
obtained when the vectat, is the right singular vector of
matrix F, associated with the minimal singular value. Once
every entryD,,(p,p) is obtained, matrixA can be calcu-
A3. SixO marginal source cumulant§?»?? _ are not lated thanks to (8). This solution is thus not iterative (tho

. nop S’ . . .
null and have all the same sign; we could possibly run alternate iterations).

A2. Noise vectow (k) is stationary, ergodic and Gaussian
with components a priori in the complex field too;

A4. Column vectorsy, of A, also called steering vectors,
are not collinear and have not any null component; 4. APPLICATION TO BLIND IDENTIFICATION OF

_ UNDERDETERMINED MIXTURES
A5. The N? x P matrix A, = Ao A*, whereo denotes

the Khatri-Rao product [20] [18, section 3.2.1], is full - Under assumptionsA(l)-(A5), the BIRTH algorithm suc-
column rank (this implies tha < N'?); ceeds [17, section 3.3] [18, section 4.2.1] in identifying-m

trix A, defined by the triple columnwise product
The goal of BI consists of determining an estimate of the

mixture matrixA. A; = AQAQA" = [q®@a1®a] -+ apR®ap®ap] (11)



up to a multiplicative trivial matrixZ™ (a trivial matrix is
of the form AIT where A is invertible diagonal andI a
permutation), where denotes the Kronecker product. The
five methods described below allow to estimate matkix
from the estimated, output by the core of the BIRTH al-

The latter algorithm does not take into account the fact that
diagonal matrice®),,, should contain products of entries of
A, and is therefore expected to yield less accurate results.
However, subsequent simulations demonstrate that the loss
in performance is little compared to the gain in computa-

gorithm. We do not describe this core step here for reasongional complexity.

of space. Anyway, our contribution lies mainly in methods
4 and 5, and the comparisons, not in the core itself.

Three methods have been proposed in [18, section

4.2.2] in order to extract mixturél from the estimatez3
of matrix A;:

Method 1: Take as estimate the matrlx block made up

of the N first rows of the conjugate of matrm3
Method 2: Define thelNV matrix blocks=E,,, of sizeN x

P, made up of the successive rows of the conjugate of mat”)‘wherebp is thep-th column vector of matrixd,

.A3, take as estimate the average of théédlocks.

Method 3: Fully exploit each column vectob,, of
.23. In order to do this, first extract, from vectds,,
the N vectorsb,(n) of size N2 x 1, then remodel them
into N matricesﬁp(n) of size N x N, and finally build
the matrix whosep-th column vector is the eigenvector

(approximately) in common within th¥ matricesﬁp(n)*

(1 < n < N) and associated with the largest eigenvalue
using the Joint Approximate Diagonalization (JAD) algo-
rithm described in [21].

Methodsl and2 ensue immediately from the structure
of matrix.A,. In fact, it can be shown [18, equation 34] that
matrix .A; may be written as:

= A, T =[[A"L]" [A"E] - [ATT:]"] (12)

where theN? matricesZ, (1 <n < N?) of sizeP x P are

trivial. As for method3, it is shown in [18, appendix C] that
Vn, 1 <n <N, Ep(n) x {af(p) ® ag(p)} (13)

wheref (-) is a bijective function of1,2,. .., P} into itself

(i.e. a permutation function). Then it is straightforwaed t
show that

Vn, 1<n <N, Ep(") x [aﬁ(p) aﬁ(p)H} ’ (14)

and hence the meth@dresult. Note that, although the JAD
algorithm [21] is restricted to unitary joint diagonalizeit
can be used in methadsince matricedB,(n)* are of rank
1, from (14).

Method 4: The fourth method we consider performs an
unrestricted (non-unitary) LS joint diagonalization sate,
as for instance the one described by Yeredor in [20], yield-
ing a better LS fit.

Method 5: Follow me apprg\ach given in section 3 in
order to extract mixtured from A, with matrices=,, de-
fined as in Method 2.

5. COMPUTER RESULTS

We proceed in this section to two types of simulations. First
in order to test the five Bl methods previously described
independently of the BIRTH algorithm, we have generated

P vectorsb such that

b =b+y (15)
and where
the N3 x 1 noise random vectors, are chosen to be Gaus-
sian spatially and temporally white such that their covari-
ance matricesd?, verify R, = o> Iys. We took a uni-
formly spaced circular array oV = 3 identical sensors,
of radiusR such thatR/A = 0.55, and P = 12 directional
vectors. The chosen Bl performance criterion is as follows.
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Fig. 1. Mean of theP =12 gapsa,

As in [17], for each estimated columiy, one computes the
gapay:

o =, 5 A )
whered(-, -) denotes the pseudo-distand@:, v) = 1 —
[{(u, v))?/||u|?||v||>. We report the average of theé gaps
obtained by the five methods in figure 1, as a function of the
noise level. It can be seen that method 5 is almost as good
as the most complex one, namely method 3.

Second, we now incorporate the BIRTH core step in the
comparison. Sources are BPSK modulated, with a raised
cosine pulse shape of roll-off equal to 0.25, and assumed
synchronized. Figure 2 shows BI results obtained when
BPSK sources are received by the same array as above.



JADE
0.35/
0.38 % Bl RTH1
3
0257§E**** *******************************
X 4 Bl RTH5
0.2¢ R
0.15-
0.1+
0.05-
Oo 2000 4000 6000 8000 10000

nber of sanpl es

Fig. 2. Mean of theP =7 gapsw,

Their symbol periods are equal to twice the sample pe-

riod and their carrier residuals are all null. In this figutes

label “BIRTHm” corresponds to the BIRTH algorithm fol-
lowed by methodn of section 4. Again, it can be seen that
the five methods can be sorted in the same way: method 3
the most complex, is followed by method 5. The latter thus
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appears to exhibit the best trade-off between performance

and computational complexity.

6. CONCLUSION

As surveyed in introduction, there are few algorithms able

to identify blindly underdetermined mixtureisd. in the ab-

sence of sparsity). The algorithm BIRTH3 has been recently

(13]

(14]

proposed by the authors, but had not been implemented nof15]

tested yet. Next, the alternate estimation algorithm otYer
dor has also been implemented (BIRTH4). Last, we have
devised a simpler algorithm, BIRTH5, by relaxing the struc-
ture of the problem, and compared its performances with the

(16]

former methods; according to the computer results reported

above, BIRTH5 appears to be the most attractive.

These algorithms, and in particular BIRTH3 and [17]

BIRTHS5, can be used for blind beamforming. Yet, there ex-

ist techniques based on the array manifold knowledge that
can handle underdetermined mixtures, such as the so-called

4—MUSIC. It could be interesting to compare its perfor-

mances with the above as well, which could yield a per- [18]

formance bound. On the other hand, identifiability issues

remain to be addressed for the most general cases of under-

determined mixtures.
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