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Docteur Ès Sciences de l’Universit́e de Nice Sophia-Antipolis
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La séparation aveugle de sources et plus particulièrement l’Analyse en Composantes Indépendan-

tes (ICA) ont récemment suscité beaucoup d’intérêt. Elles trouvent en effet leur place dans

un grand nombre d’applications telles que les télécommunications, le traitement de la parole,

l’analyse de données, ou bien le domaine biomédical. Le principe de la séparation autodidacte (ou

aveugle) de sources est de restituer les sources émises, etce, uniquement à partir des observations

issues des capteurs. Alors que certaines techniques cherchent à décorréler (à l’ordre2) les signaux,

comme on peut l’observer en Analyse Factorielle avec l’Analyse en Composantes Principales

(PCA), l’ICA pour sa part vise à réduire les dépendances statistiques des signaux aux ordres

supérieurs, et permet de cette manière de restituer les sources. Les méthodes proposées sont

donc dédiées de préférence aux sources indépendantesstatistiquement. Selon l’application, on

peut toutefois choisir de ne retrouver que les paramètres du mélange instantané, ce qui est utile en

goniométrie car le dit mélange porte à lui seul toute l’information nécessaire à la localisation des

sources : on parle alors d’identification aveuglede mélange. Pour d’autres applications telles que

la transmission, il est nécessaire de retrouver les sources émises : on emploie alors l’expression de

séparationou bien encore d’extraction aveuglede sources. De plus, alors que divers algorithmes,

très performants notamment sous l’hypothèse de bruit gaussien spatialement et temporellement

blanc, permettent déjà depuis une dizaine d’années de traiter le cas de mélanges ditssurd́etermińes

(c’est-à dire lorsque le nombre de sources est inférieur au nombre de capteurs), le cas de mélanges

ditssous-d́etermińes(c’est-à dire lorsque le nombre de sources est strictementsupérieur au nombre

de capteurs) a été jusqu’à présent peu étudié en dépit des nombreuses applications. Les travaux

de thèse ont alors permis d’élaborer une famille, BIOME, de nouvelles méthodes statistiques de

séparation aveugle de sources, d’une part traitant le problème du bruit gaussien de cohérence
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spatiale inconnue, d’autre part permettant l’identification autodidacte du mélange y compris en

contexte sous-déterminé. Par ailleurs, une étude asymptotique de performances des méthodes

basées sur la maximisation des contrastes d’ordre4 a pu être menée dans le cas de mélanges

orthonormés. Enfin, le comportement, en présence de signaux cyclostationnaires potentiellement

non centrés, des méthodes de séparation aveugle de sources exploitant les statistiques d’ordre2

et/ou4 a également pu être étudié et des améliorations ont alors été proposées.



A mes parents...



Acknowledgments

� �� ��� �� �� �	
 �� � ���

 ��� ��� ��� � � �� ��	�� � ���
��
 �� �� �� �� �� ��� ��� �	�	��
����
��
 � �� ��
� � �
� �

CNRS
�
 ���	 �� �	���

I3S
�� �	� � ��

-����� 	 ���� � ��� �����	 �
�� ��� 
� � ����� ��� �� ��� ���� ��
� ��� 
�� �

THALES Communications
�� �	�	� ��� �

�	
� �
’
����� �� � � �� �	� 
	�� �� �� �� �	� ��
� �� ��� �� ��� ����� 
	��
��� 
� �	���

��	
 � �� �� ��
� ��
� � �� �	
� �� � � ��� �� 
� ! ��� �	
" 	
 �� ��
	������ ���� #
 ���
�	��� ��� ������ ��� �����
� � 
��� ��$ � 
�� "

’
�� � � ��� ��� ��� ��
��� ��� ���� � ��� ��

��� 
� �� �	� � 
� ����� � 
������ � 
� �
’
	� � �	
" 	
 �� ���� � � ���� �� ��� � �����
 ���

��
�� �	��� �	��� � 	
 ���� �� �	� ��
	
 �� �� ���� � �	���� � 
� ��� �� �� � �� � �����
 � ��
�	�

-
�%���
� ��� ��
�� � � ��� ��� � ��� ��
 �� ��� ��
 &���
 ��� 
� �! �
 � � ���
�

TSI
� � � ���

�
� 
�� � 	�	�� 
� �! �
 ���	 �� �	���
LTC

� � 	
 � �
’
��	�� �


�� ��� �
 � ��� ��

THALES�� � ��� �� �� ��� ��� � � �� �� �� � ���� ��� � �����
 ��� 
	�����	�� �� ��
� � �
� � � 	�� ����� �
� ��
� � � ��� ��� � �	
 ��� ��� � ��� 	���� �
 � � ���
� � 
� "

’
�� 
	 ��	' ��� �
 ���� 
��

������� � 
 � 	� � �	��� � 
� 
�� �� � �	! ��� �	��� � 
�� 
	������ ���� ��� � �
� � ��� �����
� ��� 	
 ���� � ��� � ��� 	���� �
 ���	 �� �	���

I3S� 
� �
’
	� � �	
" 	
 �� 	!! � �� 
� �


�� �


� � ��
 ��
� �	 �� �� � �� ���
�� � �	� � ��
-����� 	 ��� �

� � 	
� ���� �
�� � �� ���� � � � �� �����
��� ���� �
� ��� ���� �
" 
 �' �� 
���� �� �� ��
�	�������� � 	�� ��
 � ������� � (	
���	� � 
� �

’
� ! ��� �

’
� 	���
 � �� � ��� ��� �


� " 
 �' �� �� �	
� �


�� ��� � � �
’ )������ ��� �� � ����

-
(�

-
������ �
 ���� ��

� 	
 �����
�� � ��� ��
�� ����� ��� � ��� ��
 �� �� ��� ���� 
 ����� � �	! ��� �
 � � �
’

INPG-LIS
� � � �� ����� *� � ���� � �	! ��� �
 � � �

’ INT
� �

’
��	�� �

�� �� �� �+
� �

�� ���� 	���
 � �� � 	�� ��
 � ( ����� &� (��� �
,��� 
� � � � �� ��
� ��
� �
CNRS

�
�

’ ETIS
� 
� ��� �

’
���� �����
 ��

v



vi ACKNOWLEDGMENTS

���
� � � ��� ��� � � ����� ���� � ���� ���� �� �� � ���
���
� �

DESS

�
’��

 ���� ��� � ��� ������ 
� �
’
#���' � ���� � � 


’
� � ��� ��
 �� ���� � ��� �	

� � �	�

�� � �
� �� ������ �� �
’
��	�� 	!! � �� �� " 	�� �

’
��� �� �� � ���� 
� ��� ! 	 �����	�

� 
� �	�
-
�%�� " � �
 ���� � 
� �� 
�� ������ � �
 �� �� � ����� � � � �����
 �� � ���	� ���

� � ��� ��
 �� ���
-
�� ��� �	� � � ���� 
�� �� �� ����� � (	
 ���	� �� � �	! 	���

��
	������ ��
� � 
� " � ��
 � � 	 ��� � 	
 � �
’
��	�� �	��� �� � ���� � � �

’
��� �� ��� � ��

��

 ��� �� � ����
-
(�

-
�������

� �� � �
� ���� ��� � � 
� � ��
 ��
� �� � ��� ��� �	�� � ��� �� �� � 	
 � ��
 � �!! �
��	� ��
��
 � � 	
 ����� � �� ! �� ���� � � � �
� � � ���

 ��� ������ � � �� � � ��� �� �	�� �

’
��	
 ��

�� 
	�� ��� ��� �	� �� ��� ��
	
 �� ������ �
’
	� � � ��� �� �� 
�	� �� � � �

’
�

	�� ��� 
�

�%���

�� ��	 
 �����



Contents

Summary ii

Acknowledgments v

Acronyms and Notations xi

1 Introduction 1

1.1 Assumptions and problem formulation . . . . . . . . . . . . . . . .. . . . . . . 2

1.1.1 Matrix notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Assumptions and notations . . . . . . . . . . . . . . . . . . . . . . .. . 3

1.1.3 Performance criterion . . . . . . . . . . . . . . . . . . . . . . . . . .. . 4

1.2 Statistics of2q-th order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Matrix arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Multilinearity property . . . . . . . . . . . . . . . . . . . . . . . .. . . 7

1.2.4 Statistical estimation . . . . . . . . . . . . . . . . . . . . . . . . .. . . 7

1.3 Bibliographical survey . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 8

1.4 Chapter summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12

2 Fourth Order Independent Component Analysis 17

2.1 ICAR or the fourth order blind source separation . . . . . . .. . . . . . . . . . 17

2.1.1 The core equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 The ICAR concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Implementation of the ICAR method . . . . . . . . . . . . . . . . .. . 22

vii



viii CONTENTS

2.1.4 Computer results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Asymptotic performance of fourth order contrast-basedBSS algorithms . . . . . 30

2.2.1 contrast-based BSS methods . . . . . . . . . . . . . . . . . . . . . .. . 31

2.2.2 Asymptotic properties: a functional approach . . . . . .. . . . . . . . . 31

2.2.3 Examples and asymptotic analysis of particular contrasts . . . . . . . . . 33

2.2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 BIRTH or SixO statistics for the underdetermined case 39

3.1 The BIRTH Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Hexacovariance property . . . . . . . . . . . . . . . . . . . . . . . .. . 39

3.1.2 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 SixO blind identification step . . . . . . . . . . . . . . . . . . . .. . . 41

3.1.4 Implementation of the BIRTH method . . . . . . . . . . . . . . . .. . . 41

3.2 BIRTH improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 42

3.3 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 44

3.3.1 The BIRTH approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Impact of the hexacovariance structure . . . . . . . . . . . .. . . . . . . 45

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

3.4.1 Simple BIRTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 BIRTH improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 BIOME: Blind Identification of Overcomplete MixturEs 55

4.1 The2q-BIOME method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 The core equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 The BIOME concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.3 Implementation of the BIOME method . . . . . . . . . . . . . . . .. . 60

4.2 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 62

4.2.1 The VA concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 The BIOME processing power . . . . . . . . . . . . . . . . . . . . . . .64

4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



CONTENTS ix

5 Other contributions 73

5.1 The FOBIUM approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

5.2 Blind separation of non zero-mean cyclostationary sources . . . . . . . . . . . . 73

6 Conclusion 75

A Proof of the second matrix multilinearity property (4.1) 77

B Proof of propositions 4 and 8 79

C Proof of theorem 2 81

D Multivariate high-order complex cumulants 83

E Expression of second order differentials 85

F The FOBIUM approach 87

G The SOBEFOCYS approach 93

H HO BSS of non zero-mean cyclostationary sources 143

References 147



x CONTENTS



Acronyms and Notations

Acronyms

• Signal processing areas

ICA Independent Component Analysis

BSS Blind Source Separation

BMI Blind Mixture Identification

DOA Direction Of Arrivals

• Methods

EVD EigenValue Decomposition

SVD Singular Value Decomposition

JAD Joint Approximate Diagonalization

JADE Joint Approximate Diagonalization of Eigen-matrices

SOBI Second Order Blind Identification

ICAR Independent Component Analysis using Redundancies in the quadrico-

variance

BIRTH Blind Identification of source mixtures using Redundanciesin the daTa

Hexacovariance matrix

BIOME Blind Identification of Overcomplete MixturEs

• Statistics

SO Second Order

xi



xii ACRONYMS AND NOTATIONS

FourO Fourth Order

SixO Sixth Order

HO Higher Order

• Modulations

BPSK Binary Phase Shift Keying

QPSK Quad Phase Shift Keying

CPM Continuous Phase Modulation

CPFSK Continuous Phase Frequency Shift Keying

FSK Frequency Shift Keying

AM Amplitude Modulated

• Others

SNR Signal to Noise Ratio

SNIRM Signal to Interference plus Noise Ratio Maximum

UCA Uniformly spaced Circular Array

ULA Uniform spaced Linear Array

Notations

• vectors(one-way arrays) are denoted with bold lowercase symbols;

• matrices(2-way arrays) or tensors (HO arrays) are denoted with bold uppercase;

• transposition, conjugate transposition, complex conjugation, andestimateare denoted re-

spectively with superscripts (T), (H), (∗), and (̂);

• P denotes the source number;

• N denotes the sensor number;

• k, K denote the sample index and the total sample number respectively;

• s(k) denotes theP×1 source random vector;

• ν(k) denotes theN×1 noise random vector;



ACRONYMS AND NOTATIONS xiii

• A denotes theN×P constant mixing matrix;

• ap denotes thep-th stearing vector, i.e. thep-th column ofA;

• αp allows one to evaluate the blind identification quality of vectorap;

• T denotes a trivial matrix, which by definition is of the formΛΠ whereΛ is an invertible

diagonal matrix andΠ a permutation;

• ⊗ denotes the Kronecker product;

• � denotes the Hadamard product;

• � denotes the Khatri-Rao product;

• ‖B‖F is the Frobenius norm of matrixB.



xiv ACRONYMS AND NOTATIONS



List of Tables

4.1 N 2q,`
max associated with arrays with space, angular and polarization diversities . . . 64

4.2 N 2q,`
max associated with arrays with spatial diversity only . . . . . . .. . . . . . . 64

4.3 N `
2q associated with a UCA ofN identical sensors . . . . . . . . . . . . . . . . 65

xv



xvi LIST OF TABLES



List of Figures

2.1 SINRM associated with source3 for a SNR of20 dB . . . . . . . . . . . . . . . 24

2.2 SINRM associated with source3 for a SNR of20 dB . . . . . . . . . . . . . . . 25

2.3 SINRM associated with source3 for 1000 samples . . . . . . . . . . . . . . . . 26

2.4 SINRM associated with source3 for 1000 samples . . . . . . . . . . . . . . . . 26

2.5 SINRM associated with source 3 for a SNR of0 dB . . . . . . . . . . . . . . . . 27

2.6 SINRM associated with source 3 for a SNR of0 dB . . . . . . . . . . . . . . . . 28

2.7 SINRM associated with source 2 for a SNR of10 dB . . . . . . . . . . . . . . . 29

2.8 Variance of estimated separating matrixU obtained by maximization ofΥ1(U). 35

2.9 Variance of estimated separating matrixU obtained by maximization ofΥ2(U). 35

2.10 Variance of estimated separating matrixU obtained by maximization ofΥ3(U). 36

3.1 Fourth order virtual array radiation pattern (N = 5) . . . . . . . . . . . . . . . . 47

3.2 FO∗ virtual array defined by
[
ap⊗a∗

p

]
(N = 5) . . . . . . . . . . . . . . . . . . . 48

3.3 Fourth order virtual array defined by[ap⊗ap] (N = 5) . . . . . . . . . . . . . . . 49

3.4 α3 for aSNR = 20 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 D
(
A,Â
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Chapter 1
Introduction

Blind Source Separation (BSS), and more particularly Independent Component Analysis (ICA),

now raise great interest. In fact, ICA plays an important role in many diverse application areas,

including radiocommunications, speech and audio [1], radar, sonar, seismology, radio astronomy,

medical diagnosis [32] and data analysis. For example, in Biomedicine contexts, it is possible

to vizualize the electrical activity of a fetal heart, the Fetal ElectroCardioGram (FECG), from

non-invasive techniques, say, from ECG-recordings measured on the mother’s skin. In fact, these

cutaneousrecordings can be considered, in first approximation, as instantaneous linear mixtures of

potential signals generated by underlying bioelectric phenomena (maternal and fetal heart activity,

potential distributions generated by respiration and stomach activity, ...); noise can be taken into

account as an additive perturbation. So ICA can be used to estimate the FECG from recordings

on the mother’s skin [32] in order to evaluate the well-beingof the fetus and reveal important

diagnostic information, like for the diagnosis ofarrhytmia. Likewise, in digital radiocommu-

nications contexts, if some sources are received by an arrayof sensors, and if for each source

the channel delay spread associated with the different sensors is much smaller than the symbol

durations, a static mixture of complex sources is observed from the sensors. BSS consists in this

case of restoring by a spatial filtering operation the transmitted sources only from the sensor data.

Depending on the application, it may be sufficient to identify a static mixture, as in Direction Of

Arrival (DOA) estimation problems, since the column vectors of the mixture are the source steering

vectors: this is referred to asblind identificationof source mixtures. In other contexts such as

radiocommunications, the question is that ofblind extractionof sources, or more commonly BSS.

Whereas some algorithms try to decorrrelate estimated signals using Second Order (SO) statis-

1



2 CHAPTER 1. INTRODUCTION

tics, as in Factor Analysis with Principal Component Analysis (PCA), ICA attempts to restore the

independence of outputs using Higher Order (HO) statistics. Thus, under the source independence

assumption, ICA allows one to blindly identify the static mixture, and consequently to extract the

transmitted sources. Nevertheless, ICA performance depends on several assumptions: (i) sources

should be independent in some way, and (ii) in most cases the mixture has to beoverdetermined;

in other words, there should be at least as many sensors as sources, which is generally a strong

limitation unless sparsity conditions are assumed; if the latter assumption is not made, the mixture

is calledunderdetermined. It is important to note that noisy static mixtures ofP sources can

be viewed as noiseless underdetermined, since the background noise may be considered asN

additional sources as raised in [16] [69], whereN is the number of sensors. So a noiseless model

of P + N sources may be used, but, some sources modeling the noise might however not be

independent. Nevertheless, in the presence of a linear noise, including the Gaussian noise, the

latter can be approximated by the output of causal convolutional filter of lengthM whose inputs

are spatially and temporally white. Moreover, the latter convolutional filter can be written as a

N ×MN matrix. If the observed linear noise is temporally white (implying M = 1), the latter

matrix is given by the square root of the noise covariance matrix. Thus, the data observed from the

N sensors can be written as a noiseless static mixture ofP +MN independent sources, requiring

the use of blind underdetermined mixture methods. Nevertheless, we do not resort to this noiseless

model in the new methods proposed in this thesis, in contrastto [62], for the following reasons :

(i) underdetermined mixtures can be hardly identified when alarge number of sources is present,

(ii) if the noise is a non linear process, the noisy model cannot be written as a underdetermined

static mixture. In addition, the background noise will be assumed Gaussian in this thesis, and since

its HO statistic contribution is null, it is not necessary toconsider it as additional sources.

1.1 Assumptions and problem formulation

1.1.1 Matrix notation

First, define the following compact notation associated with the usual Kronecker product⊗ and

namedKronecker power:

B⊗m = B⊗B⊗. . .⊗B︸ ︷︷ ︸
m times

with B⊗0 =1 (1.1)
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whereB is anyN ×P rectangular matrix;B⊗m is thenNm×Pm. Next, define a columnwise

Kronecker product, denoted� and sometimes referred to as the Khatri-Rao product [39] [73]. For

any rectangular matricesG andH , of sizeNG×P andNH ×P respectively, the columns of the

(NGNH)×P matrix G�H are defined asgj ⊗ hj , if gj andhj denote the columns ofG andH

respectively. The Khatri-Rao product� may also be defined [73] as

G � H = [G ⊗ 1NH
] � [1NG

⊗ H ] (1.2)

where� denote the usual Hadamard (element-wise) product and1N anN×1 vector of1s respec-

tively. So it is also possible to define theKhatri-Rao power:

B�m = B�B�. . .�B︸ ︷︷ ︸
m times

with B�0 =1 (1.3)

1.1.2 Assumptions and notations

Assume that for any fixed indexk, N complex outputsxn(k) (1≤n≤N ) of a noisy mixture of

P statistically independent sourcessp(k) (1≤p≤P ) are available. TheN × 1 vectorx(k) of the

measured array outputs is given by

x(k) = As(k) + ν(k) (1.4)

whereA, s(k), ν(k) are theN ×P constant mixing matrix, theP ×1 source andN ×1 noise

random vectors, respectively. In addition, for any fixed index k, s(k) andν(k) are statistically

independent.

We further assume the following hypotheses:

A1. Vectors(k) is stationary, ergodic (orcyclostationaryandcycloergodic, respectively), with

components a priori in the complex field and mutually uncorrelated at order2q (thecyclo-

stationaritycase will be addressed in the statistical estimation section 1.2.4);

A2. Noise vectorν(k) is stationary, ergodic and Gaussian with components a priori in the

complex field too;

A3. 2q-th order marginal source cumulants (they will be defined in section 1.2.1) are not null

and have all the same sign;

A4. Column vectorsap of A, also called steering vectors, are not pairwise collinear and none of

their entries is null;
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A5. TheN q−1×P matrixA`
q−1, which will be defined in section 4.1.1, is of full column rank(this

implies thatP ≤N q−1);

whereA`
q =A

�q−`�A∗�`

andq an arbitrary integer greater than2.

Under the previous assumptions, the problem addressed in this report is the Blind Mixture

Identification (BMI) of mixtureA, to within atrivial matrixT (a trivial matrix is of the formΛΠ

whereΛ is an invertible diagonal matrix andΠ a permutation), from2q-th orderstatistics(these

ones will be defined in section 1.2.1) of the observations. Besides, the classical BSS problem in

the overdetermined case consists of finding anN ×P matrix (the static source separator),W ,

yielding aP×1 output vector

y(k) = W Hx(k) (1.5)

corresponding to the best estimate,ŝ(k), of the vectors(k), up to a multiplicative trivial matrix.

1.1.3 Performance criterion

Most of the existing performance criteria used to evaluate the quality of the BMI process, in the

overdetermined case [16] or in the underdetermined case [17] [68], are global criteria, which

evaluate a distance between the actual mixing matrixA and its blind estimatêA . Although

practical, a global performance criterion necessarily contains a part of arbitrary considerations in

the manner of combining all the distances between the vectors ap andâp. Moreover, it is possible

to find that an estimatêA1 of A is better than an estimatêA2, with respect to the global criterion,

while some columns of̂A2 estimate the associated true steering vectors in a better way thanÂ1.

For these reasons, it may be more appropriate to use a non global criterion for the evaluation of

the BMI process, which is defined by theP -uplet

D
(
A, Â

)
= (α1, α2, . . . , αP ) (1.6)

where

αp = min1≤ i≤P [d(ap, âi)] (1.7)

and whered(u,v) is the pseudo-distance between vectorsu andv, defined by:

d(u,v) = 1 − |uHv|2

‖u‖2‖v‖2
(1.8)

where‖·‖ is the Euclidean norm defined on�N by ‖u‖=
√

uHu.
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Likewise, but only in the context of overdetermined mixtures, it may be more appropriate

to use the well-known SINRM (Signal to Interference plus Noise Ratio Maximum) criterion,

defined in [11, section 3] and in appendix H (page 118), in order to evaluate performances of

BSS algorithms.

1.2 Statistics of2q-th order

1.2.1 Definition

The2q-th order statistics considered in this report are defined by

C
iq+1, iq+2, ..., i2q

i1, i2, ..., iq, x
(k) = Cum{xi1(k),xi2(k), . . . ,xiq(k),xiq+1(k)∗, . . . ,xi2q

(k)∗} (1.9)

whereq termsxi(k) are not conjugated andq terms are conjugated. Function (1.9) is well-known as

the2q-th ordercumulantcomputed from2q components ofx(k) with as many conjugated terms

as not conjugated. Consequently, the associated2q-th ordermarginal cumulantof sourcesp(k) is

defined by

Cp, p, ..., p
p, p, ..., p, s(k) = Cum{sp(k),sp(k), . . . ,sp(k)︸ ︷︷ ︸

q components

,sp(k)∗, . . . ,sp(k)∗︸ ︷︷ ︸
q components

} (1.10)

Note that in the presence of stationary sources,2q-th order statistics do not depend on timek, so

they can be denoted byC
iq+1,iq+2,...,i2q

i1,i2,...,iq,x . For the sake of convenience, we will describe our new

algorithms, names ICAR, BIRTH and BIOME in the sequel, in thestationary case. Nevertheless,

the cyclostationary case will be addressed in short in section 1.2.4 and more fully in section 5.2.

1.2.2 Matrix arrangement

Finally, 2q-th order statistics computed according to (1.9) may be arranged in anN q×N q statistical

matrix C2q, x, called2q-th order statistical matrix ofx(k) such thatC2q, x is an Hermitian matrix.

Nevertheless, several ways to store2q-th order statistics inC2q, x are possible and we consider in

the following q+1 arrangements, indexed by the integer` (0≤ `≤ q), each yielding a statistical

matrixC`
2q, x such that its

(
I`
1 ,I`

2

)
-th entry (1≤I`

1 ,I`
2≤N q) is given by

C`
2q, x

(
I`
1 ,I`

2

)
= C

iq+1, ..., i2q

i1, i2, ..., iq, x
(1.11)
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where for any0≤`≤q and for all1≤ i1, i2, . . . , i2q ≤ N ,

I`
1 =ϕ([ i1 i2 . . . iq−̀−1 iq−̀︸ ︷︷ ︸

q−̀ first subscript indices

i2q−̀+1 . . . i2q−1 i2q︸ ︷︷ ︸
` last superscript indices

])

I`
2 =ϕ([ iq+1 iq+2 . . . i2q−̀−1 i2q−̀︸ ︷︷ ︸

q−̀ first superscript indices

iq−̀+1 . . . iq−1 iq︸ ︷︷ ︸
` last subscript indices

])
(1.12)

and where functionϕ is defined by

∀z ∈ �J , ϕ(z) = z(J) +
J−1∑

j=1

NJ−j(z(j) − 1) (1.13)

denoting withz(j) thej-th component of vectorz.

Example 1 Fourth order (FourO) statistics defined by (1.9) forq = 2 and described explicitly in

appendix D (page 83) for zero-mean complex variables that are distributed symmetrically with

respect to the origin, may be arranged in theN2×N2 quadricovariance matrixQx = C1
4, x such

that

Qx(I
1
1 , I1

2 ) = Ci3,i4
i1,i2,x (1.14)

is the
(
I1
1 , I1

2

)
-th entry (1≤I1

1 , I1
2 ≤N2) of Qx and where for all1≤ i1, i2, i3, i4≤N ,

I1
1 = ϕ([i1 i4]) = N(i1 − 1) + i4

I1
2 = ϕ([i3 i2]) = N(i3 − 1) + i2 (1.15)

Example 2 SixO statistics defined by (1.9) forq=3 and described explicitly in appendix D (page

83) for zero-mean complex variables that are distributed symmetrically with respect to the origin,

may be arranged in theN3×N3 hexacovariance matrixHx = C1
6, x such that

Hx

(
I1
1 , I

1
2

)
= Ci4,i5,i6

i1,i2,i3,x (1.16)

is the
(
I1
1 , I1

2

)
-th entry (1≤I1

1 , I1
2 ≤N3) of Hx and where for all1≤ i1, i2, i3, i4, i5, i6≤N ,

I1
1 = ϕ([i1 i2 i6]) = N(N(i1 − 1) + i2 − 1) + i6

I1
2 = ϕ([i4 i5 i3]) = N(N(i4 − 1) + i5 − 1) + i3 (1.17)



1.2. STATISTICS OF2Q-TH ORDER 7

Remark 1 Another, perhaps more intuitive (especially for readers familiar with Matlab), way to

present the construction ofC`
2q, x is the following: first, construct an2q-dimensional tensorT ,

whose elements are given by

T




i2q, i2q−1, . . ., i2q−̀+1, iq−̀ , iq−̀−1, . . ., i1,

iq, iq−1, . . ., iq−̀+1, i2q−̀ , i2q−̀−1, . . ., iq+1


 = C

iq+1,..., i2q

i1, i2, ..., iq, x
(1.18)

The matrixC`
2q, x is then given by a simple Matlab reshape operation as following

C`
2q, x = reshape(T , N q, N q) (1.19)

We limit ourselves to arrangements of statistics that give different results at the output of the BMI

methods in terms ofprocessing power(i.e. in terms of maximal number of processed sources).

Note that the selection of the ordering parameter` maximizing the processing power for a fixed

cumulant orderq will be discussed in section 4.2.2 summarizing results shown in [12].

1.2.3 Multilinearity property

The statistical matrix of the data,C`
2q, x (q ≥ 1), has a special structure especially thanks to the

multilinearity property under changes of coordinate systems, shared by all moments and cumulants

[55] [19, pp. 1-24]. Under assumptions (A1)-(A2), this property can be expressed, according to

(1.11), (1.12) and (1.13), by the following equation

∀ 0≤`≤q, C`
2q, x = [A⊗q−̀ ⊗A∗⊗`]C`

2q, s [A⊗q−̀ ⊗A∗⊗`]H (1.20)

where theN q×N q matricesC`
2q, x and theP q×P q matricesC`

2q, s are the statistical matrices ofx(k)

ands(k) respectively. The number̀is the same as that appearing in equations (1.12) and (1.11).

Moreover, note that the arrangementsC`
2q, x andCq−̀

2q, x (0≤ `≤ q) give rise to the same processing

power of underdetermined mixtures of arbitrary statistically independent sources as shown in [12].

In fact the first arrangement is the conjugate of the other whatever the values ofq andN . It is then

sufficient to limit the analysis to0≤ `≤ q0 whereq0 = q/2 if q is even andq0 = (q−1)/2 if q is

odd.

1.2.4 Statistical estimation

Generally, using the well-known Leonov-Shiryaev formula [55], applicable in the complex case

[65], 2q-th order cumulants (1.9) are computed from moments of ordersmaller than or equal to2q
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given by

M
ir+1,ir+2,...,ir+s

i1,i2,...,ir,x
(k) = E[xi1(k), . . . , xir(k), xir+1(k)∗, . . . , xir+s

(k)∗] (1.21)

wherer+s≤ 2q. Appendix D illustrates the Leonov-Shiryaev formula for HOstatistics and for

zero-mean complex variables that are distributed symmetrically with respect to the origin.

However, in practical situations, moments and cumulants cannot be exactly computed: they

have to be estimated from components ofx(k). If components are stationary and ergodic, sample

statistics may be used to estimatev-th order moments [55], and consequently to estimate, via the

Leonov-Shiryaev formula,2q-th order statistics (1.9).

Nevertheless, if sources are cyclostationary, cycloergodic, potentially non zero-mean,2q-th

order continuous-time temporal mean statistics have to be used instead of (1.9), such as

C
iq+1,iq+2,...,im
i1,i2,...,iq,x

=
〈
C

iq+1,iq+2,...,im
i1,i2,...,iq,x

(k)
〉
c

(1.22)

where〈·〉c is the continuous-time temporal mean operation defined by

∀ f :t 7−→f(t), 〈f(t)〉c = lim
T→+∞

1

T

∫ T/2

−T/2
f(t)dt (1.23)

These continuous-time temporal mean statistics are thus estimated using, forq = 2, the estima-

tors described in [42] for zero mean signals and in [44] (see appendix H and more particularly

section 5.2) for potentially non zero-mean signals, and extending the previous ones to very HO

statistics forq ≥ 3. Note that the proposed ICAR (see chapter 2), BIRTH (see chapter 3) and

BIOME (see chapter 4) approaches can tolerate (in their current form), but do not totally exploit,

cyclostationarity of the sources such as in [41]: this will be the subject of forthcoming works.

1.3 Bibliographical survey

The literature related to BMI or BSS in static mixtures is surveyed in this section. For nearly two

decades, SO and HO BSS methods [20] have been developed to separate several statistically inde-

pendent sources from measurements. While the first paper related to HO BSS has been published

in 1985 by Herault et al. [48], the ICA concept is proposed a few years later in 1991; Comon

proposes a FourO contrast-based method, COM2 [16], Cardosoand Souloumiac [8] develop a

matrix approach, well-known as JADE, and give rise to the Joint Approximate Diagonalization

(JAD) algorithm [9]. These approaches use explicitly or implicitly FourO statistics.
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In parallel, other approaches attempt to exploit SO statistics only. This is made possible thanks

to the color of the sources, assumed unknown but different. Fety was the first to exploit covariance

matrices at two different delay lags [45]; the complete theoretical background is given only a few

years later by Comon et al. [24]. The same kind of approach is developed independently ten years

later by Belouchrani et al. [2], who give rise to the so-called SOBI method, only based on SO

statistics.

Delfosse et al. [34] propose to extract one source at a time, which is now referred to as

Deflation procedures. A few years later, Hyvarinen et al. present the FastICA method, first for

signals with values in the real field [51], and later for complex signals [3], using the fixed-point

algorithm to maximize a FourO contrast. This algorithm is ofdeflation type, as that of Delfosse et

al. [34], and must extract one source at a time.

Continuing chronologically, Comon proposes a simple solution [18], named COM1 in this

paper, to the maximization of another FourO contrast function presented in [70] [25]. Whereas all

the latter methods exploit statistics of the data, other algorithms only use the geometric properties

of the data constellation. Although Diamantaras deals withBlind Channel Identification (BCI)

of one source in [37], he draws up in this recent paper (section V) an inventory of the current

geometric BSS methods, which are actually born in the nineties.

Each of these methods suffers from limitations. To start with, the current geometric methods

are very attractive, but for the time being, they are unable to separate any kind of sources but only a

priori realM -ary PAM sources, and are very sensitive to noise. Next, the SOBI algorithm is unable

to restore components that have comparable spectral densities. On the other hand, though the other

previous methods perform well under some reasonable assumptions, they may be strongly affected

by a Gaussian noise with unknown spatial correlation (because of their prewhitening stage). Such

a noise appears for instance in some HF (High Frequency) radiocommunications applications.

Moreover, in such applications, the reception of more sources than sensors is possible and its

probability increases with the reception bandwidth. The mixture is then calledunderdetermined

[17], which means that the observation vectors are represented in theovercompletebasis of source

vectors [50, pp. 305-313]. The previous algorithms, which require a SO prewhitening step, are

then unable to identify the mixture and to extract the sources. Indeed, the SO prewhitening step,

which aims at orthonormalizing the source steering vectors, cannot orthonormalize the latter when

the number of sources is greater than the number of sensors.
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In order to deal with the correlated noise problem, Ferréolet al. have proposed a new family

of HO BSS methods exploiting the potential cyclostationarity of the received sources [41]. In fact,

the latter family of algorithms uses cyclic statistics of the data; since cyclic covariance matrices

associated with a stationary noise are null for non zero cyclic frequencies, these cyclic methods

allow the optimal separation of independent sources even inthe presence of a stationary noise (not

necessarily Gaussian) with unknown spatial correlation. However, the use of cyclic methods is

more complex because of the estimation of cyclic frequencies and time delays.

On the other hand, the underdetermined mixture case is a difficult problem with sharp identifia-

bility questions. Taleb et Jutten have discussed some theoretical results on underdetermined source

separation [67, chapitre 7] [69] showing, firstly, that blind identification of steering vectors of non

Gaussian sources is possible, and secondly, that non Gaussian sources can only be restored up to

an arbitrary additive random vector. However, for discretesources, this vector is deterministic.

Several other methods have been developed in order to face the underdetermined mixtures case,

namely when there are fewer sensors than sources (e.g. the mixture enjoys no sparsity property

such as disjoint source spectra, or sources non permanentlypresent).

Contrary to the overdetermined case, the underdetermined BMI and BSS problems cannot be

solved at the same time. Besides, even assuming that we know the mixing matrix, since the latter

is not invertible, a simple pseudo-inverse does not generally yield a satisfactory solution. A more

sophisticated estimator of sources has to be obtained, for instance, by Maximum Likelihood (ML)

or Maximum A Posteriori (MAP) estimations [54] [49]. However, the problem with the ML/MAP

estimators is that they are rarely easy to compute. This optimization cannot be put in a simple

algebraic framework. As a consequence, it leads to a closed form solution only if sources have a

Gaussian distribution: in this case the optimum is given by the pseudo-inverse. But since ICA with

Gaussian variables is of little interest (lack of uniqueness), the pseudo-inverse is not a satisfactory

solution in most cases.

However, one case where the ML/MAP optimization is easier than usual to compute, is when

sources have a Laplacian distribution. Lee et al. assume it in [53] in order to extract three speech

signals from only two mixtures. Nevertheless, using asupergaussiandistribution, such as the

Laplacian distribution, is well justified in feature extraction only if the independent components

have a sparse decomposition, in the sense that they are quiteoften equal to zero (e.g. speech

signals).

In order to face the BMI problem, one can use a ML estimation. In the simplest case of ML
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estimation, we formulate the joint likelihood of the mixture and the realization of the sources, and

maximize it with respect to all these variables. However, maximization of the joint likelihood

is a rather crude method of estimation, and from a Bayesian viewpoint, it is more interesting to

maximize the marginal posterior probability of the mixing matrix. So a more sophisticated form

of ML estimation is obtained by using a Laplace approximation of the posterior distribution of

A. This improves the stability of the algorithm, and has been successfully used for estimation

of overcomplete bases from audio data [53]. Although the method [53] succeeds in identifying

the steering vectors of up to four speech signals with only two sensors, the authors need however

sparsity conditions, and do not address the general case when all sources are always present. Note

that one could also use an Expectation-Maximization (EM) algorithm [57].

Another approach has been proposed by Grellier et al. in [47,chapter 6] [23], where the

blind source extraction problem is addressed by forming virtual sensor measurements, in order to

make it possible to invert linearly the observation model. Virtual measurements are a non linear

function of actual measurements, and the choice of this non-linearity has to depend on the source

distribution, assumed in [23] to be known and discrete. Two numerical algorithms are proposed,

depending on the fact that the mixture is known (or beforehand identified) or not.

Other approaches have been published [6] [17] [30] [53] [36][68] [33]. BMI can be addressed

in terms of the diagonalization of some tensor [4] [31] [19].The methods proposed in [6] [17]

[30] [33] only exploit the information contained in the dataFourO statistics whereas the one

proposed in [68] exploits the information contained in the second characteristic function of the

observations. In fact, Cardoso presents in [6] as soon as 1991 the interesting FOOBI (Fourth

Order Only Blind Identification) concept, which exploits the super-symmetricFourO cumulant

tensor, and more particularly, relates symmetries of the quadricovariance to rank properties. Based

on EigenValue Decomposition (EVD) of a real symmetric matrix, the FOOBI algorithm has

recently been improved by De Lathauwer et al. in [33] resorting to a joint (or simultaneous)

diagonalization. Besides, De Lathauwer et al. define two other rank one detecting mappings

yielding two other solutions to the blind identification of undertermined mixtures, with further

weakened constraints on the source numberP . Note that De Lathauwer extends in [27] the

FOOBI concept to the canonical decomposition of a HO tensor non necessarily super-symmetric,

computed by means of a joint congruence transformation [73]. Moreover, an application to the

blind identification of convolutive MIMO (Multiple OutputsMultiple Outputs) is given in [27].

An other application of the extended FOOBI concept to the joint congruence transformation of a
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set of underdetermined matrices, say, with more columns that rows, is presented in [28], which is

interesting since many ICA algorithms rely on this joint diagonalization step. In [36], Diamantaras

presents an interesting method allowing to identify the mixture of many binary sources using

a single observation sequence. Assuming additive Gaussiannoise, the probability distribution

function of the sole observation is known to be [47] a mixtureof Gaussian centered at points that

uniquely determine the mixing parameters and the source signals up to a permutation and a sign

ambiguity. His simulations show that the method can successfully identify the mixture of at least

up to ten binary source signals (this is of course limited by the noise level and the data length).

However, some of these methods have drawbacks in operational contexts. Indeed, The FOOBI

algorithm [6] and its first improvement [33, section 2] allowto process up toP sources such

that P (P − 1) ≤ N2(N −1)2/2 whereN is the number of sensors. Likewise, the bound onP

associated with the second improvement [33, section 3] of the FOOBI method is such thatP (P −
1) ≤ N3(N −1)/2. However, these three methods are suboptimal in terms of maximal number

of processed sources, since the analysis of FourO virtual arrays [13] yields that for arrays with

particular diversity, up toP = N2 steering vectors may be identified from only FourO statistics.

On the other hand, the third improvement [33, section 4] of the FOOBI algorithm allows one

theoretically to reach the latter optimal upper bound. Nevertheless, although the previous methods

[6] [33] seem very attractive in theory, no simulation has been presented. As for the BMI methods

[17] [30], they assume FourO non-circularity and thus fail in separating FourO circular sources.

Next, the theory developed in [17] only confines itself to thecase of three sources and two sensors.

In addition, the method [68] has been developed only for realmixtures of real-valued sources, and

the issue of robustness with respect to an over estimation ofthe number of sources remains open.

Eventually, the geometric approach presented in [36] focuses only on binary antipodal sources, and

does not yet allow to process types of sequences such as multilevel PAM or QAM signals [61].

Likewise, the latter algorithm assumes that the Gaussian noise is spatially and temporally white.

But more importantly, the application of the method is limited by the combinatorial explosion as

the number of sourcesP increases, since the algorithm complexity is exponential with respect to

P .

1.4 Chapter summaries

• Chapter 2

The problem of blind separation of overdetermined mixtures(fewer sources than sensors) of
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sources is addressed in this chapter. Since classical algorithms may be strongly affected by

the presence of a Gaussian noise with unknown spatial coherence, a new method, named

ICAR (Independent Component Analysis using Redundancies in the quadricovariance),

is proposed to overcome this problem. This method, without any whitening operation,

only exploits some redundancies of a particular quadricovariance matrix of the data. The

comparison of its performance to those of classical methodsshows off the best behavior of

ICAR in most situations.

Moreover, for several years, contrast-based Blind Source Separation (BSS) has been suc-

cessfully used in several areas, including radiocommunications. Here a functional approach

relying on differential calculus theory is proposed, aiming at analyzing asymptotic perfor-

mances of BBS contrast criteria: the variance of the estimated separating matrix is expressed

as a function of that of estimated cumulants. As an example, this chapter focuses on three

widely used FourO contrast criteria. This allows one to quantify the behavior of these three

separators for large samples.

These works have been presented respectively at the two following conferences:

L. ALBERA, A. FERREOL, P. CHEVALIER and P. COMON, ”ICAR, un al gorithme
d’ICA à convergence rapide, robuste au bruit,” inGRETSI 03, Dix-neuvìeme colloque
sur le Traitement du Signal et des Images, Paris, France, September 8-11 2003, vol. 1,
pp. 193-196.

L. ALBERA and P. COMON, ”Asymptotic performance of contrast -based blind source
separation algorithms,” in SAM 02, Second IEEE Sensor Array and Multichannel Sig-
nal Processing Workshop, Rosslyn, US, August 4-6 2002, pp. 244-248.

and have been submitted to:

L. ALBERA, A. FERREOL, P. CHEVALIER and P. COMON, ”ICAR: Inde pendent
Component Analysis using Redundancies,” inISCAS 04, 2004 IEEE International Sym-
posium on Circuits and Systems, Vancouver, Canada, May 23-26 2004, submitted to the
invited sessions.

A journal paper has been submitted to IEEE Transactions On Signal Processing:

L. ALBERA, A. FERREOL, P. CHEVALIER and P. COMON, ICAR, a tool for Blind
Source Separation using Fourth Order Statistics only,” submitted in IEEE Transac-
tions On Signal Processing, November 2003.
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• Chapter 3

The BMI of underdetermined mixtures problem is addressed bytaking advantage of SixO

statistics and the Virtual Array (VA) concept. It is shown how SixO cumulants can be used

to increase the effective aperture of an arbitrary antenna array, and so to identify the mixture

of more sources than sensors. A computationally simple but efficient algorithm, named

BIRTH, is proposed and enables to identify the steering vectors of up toP = N2−N +1

sources for arrays ofN sensors with spatial diversity only, and up toP =N2 for those with

angular and polarization diversity. Moreover, improvements of BIRTH have been proposed

in this chapter, optimizing differently the compromise between performance and complexity.

One part of these works has been presented at the following conference:

L. ALBERA, A. FERREOL, P. COMON and P. CHEVALIER, ”Sixth orde r blind
identification of underdetermined mixtures (BIRTH) of sources,” in ICA 03, Fourth
International Symposium on Independent Component Analysis and Blind Signal Separa-
tion, Nara, Japan, April 1-4 2003, pp. 909-914.

The other part, BIRTH improvements, has been submitted to the following conference:

L. ALBERA and P. COMON and P. CHEVALIER and A. FERREOL, ”Blind identifi-
cation of underdetermined mixtures based on the hexacovariance,” in ICASSP 04, 2004
IEEE International Conference on Acoustics Speech and Signal Processing, Montreal,
Quebec, May 17-21 2004, submitted.

A journal paper will be submitted to IEEE Transactions On Signal Processing.

• Chapter 4

The problem of Blind Identification of linear mixtures of independent random processes is

known to be related to the diagonalization of some tensors. This problem is posed here

in terms of a non conventional joint approximate diagonalization of several matrices. In

fact, a congruent transform is applied to each of these matrices, the left transform being

rectangular of full rank, and the right one being unitary. The application in antenna signal

processing is described, and a family of new methods, named BIOME (Blind Identification

of Overcomplete MixturEs of sources), extending the ICAR and BIRTH algorithms to

statistics of arbitrary order2q, whereq is an arbitrary integer greater than2, and giving

rise to the2q-BIOME methods, is proposed.
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These works have been submitted to the following journals:

L. ALBERA, A. FERREOL, P. COMON and P. CHEVALIER, ”Blind Iden tification
of Overcomplete Mixtures of sources (BIOME),” to appear inLinear Algebra Applica-
tions.

P. CHEVALIER, L. ALBERA, A. FERREOL and P. COMON, ”On the virt ual array
concept for higher order array processing,” in IEEE Transactions On Signal Process-
ing.

Besides, a patent has been registered such as:

L. ALBERA, A. FERREOL, P. CHEVALIER and Pierre COMON, ”Proc édé d’identi-
fication aveugle de ḿelanges de sources aux ordres supérieurs”, no. FR 03/4041, 63019
(THALES Communications), April 01 2003.

• Chapter 5

This chapter summarizes my other contributions, whose journal and conference papers are

given in appendix. First, a new attractive FourO BMI method,named FOBIUM (Fourth

Order Blind Identification of Underdetermined Mixtures of sources) and able to identify the

steering vectors of more sources than sensors, has been proposed. The new method imple-

ments a FourO pre-whitening step and exploits the trispectrum diversities of the sources.

On the other hand, we have analysed the behavior and proposedadaptations of the current

SO and FourO blind source separation methods for sources which are cyclostationary and

cyclo-ergodic up to FourO, and potentially non zero-mean. In fact, most of the SO and

Higher order (HO) blind source separation methods developed this last decade aim at blindly

separating statistically independent sources, assumed zero-mean, stationary and ergodic.

Nevertheless, in many situations of practical interest, such as in radiocommunications con-

texts, the sources are non stationary and very often cyclostationary (digital modulations).

These works have been presented respectively at the following conferences:

A. FERREOL and L. ALBERA and P. CHEVALIER, ”Fourth Order Blin d Identi-
fication of Underdetermined Mixtures of sources (FOBIUM),” in ICASSP 03, 2003
IEEE International Conference on Acoustics Speech and Signal Processing, Hong Kong,
China, April 6-10 2003, pp. 41-44.



16 CHAPTER 1. INTRODUCTION

P. CHEVALIER, A. FERREOL and L. ALBERA, ”On the behavior of cu rrent sec-
ond order blind source separation methods for first and second order cyclostationary
sources — Application to CPFSK sources,” inICASSP 02, 2002 IEEE International
Conference on Acoustics Speech and Signal Processing, Orlando, US, May 13-17 2002,
pp. 3081-3084.

A. FERREOL, P. CHEVALIER and L. ALBERA, ”Higher order blind s eparation of
non zero-mean cyclostationary sources,” inEUSIPCO 02, XI European Signal Process-
ing Conference, Toulouse, France, September 3-6 2001, vol. 5, pp. 103-106.

P. CHEVALIER, A. FERREOL and L. ALBERA, ”M éthodologie ǵenérale pour la
séparation aveugle de sources cyclostationnaires arbitraires — Application à l’ écoute
passive des radiocommunications,” inGRETSI 03, Dix-neuvìeme colloque sur le Traite-
ment du Signal et des Images, Paris, France, September 8-11 2003, vol. 1, pp. 43-46.

and will appear in the following journal:

A. FERREOL, P. CHEVALIER and L. ALBERA, ”Second order blind s eparation of
first and second order cyclostationary sources — Application to AM, FSK, CPFSK and
deterministic sources,” in IEEE Transactions On Signal Processing, April 2004.

Besides, a journal paper describing in detail the FOBIUM algorithm has be submitted to

IEEE Transactions On Signal Processing:

A. FERREOL, L. ALBERA and P. CHEVALIER, ”Fourth Order Blind I dentification
of Underdetermined Mixtures of sources (FOBIUM),” submitted in IEEE Transactions
On Signal Processing, November 2003.

Finally, two patents have been registered such as:

A. FERREOL, L. ALBERA and P. CHEVALIER, ”Proc édé et dispositif d’identifica-
tion autodidacte d’un mélange sous-d́eterminé de sources au4eme ordre”, no. FR
03/4043, 63021 (THALES Communications), April 01 2003.

A. FERREOL, P. CHEVALIER and L. ALBERA, ”Proc édé de traitement d’antennes
sur des signaux cyclostationnaires potentiellement non centr és”, no. FR 02/5575, 62801
(THALES Communications), May 03 2002, no. FR 2 839 390, November 07 2003



Chapter 2
Fourth Order Independent Component

Analysis

We present in this chapter, dedicated to overdetermined mixtures and FourO statistics, two inde-

pendent sections: in the former, a new algorithm is presented even when in the latter, asymptotic

performance of contrast-based BSS methods is analysed.

2.1 ICAR or the fourth order blind source separation

A new method, named ICAR (Independent Component Analysis using Redundancies in the qua-

dricovariance) is proposed in this section. Only based on fourth order statistics, ICAR frees o.s.

from second order whitening step in contrast to classical methods [2] [16] [18] [8] [51] [3] and

consequently is not affected asymptotically by the presence of a Gaussian noise with unknown

spatial correlation. Actually, ICAR exploits redundancies in a particular FourO statistical matrix

of the data, calledquadricovariance. However, the latter algorithm assumes sources to have

non zero FourO marginal cumulants with the same sign, assumption which is verified in most

radiocommunications contexts. Furthermore, the performance of ICAR is also analysed in this

chapter in different practical situations, through computer simulations, and compared to those of

the classical algorithms named SOBI, COM1, COM2, JADE, FastICA and FOBIUM method.

2.1.1 The core equation

Under assumptions (A1)-(A5) of section 1.1.2 forq = 2, the ICAR method precisely exploits

several redundancies in the quadricovariance matrixQx, defined by example 1 of section 1.2.2, of

17
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the data especially thanks to the multilinearity property.Although most of BSS algorithms, such

as JADE, exploits expression (1.20) forq=2, the ICAR method precisely uses an alternative form,

described by

Qx = [A�A∗]Qs [A�A∗]H (2.1)

where theP×P diagonal matrixQs = Diag

[
C11

11,s C22
22,s · · · CPP

PP,s

]
(i.e. ∀ 1≤ p1, p2 ≤P ,

Qs(p1, p2) = Cp1p1
p1p1,s if p1=p2, 0 otherwise) is of full rank in contrast toQs = C1

4, s (1.20), and

where theN2×P matrixA�A∗ is given by

A�A∗ = [ a1⊗a∗
1 a2⊗a∗

2 · · · aP ⊗a∗
P ] (2.2)

and more particularly by

A�A∗ = [ [A∗
Φ1]

T [A∗
Φ2]

T · · · [A∗
ΦN ]T ]

T (2.3)

with

Φn = Diag

[
A(n, 1) A(n, 2) · · · A(n, P )

]
(2.4)

In other words, the non zero elements of theP×P diagonal matrixΦn are the components of the

n-th row of matrixA.

2.1.2 The ICAR concept

The algorithm proposed proceeds in three stages. Firstly, aunitary matrixV is estimated in the

Least Square (LS) sense, and allows one the estimation ofA�A∗. In a second stage, several

algorithms may be thought of in order to compute an estimate of A fromA�A∗. Finally, estimation

of sourcess(k) is computed using the estimate ofA.

Identification of A�A∗

Proposition 1 Under assumptions (A4) and (A5) (given in section 1.1.2 takingq=2), theN2×P

matrixA�A∗ is of full column rank.

The proof of proposition 1 ensues immediately from equations (2.3), (2.4) and assumptions

(A4) and (A5). In fact, suppose thatA�A∗ is not full column rank. Then there exists someP×1

vectorβ 6=0 such that[A�A∗] β=0, which, due to the structure ofA�A∗ (2.3) implies that for

all 1 ≤ n ≤ N , A∗
Φn β = 0. So it implies thatA cannot be of full column rank (since matrices
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Φn areP×P diagonal with nonzero entries, due to (2.4) and (A4)), which contradicts assumption

(A5).

So proposition 1, assumption (A3) (the latter assumption is given in section 1.1.2 takingq=2)

and equation (2.1) allow together to prove, first, that matrix Qx is of rankP and then thatQx is

positive if the FourO marginal source cumulants are positive, what we assume in this section. So a

square root ofQx, denotedQx
1/2 and such thatQx=Qx

1/2[Qx
1/2]H, may be computed (if the FourO

marginal source cumulants are negative, matrix−Qx has to be considered instead, for computing

the square root). In fact, we deduce from (2.1) that matrix[A�A∗]Qs
1/2 is a natural square root of

Qx. Another possibility is to compute this square root via the singular value decomposition ofQx

given by

Qx = Es Ls Es
H (2.5)

whereLs is the real-valued diagonal matrix of the non zero eigenvalues ofQx. These latters are

P since matrixQx is of rankP , Ls is thus of sizeP×P . Besides,Es is theN2×P matrix of the

associated orthonormalized eigenvectors. Consequently,a square root ofQx can be computed as

following

Qx
1/2 = Es L1/2

s (2.6)

whereL
1/2
s denotes a square root ofLs. Note that this latter really exists thanks to assumption (A3)

and proposition 2.

Proposition 2 For a full rank matrixA�A∗, (A3) is equivalent to assuming that the diagonal

elements ofLs are not null and have also the same sign, corresponding to that of the FourO

marginal source cumulants.

The proof of proposition 2 is straightforward. In fact, it iswell-known that two square roots of

a matrix are equal to within a unitary matrix, such that

[A�A∗]Qs
1/2 = Es L1/2

s V
(
= Qx

1/2 V
)

(2.7)

for someP×P unitary matrixV . Equation (2.7) shows that the right-hand side is the SVD of the

left-hand side, hence the proposition 2 result, sinceEs
H[A�A∗]Qs[A�A∗]HEs =Ls is a positive

matrix.
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In addition, equation (2.7) can be rewritten as following

Qx
1/2 = Es L1/2

s = [A�A∗]Qs
1/2 V H (2.8)

showing the link betweenQx
1/2 andA�A∗. Plugging (2.3) into (2.8), matrixQx

1/2 can be eventually

rewritten as

Qx
1/2 =

[
[A∗

Φ1Qs
1/2V H]T · · · [A∗

ΦNQs
1/2V H]T

]
T

= [ Γ1
T

Γ2
T · · · ΓN

T ]
T (2.9)

where theN matrix blocksΓn of sizeN×P are given by

∀ 1 ≤ n ≤ N, Γn = A∗
ΦnQs

1/2V H (2.10)

Proposition 3 For any1≤n≤N , matrixΓn is of full column rank.

The proof ensues immediately from assumptions (A3)-(A5) (given in section 1.1.2 takingq =

2), from equation (2.10) and from the fact that the product of afull column rank matrix and an

invertible square matrix is always full column rank.

Using proposition 3, pseudo-inverseΓ]
n of theN×P matrixΓn is defined by

∀ 1 ≤ n ≤ N, Γ
]
n = (Γn

H
Γn)−1

Γn
H (2.11)

Then, consider theN(N−1) matricesΘn1,n2 below

∀ 1 ≤ n1 6= n2 ≤ N, Θn1,n2 = Γ
]
n1Γn2 (2.12)

which can be rewritten, from (2.10) and (2.11), as

Θn1,n2 = V Qs
−1/2

Φ
−1
n1 Φn2 Qs

1/2 V H = V Φ
−1
n1 Φn2 V H (2.13)

whereQs
1/2 andDn1,n2 =Φ

−1
n1 Φn2 areP×P diagonal full rank matrices. So it appears from (2.13)

that matrixV jointly diagonalizes theN(N−1) matricesΘn1,n2.

Proposition 4 Under assumption (A4) and (A5) given in section 1.1.2 takingq = 2, for all pair

1≤p1 6=p2≤P , at least one pair1≤n1 6=n2≤N exists such thatDn1,n2(p1, p1) 6=Dn1,n2(p2, p2).
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The proof is given in appendix B.

Paper [2] and proposition 4 allow to assert that ifVsol jointly diagonalizes matricesΘn1,n2 ,

thenVsol andV are related throughVsol =V T whereT is a trivial unitary matrix. So matrixVsol

allows one, in accordance with (2.8), to recoverA�A∗ to within a trivial matrix as following

Qx
1/2 Vsol = [A�A∗] Qs

1/2 T (2.14)

Identification of mixture A

Three algorithms are proposed in this section to identifyA from the estimate,Qx
1/2Vsol, of A�A∗.

These algorithms optimize differently the compromise between performance and complexity.

Note that equation (2.14) can be rewritten from (2.3) in the form of N matrix blocksΣn =

A∗
ΦnQs

1/2T of sizeN×P as

Qx
1/2 Vsol = [Σ1

T
Σ2

T · · ·ΣN
T]

T (2.15)

So a first approach to estimateA up to a trivial matrix, called ICAR1 in the sequel, consists of

keeping, for instance, the matrix blockΣ1
∗ made up of theN first rows ofQx

1/2Vsol such that

Σ1 = A∗
Φ1 Qs

1/2 T (2.16)

whereΦ1 andQs
1/2 are diagonal matrices, and whereT is a unitary trivial matrix.

It is also possible to take into account all the matrix blocksΣn
∗ and to compute their average.

This yields a second algorithm, named ICAR2, of higher complexity.

A third algorithm, called ICAR3, is now described, and yields a more accurate solution to the

BSI problem: since matrixA�A∗, given by (2.2), has been identified from the previous section

by Qx
1/2Vsol to within a trivial matrix, ICAR3 consists first of mapping eachN2×1 column vector

bp of Qx
1/2Vsol into anN×N matrixBp (then-th column ofBp is made up from theN consecutive

components ofbp as from the[N(n−1)+1]-th one), and secondly of diagonalizing each matrixBp
∗.

Theorem 1 For any matrixBp (1 ≤ p ≤ P ) built from Qx
1/2Vsol, there exists a unique column

vectoraq (1≤ q≤P ) of A such that the eigenvector ofBp
∗ associated with the largest eigenvalue

corresponds, up to a scale factor, toaq.
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The proof is given in appendix C. Note that in practical situations, asA�A∗ is estimated to

within a trivial matrix, the latter identification step allows one to estimateA also to within a trivial

matrix.

Remark 2 This third algorithm can be seen as an application of the tensor rank-1 approximation

[29] [52] to the second-order case, say, the matrix case. In fact, given an hermitianN ×N

matrix B, the problem consists of determining a scalarµ and a vectora ∈ �N such that the

rank-1 matrix B̂= µ aaH minimizes the functionε =
∥∥∥B− B̂

∥∥∥
2

F
subject to vectora having unit

norm, where‖B‖F is the Frobenius norm of matrixB. Indeed, the latter problem is solved by

the dominant eigenpair (µ,a), whereµ is the eigenvalue with the largest absolute value [66] [46].

Note that several techniques for simple computations of approximations to a few eigenvectors

and eigenvalues of a hermitian matrix can be found in [71] such as, for instance, the power

method [72] [59] [22].

Extraction of the P independent components

Finally, to estimate the signal vectors(k) for any valuek, it is sufficient, under (A5), to apply a

linear filter built from the identified matrixA : such a filter may be the Spatial Matched Filter

(SMF) described in [11] byW =R−1
x A, which is optimal in the presence of decorrelated signals.

In practical situations, since matrixA is estimated to within a trivial matrix according to section

(2.1.2), neither order of sourcess(k) nor their amplitude can be identified.

2.1.3 Implementation of the ICAR method

The different steps of the ICAR method are summarized hereafter whenK samples of the obser-

vations,x(k) (1≤k≤K), are available.

Step1Estimation of the FourO statisticsCi3, i4
i1, i2, x

from theK samplesx(k) and sorting

of them, using the (̀=1)-arrangement, into the matrix̂Qx, which is an estimate ofQx.

Step2 Eigen Value Decomposition (EVD) of the Hermitian matrix̂Qx, estimation

P̂ of the source numberP from this EVD, and restriction of̂Qx to the P̂ principal

components :̂Qx = Ês L̂s Ês
H, whereL̂s is the diagonal matrix of thêP eigenvalues

of largest modulus and̂Es is the matrix of the associated eigenvectors.

Step3Estimate the sign,ε, of the diagonal elements of̂Ls.
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Step4Computation of a square root matrix[εQ̂x]1/2 of εQ̂x: [εQ̂x]1/2 = Ês |L̂s|1/2,

where|·| denotes the absolute value operator.

Step5 Computation from[εQ̂x]1/2 of the N matricesΓ̂n, construction of matrices

Θ̂n1,n2 = [Γ̂
]

n1 Γ̂n2 ] for all 1 ≤ n1 6= n2 ≤ N , and estimation,̂Vsol, of the unitary

matrix Vsol from the joint diagonalization of theN(N−1) matricesΘ̂n1,n2 (the joint

diagonalization algorithm is described in [9]).

Step6EstimationÂ of the mixtureA from theN2×P matrix [[εQ̂x]1/2 V̂sol] by

1. (ICAR1) taking the matrix block made up of theN first rows of[[εQ̂x]1/2 V̂sol]
∗;

2. (ICAR2) taking the average of theN matrix blocks, of sizeN×P , made up of

the successive rows of[[εQ̂x]1/2 V̂sol]
∗;

3. (ICAR3) taking each column vector̂bp of [[εQ̂x]1/2 V̂sol] remodeling them into

N×N matricesB̂p, and building the matrix whosep-th column vector is the

eigenvector of matrix̂Bp
∗ associated with the largest eigenvalue.

Step7Estimation of the signal vectors(k) for any valuek applying tox(k) a linear

filter built from Â like for example the SMF one defined bŷW =R̂x
−1Â .

2.1.4 Computer results

The synthetic signals used in this section are cyclostationary, and according to sections 1.2.4 and

5.2, other statistical estimators than empirical estimators should be employed. However, if the

cyclostationary sources are zero-mean and circular, or noncircular with a zero carrier residu,

or non circular with different non zero carrier residus, such as the sources used subsequently,

the bias due to empirical statistical estimators is negligible [42]. So we decide to employ them

in the following simulations. Moreover, the criterion usedin this section in order to evaluate

performances of BSS algorithms, is the well-known SINRM (Signal to Interference plus Noise

Ratio Maximum) criterion defined in [11, section 3].

The white noise case

The performance of ICAR at the output of the considered source separator is firstly illustrated

in the presence of a Gaussian noise, spatially and temporally white, and compared with some

well-known BSS algorithms. In fact, we assume thatP = 4 statistically independent sources, i.e.
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2 BPSK and2 QPSK, all with a raised cosine pulse shape of roll-off equal to 0.25, are received

by a Uniformly spaced Circular Array (UCA) ofN = 4 identical sensors of radiusR such that

R/λ = 0.55 (λ: wavelength). The symbol periodT1 associated with the first BPSK is equal to

three times the sample periodTe. The other sources have a symbol period equal to twice the

sample period. The directions of arrival of the sources are such that the source steering vectors

are orthogonal and the associated carrier residus are such thatfc1 Te = 0, fc2 Te = 0.3, fc3 Te = 0.2

and fc4 Te = 0.1. We apply the COM1 [18], COM2 [16], JADE [8], SOBI [2], FastICA [3],

FOBIUM [40], ICAR1, ICAR2 and ICAR3 methods, and the SINRM associated with each source

is computed and averaged over200 realizations.

Figures 2.1 and 2.2 show the variations ofSINRM3 (source3 performance) at the output of the

previous methods as a function of the number of samples whilethe input SNR (Signal to Noise

Ratio) of the four sources, is assumed to be equal to20 dB. It appears in figure 2.1 that ICAR3

500 1000 1500
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ICAR1        

COM2         

FOBIUM       
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Figure 2.1: SINRM associated with source3 for a SNR of20 dB

converges as fast as COM2 and FOBIUM, but faster than ICAR1 and ICAR2: the third method

given in section 2.1.2 exhibits better performances than the others. In addition, figure 2.2 shows

the good performances of the ICAR3 algorithm facing the well-known COM1, JADE, SOBI and

FastICA methods. Note that the SOBI and FOBIUM methods give in this simulation good results

since sources have been chosen with different spectral densities, especially taking different carrier
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Figure 2.2: SINRM associated with source3 for a SNR of20 dB

residus. Similar results have been observed for the other sources.

Figures 2.3 and 2.4 show, for a number of one thousand samples, the variations ofSINRM3 at

the output of the previous methods as a function of the input SNR, identical for the four sources.

All the BSS methods have approximately the same behavior. First, when the SNR is very small,

they do not succeed perfectly in extracting the third source. On the contrary, for signal to noise

ratios contained in values−4 to 20 dB, the source separation is optimal. Finally, although the

variations ofSINRM3 for signal to noise ratios greater than20 dB are somewhat surprising, this

result has already been observed by Monzingo and Miller in [56] for optimal separators when

mixtureA is known. Note that similar results have been obtained for the other sources.

The colored noise case

Then, the ICAR method is compared to other algorithms in the presence of a Gaussian noise with

unknown spatial correlation. In fact,P = 3 statistically independent sources, i.e.2 BPSK and1

QPSK, all with a raised cosine pulse shape of roll-off equal to 0.25, are assumed to be received

by a UCA of N = 5 identical sensors of radiusR such thatR/λ = 0.55. Their symbol periods

are equal toT1 = 2Te, T2 = 3Te andT3 = 4Te respectively. Their carrier residus are chosen equal

to zero. Finally, the source steering vectors are built orthogonal. This time, we apply the COM1,
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Figure 2.3: SINRM associated with source3 for 1000 samples
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Figure 2.4: SINRM associated with source3 for 1000 samples
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COM2, JADE, SOBI, FOBIUM, ICAR1, ICAR2 and ICAR3 methods, and the SINRM associated

with each source is computed and averaged over200 realizations. Figures 2.5 and 2.6 show
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Figure 2.5: SINRM associated with source 3 for a SNR of0 dB

the variations ofSINRM3 at the output of the previous methods as a function of the noise spatial

correlation factorρ. SNR of the three sources is taken equal to0 dB and1500 samples are used

to identify mixtureA. Note that the Gaussian noise model employed in this simulation is the sum

of an internal noiseνin(k) and an external noiseνout(k), of covariance matricesRin
ν andRout

ν

respectively such that

Rin
ν (r, q)

def
= σ2δ(r−q)/2 Rout

ν (r, q)
def
= σ2ρ|r−q|/2 (2.17)

whereσ2, ρ are the total noise variance per sensor and the noise spatialcorrelation factor respec-

tively. Note thatRν(r, q)
def
= Rin

ν (r, q) + Rout
ν (r, q) is the(r, q)-th component of the total noise

covariance matrix.

It appears in figure 2.5 that the three proposed versions of ICAR seem to be robust with respect

to the correlated Gaussian noise presence: ICAR1 and ICAR3 are totally insensitive to a Gaussian

noise with unknown spatial correlation. On the other hand, figures 2.5 and 2.6 show that the

well-known COM1, COM2, JADE and SOBI methods are strongly affected as soon as the noise
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Figure 2.6: SINRM associated with source 3 for a SNR of0 dB

spatial correlation increases beyond0.4. In fact, the classical BSS methods require a prior spatial

whitening based on SO moments. This stage theoretically needs the perfect knowledge of the noise

covariance. If this is not the case, a whitening of the observed data is performed instead, which is

biased. ICAR does not suffer from this drawback, since it uses only FourO cumulants, which are

(asymptotically) insensitive to Gaussian noise, regardless of its space/time color. Besides, similar

results have been observed for sources1 and2.

Over estimation of the number of sources

On the other hand, in operational contexts, the number of sources may be over estimated. It is

then interesting to compare the ICAR method with other algorithms in such situations. To this

aim, we assume thatP = 2 statistically independent sources, i.e.2 QPSK, both with a raised

cosine pulse shape of roll-off equal to0.25, are received by a UCA ofN = 4 identical sensors

of radiusR such thatR/λ = 0.55. Their symbol periods are equal toT1 = 2Te andT2 = 3Te

respectively. Their carrier residus are chosen such thatfc1 Te = 0 andfc2 Te = 0.3. Moreover,

the spatial correlation between the two source steering vectors is taken equal to0.5. Finally, the

noise is built Gaussian, spatially and temporally white. Weapply the COM1, COM2, JADE and
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ICAR3 methods, assuming that̂P =3 sources are received by the previous UCA, and the SINRM

associated with each of the two sources is computed and averaged over200 realizations at the

output of each method.

Figure 2.7 shows the variations ofSINRM2 (source2 performance) at the output of the previous

methods as a function of the number of samples while the inputSNR (Signal to Noise Ratio) of

the two sources, is assumed to be equal to10 dB. Similar results have been observed for source

1. More particularly, it appears that the COM2 and ICAR3 methods are robust with respect to an

over estimation of the number of sources even when, in this simulation configuration, the JADE

algorithm losses10 dB, for less than2000 samples, with respect to the case whereP =3. Note that

the latter result had already been pointed out in [10]. As forthe COM1 method, it is affected by

the over estimation of the number of sources, but less than the JADE algorithm. The explanation

of this surprising phenomenon requires a harder analysis, which is beyond the scope of this paper.

2.1.5 Conclusion

A new method, named ICAR, exploiting the information contained in the data statistics at FourO

only has been proposed in this paper. This new method allows one to process overdetermined
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mixtures of sources, provided the latter have marginal FourO cumulants with the same sign, which

is generally the case in radiocommunications contexts. Three conclusions can be drawn: first, in

the presence of a Gaussian noise spatially and temporally white, the proposed method gives as

good results as those obtained with the current BSS methods.Second, contrary to most of the BSS

algorithm, the ICAR method is not sensitive to a Gaussian colored noise whose spatial coherence

is unknown. At last, the ICAR algorithm is robust with respect to an over estimation of the number

of sources, which is not the case for some methods such as JADE. For these reasons, the ICAR

method seems to correspond to the best method currently available to process overdetermined

mixtures of sources. Note that such extensions to order6, or more generally to orderm = 2q

(q≥2), will be proposed under the names of BIRTH and BIOME in chapters 3 and 4 respectively.

Moreover, forthcoming works will consist of looking for thecontrast criterion associated with

ICAR in order to analyse accurately the performance of the latter using the functional approach

proposed in the following section.

2.2 Asymptotic performance of fourth order contrast-basedBSS al-

gorithms

The purpose of this section is to examine the asymptotic performances (e.g. covariance of esti-

mate) of contrast-based algorithms. Although the subject of asymptotic analysis has already been

addressed in the signal processing literature, for instance, performance of SO [35] and ML [58]

estimators in antenna array processing, or behavior of SO and HO BSS algorithms in the presence

of zero-mean cyclostationary sources [42], this section proposes a functional approach allowing

to compare asymptotic performances of BSS contrast criteria. As an illustration, 3 FourO contrast

criteria already compared in [21] by computer experiments,are mainly focused on, for subsequent

asymptotic performance analysis.

Note that assumptions (A1) to (A3) (given in section 1.1.2 takingq=2) are made in the sequel.

Besides, the mixing matrixA is assumed to be square and unitary. Finally,Cx denotes the FourO

order cumulant tensor whose entries are given by (1.9) forq = 2 and U replaces matrixW H

defined by (1.5). Note that the unitary assumption with respect to A is not restrictive if a spatial

prewhitening has been performed as for most of BSS methods [20]. But we limit our study for the

time being to the effect of fourth-order estimation errors on the separatorU .
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2.2.1 contrast-based BSS methods

Various approaches have been devised for BSS or ICA [7]. We shall focus exclusively on those

maximizing a contrast measure ofy (the latter vector has been defined in (1.5)). Recall that

contrasts are criteriaΥ(U ;Cx) satisfying the properties below [16] [70]:

P1. Invariance:The contrast should not change within the setT of trivial matrices, which means

that∀x ∈ H · S, ∀U ∈ T , Υ(U ;Cx) = Υ(IN ;Cx).

P2. Domination: If sources are already separated, any matrix should decrease the contrast. In

other words,∀U ∈ H, ∀x ∈ S, Υ(U ;Cx) ≤ Υ(IN ;Cx).

P3. Discrimination: The maximum contrast should be reached only for matrices linked to each

other via trivial matrices:∀x ∈ S, Υ(U ;Cx) = Υ(IN ;Cx) ⇒ U ∈ T .

whereH, H · S, IN are a set of matrices, the set of processes obtained by matrixmappingsH on

processes ofS, and theN×N identity matrix, respectively. Note that thetrivial matrix definition

is given page xiii of the preface.

The goal of this section is to evaluate the asymptotic statistical properties (e.g.covariance) of

the matrixU delivered by contrast-based algorithms.

2.2.2 Asymptotic properties: a functional approach

From now on, it is assumed thatΥ(·,C) is of classC2, andΥ(U , ·) is of classC1. This will

be satisfied for criteria given in section 2.2.3. The optimalsolutionUo is defined as the absolute

maximum of a contrastΥ(U ;Cx):

Uo = Arg maxUΥ(U ;Cx) (2.18)

whereCx is the exact cumulant tensor of the observation. In practice, Cx is estimated by a quantity

Ĉx, which involves estimation errors onU ; this yields a solution̂U :

Û = Arg maxUΥ(U ; Ĉx) (2.19)

BothUo andÛ are maxima ofΥ, and thus satisfy the stationary point equations:

h(Uo,Cx) = 0, h(Û , Ĉx) = 0 (2.20)

whereh(·,C) denotes the gradient ofΥ(U ,C) with respect toU , in a sense subsequently defined.
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Now,h is a well defined function in aP 2−dimensional linear space on the real field�. In fact,

Υ is twice continuously differentiable with respect toU , and the tangent space to the manifold

of unitary matrices is the linear space of skew-hermitian matrices (B
H

= −B) on the real field,

which is indeed of dimensionP 2 and admits as a basis the set of matricesBqr, null everywhere

except in rows and columns(q, r), (r, q), such that

dU =
P∑

q,r=1

dµqrBqrU (2.21)

where the(v,w)-th component of matrixBqr is given by

Bqr(v,w)
def
=





δ(q−v)δ(r−w) − δ(q−w)δ(r−v) if q < r

jδ(q−v)δ(r−w) if q = r

j [δ(q−v)δ(r−w) + δ(q−w)δ(r−v)] if q > r

(2.22)

with j2
def
= −1. Note that among theP 2 elementsBqr generating the basis of the linear space of

skew-hermitian matrices,P (P−1)/2 matrices are real andP (P +1)/2 matrices are imaginary.

Next,h(·, ·) is continuously differentiable, which allows one to resortto the implicit function

theorem in the neighborhood of(Uo,Cx). This yields, from (2.20):

ḣU(Uo,Cx) dU + ḣC(Uo,Cx) dC = o(dU , dC) (2.23)

Thus, in the neighborhood of(Uo,Cx), Û = Uo + dU can be expressed as a function ofĈx =

Cx + dC. This can be rewritten in block form as [21], definingvec[B] by the vector built from

the columns ofB stacked one below another:

F1 vec[dU ] = F2 vec[dC] (2.24)

whereF1 andF2 are matrices of dimensionP 2 × P 2 andP 2 × M , respectively, built from the

second derivatives ofΥ, ∂2Υ/∂U∂U and∂2Υ/∂U∂C, stored in the proper manner. Here,M

denotes the number of free parameters inCx, and, for anyP ≥ 4, is equal toM = P (P +

1)(P 2 + P + 1)/8 in the complex case, which deflates toM = P (P + 1)(P + 2)(P + 3)/24 in

the real case.

The variance ofdU (v,w) and therefore, the one of̂U(v,w) can thus theoretically be accessed

by the formula:

V ar
{
vec

[
Û
]}

=F−1
1 F2V ar

{
vec

[
Ĉx

]}
F

H

2 F
−H

1 (2.25)
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Nevertheless, matrixF1 is in general not of full rank, because the set ofdµqr does not form a free

family. Its rank isP (P − 1), so that the inverse above should be replaced by a pseudo-inverse.

Nevertheless, this covariance can be consequently still computed once we know the covariance

of sample cumulants. Using McCullagh bracket notation (defined in appendix D), and noting

[2̄]expr = expr + expr∗, this covariance is given in [21] in the general case. In the symetrically

distributed case in which we are interested, the covariancetakes the form:

K Var{Ĉj,k
i,` , Ĉ

I,L
J,K} = Cj,k,J,K

i,`,I,L + [2̄][4]Cj,k,J,K
i,I C`,L + [2̄][4]Cj,k,J

i,I,LCK
` + [2̄][4]CJ,K

i,L Cj,k
I,`

+[2̄][4]CK
i,I,LCj,k,J

` + Ci,`,I,LCj,k,J,K + CJ,K
i,` Cj,k

I,L + [8]Cj,J
i,I Ck,K

`,L +

[2̄][4]CJ
i,`,IC

j,k,K
L + [16]Cj,J

i,I Ck,KC`,L + [16]Cj,J
i,I Ck

LCK
`

+[2̄][8]Cj,J,K
i Ck

I C`,L + [2̄][8]CJ
i,`,IC

j,KCk
L + [2̄][2]Ci,`,I,LCj,JCk,K

+[2̄][2]CJ,K
i,` Cj

IC
k
L + [16]Ci,IC

j,JCk
LCK

` + [4]CJ
i Cj

IC
k
LCK

`

+[4]Ci,IC
j,JCk,KC`,L (2.26)

whereK denotes the number of snapshots.

2.2.3 Examples and asymptotic analysis of particular contrasts

Define the three FourO contrast criteria below:

Υ1 (U ;Cx) = ε
P∑

p=1

Cp,p
p,p,y Υ2 (U ;Cx) =

P∑

p=1

(
Cp,p

p,p,y

)2

Υ3 (U ;Cx) =
P∑

p,k,`=1

∣∣∣Cp,k
p,`,y

∣∣∣
2

(2.27)

whereε is a fixed sign. Note [21] thatΥ1 is a contrast if, for any1≤ p≤P , Cp,p
p,p,s have the same

signε, and thatΥ3 is the contrast linked with the JADE algorithm [7].

Asymptotic results

After a first differential calculus with respect toU , we obtain:

dΥ1,U = 4ε


∑

q<r

dµqr<
{
Cq,q

r,q,y − Cr,r
q,r,y

}
−
∑

q>r

dµqr=
{
Cr,r

q,r,y + Cq,q
r,q,y

}

 (2.28)

dΥ2,U = 8


∑

q<r

dµqr

(
Cq,q

q,q,y<
{
Cq,q

r,q,y

}
− Cr,r

r,r,y<
{
Cr,r

q,r,y

})

−
∑

q>r

dµqr

(
Cr,r

r,r,y=
{
Cr,r

q,r,y

}
+ Cq,q

q,q,y=
{
Cq,q

r,q,y

})

 (2.29)
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dΥ3,U = 8


∑

q<r

∑

k,`

dµqr<
{
Cq,k

q,`,yCq,`
r,k,y − Cr,k

r,`,yCr,`
q,k,y

}

−
∑

q>r

∑

k,`

dµqr=
{
Cr,k

r,`,yCr,`
q,k,y + Cq,k

q,`,yCq,`
r,k,y

}

 (2.30)

where<{z} and={z} are respectively the real and imaginary parts of the complexnumberz.

So for each contrast, we can easily deduce from (2.28), (2.29) and (2.30) the functionhm

defined in section (2.2.2). In particular, according to (2.18), (2.19), (2.20) and (2.28) the function

h1 associated withdΥ1,U is described by

h1(U ,C)qr =





<{Cq,q
r,q,y − Cr,r

q,r,y} if q < r

−={Cr,r
q,r,y + Cq,q

r,q,y} if q > r

0 if q = r

(2.31)

The implicit relation (2.23) rewrites:

d [dhm]U(Uo,Cx) = −d [dhm]C(Uo,Cx) + o(dU , dC) (2.32)

where, forΥ1 and for any1 ≤ q, r ≤ P :

d [h1(U ,C)qr]U =
P∑

q′,r′=1

Θq′r′
qr dµq′r′ (2.33)

d [h1(U ,C)qr]C =
P∑

i,j,k,l=1

Θijkl
qr dCjk

i`,x (2.34)

whereΘq′r′
qr andΘijkl

qr are given in appendix E. Similar (but more complicated) relations, derived

for Υ2 andΥ3, are not reported here for reasons of space.

Simulations

Empirical variance estimates. Simulations have been run forP = 2 independent QPSK sources,

in the presence of Gaussian complex circular noise. The mixing matrix was of the form




cos θ sin θ ejϕ

− sin θ e−jϕ cos θ




with θ = π/7 and ϕ = π/7. The separating matrix has been computed using algorithms

reported in [16], [7], and [18]. In order to obtain reliable variance estimates, 100 independent trials
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Figure 2.8: Variance of estimated separating matrixU obtained by maximization ofΥ1(U).
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Figure 2.10: Variance of estimated separating matrixU obtained by maximization ofΥ3(U).

have been run, and the variances of each of the four entriesÛij has been estimated. In figures 2.8

to 2.10, we have plotted the sum of variances
∑2

i=1 Var{Ûii} as a function of the sample size.

Theoretical asymptotic variance. In order to compute the theoretical variance, it was necessary

to first calculate all the cumulants of even order up to eight.For this purpose, the multilinearity

property of cumulants has been used, yielding the cumulantsof the two outputs of a linear trans-

form as a function of those of its inputs. For QPSK sources, wehave the following (omitting

subscripts in Cs):

C1,1 = 0 C1
1 = 1 C1,1,1,1 = 1 C1

1,1,1 = 0 C1,1
1,1 = −1

C1,1,1,1,1,1 = 0 C1
1,1,1,1,1 = −4 C1,1

1,1,1,1 = 0 C1,1,1
1,1,1 = 4 C1,1,1,1,1,1,1,1 = −34

C1
1,1,1,1,1,1,1 = 0 C1,1

1,1,1,1,1,1 = 34 C1,1,1
1,1,1,1,1 = 0 C1,1,1,1

1,1,1,1 = −33

(2.35)

General formulas are given in appendix D. SinceP = 2 is a simple case, first and second order

derivatives can be computed directly in terms ofdθ anddϕ, and the2 × 2 matrix F1 obtained is

invertible. Thus, expressions such as (2.28) to (2.33) did not need to be used. On the other hand,

expression (2.26) is central in this calculation. Results are reported in the figures 2.8 to 2.10, and

show a good accordance with empirical results for large samples.
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2.2.4 Concluding remarks

The whole analytical calculus allows one to write, for each contrast in (2.27), the link between

the covariance of the unbiased estimated separatorÛ and the covariance of the unbiased estimated

cumulantĈx. Using also (2.26), the asymptotic performances ofΥ1, Υ2 andΥ3 can be compared to

each other, and to those obtained by averaging independent trials. Two conclusions can be drawn:

first, empirical performances tend to reach theoretical limits as sample sizes tend to infinity, which

justifies our approach. Second, the contrast leading to the smallest variance isΥ1.
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Chapter 3
BIRTH or SixO statistics for the

underdetermined case

In order to process underdetermined mixtures of sources, anextension of the ICAR method to

order6, named BIRTH (Blind Identification of mixtures of sources using Redundancies in the daTa

Hexacovariance matrix), is proposed, able to blindly identify the steering vectors of up toP =

N2−N+1 sources for arrays ofN sensors with spatial diversity only, and up toP = N2 for those

with angular and polarization diversity. The sources are assumed to have non zero SixO marginal

cumulants with the same sign (the latter assumption is generally verified in radiocommunications

contexts). Besides, BIRTH exploits implicitly the VA concept described in [38] [13] and explicitly

redundancies in the SixO statistical matrix of the data, called hexacovariance, without SO or

FourO prewhitening.

3.1 The BIRTH Method

3.1.1 Hexacovariance property

Under assumptions (A1)-(A5) of section 1.1.2 forq = 3, the BIRTH method precisely exploits

several redundancies in the hexacovariance matrixHx, defined by example 2 of section 1.2.2, of

the data especially thanks to the multilinearity property.However, instead of using the classical

matrix form of the multilinearity property, described by

Hx = [A⊗A⊗A∗]Hs [A⊗A⊗A∗]H =
[
A⊗2⊗A∗

]
Hs

[
A⊗2⊗A∗

]
H

(3.1)

39
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where theN3×N3 Hx and theP 3×P 3 Hs matrices are the hexacovariance matrices ofx(k) and

s(k) respectively, the BIRTH method exploits an alternative one, given by

Hx = [A�2�A∗]Hs [A�2�A∗]H (3.2)

where contrary to matrixHs, the diagonalHs = diag
([

C1,1,1
1,1,1,s C2,2,2

2,2,2,s · · ·CP,P,P
P,P,P,s

])
matrix is of

full rank. On the orther hand, theN3×P matrix [A�2�A∗], which is of full column rank under

assumptions (A4) and (A5), is given by:

A�2�A∗ = [a1⊗a1⊗a∗
1 · · · aP ⊗aP ⊗a∗

P ]

= [[(A�A∗)Φ1]
T [(A�A∗)Φ2]

T · · · [(A�A∗)ΦN ]T]T (3.3)

with the N2×P matrix A�A∗, which is of full column rank under assumption (A5) for q = 3,

defined by

A�A∗ = [a1⊗a∗
1 · · · aP ⊗a∗

P ] = [[A∗
Φ1]

T [A∗
Φ2]

T · · · [A∗
ΦN ]T]T (3.4)

and:

Φn = Diag

[
A(n, 1) A(n, 2) · · · A(n, P )

]
(3.5)

In other words, the non zero elements of theP×P diagonal matrixΦn are the components of the

n-th row of matrixA.

3.1.2 Data structure

If SixO marginal source cumulants are strictly positive (A3), then a square root ofHx, calledH
1/2
x ,

has to be computed (if these cumulants are strictly negative, the−Hx matrix has to be considered

for computing the square root) for example as following :

H1/2
x = Es L1/2

s = [A�2�A∗]H1/2
s V H (3.6)

whereLs (L1/2
s denotes a square root ofLs) is theP×P real-valued diagonal matrix of theP non

zero eigen-values ofHx andEs is theN3×P matrix of the associated orthonormalized eigen-

vectors. For a full rank[A�2 �A∗] matrix, it is possible to verify that (A3) is equivalent to

assuming that the diagonal elements ofLs are not null and have also the same sign. In addition,

(3.6) shows the link betweenH1/2
x and[A�2�A∗] whereV is a unitary matrix. Finally, (3.6) and

(3.3) allow to prove the link betweenH1/2
x andA�A∗, as follows:

H1/2
x =

[
[A�A∗

Φ1H
1/2
s V H]T · · · [A�A∗

ΦNH1/2
s V H]T

]
T

= [ Γ1
T

Γ2
T · · · ΓN

T ]T (3.7)
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whereΓn = A�A∗
Φn H

1/2
s V H is then-th N2×P matrix block ofH1/2

x .

3.1.3 SixO blind identification step

In this section, the purpose is to exploit the information contained in theH1/2
x matrix to blindly

identify A. Indeed, theV matrix diagonalizes theN(N −1) Θn1,n2 matrices described, for all

1≤n1 6=n2≤N , by:

Θn1,n2 = Γ
]
n1

Γn2 = V H−1/2
s Φ

−1
n1

Φn2 H1/2
s V H = V Φ

−1
n1

Φn2 V H (3.8)

where] denotes the pseudo-inverse operator and where theDn1,n2 = Φ
−1
n1

Φn2 matrices are di-

agonal. Thus, by construction, the rank ofΘn1,n2 , denoted byrk(Θn1,n2), cannot exceed the

min(rk(Γn1), rk(Γn2)) = min(P, rk(A�A∗)) value, hence another bound of the maxi number of

sources,P . The unitaryVsol = V T matrix, solution to the previous problem of joint diago-

nalization to within a unitary trivial matrixT , allows one, in accordance with (3.6), to recover

[A�2�A∗] to within a trivial matrix as follows :

H1/2
x Vsol = [A�2�A∗]H1/2

s T (3.9)

Since, consistent with (3.3) and (3.4), the (3.9) equation can also be written as follows:

H1/2
x V =

[
[A∗

Φ1Φ1H
1/2
s ]T · · · [A∗

ΦNΦ1H
1/2
s ]T · · · [A∗

ΦNΦNH1/2
s ]T

]
T

= [Σ1
T
Σ2

T · · ·ΣN2
T]T (3.10)

So, theΣ1 matrix block made up of the firstN -th rows of matrixH1/2
x Vsol corresponds to within a

trivial matrix toA∗ such as:

Σ1 = A∗ [Φ1]
2

H1/2
s T (3.11)

whereH
1/2
s andΦn, for all 1≤n≤N , are diagonal matrices.

3.1.4 Implementation of the BIRTH method

The different steps of the BIRTH method are summarized hereafter when K samples of the

observations,x(k) (1≤k≤K), are available.

Step1Compute the estimatêHx of Hx from theK samplesx(k) using for instance

appendix D and the empirical estimate of moments, unbiased and consistent for er-

godic stationary sources.
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Step2 EigenValue Decomposition (EVD) of the matrix̂Hx, estimation,P̂ , of the

number of sourcesP and restriction of this EVD to thêP principal components:

Ĥx = Ês L̂s Ês
H, whereL̂s is the diagonal matrix of theP eigen-values of largest

moduli andÊs is the matrix of the associated eigenvectors.

Step3Computation of a square root matrix̂H1/2
x of Ĥx: Ĥ

1/2
x = Ês |L̂s|1/2, where|·|

denotes the complex modulus operator.

Step4Computation fromĤ
1/2
x of the Θ̂n1,n2 = [Γ̂

]
n1

Γ̂n2 ] matrices for all1 ≤ n1 6=
n2≤N , and estimation,̂Vsol, of the unitary matrixVsol from the joint diagonalization

of theN(N−1) matricesΘ̂n1,n2.

Step5EstimationÂ of theA mixture matrix taking the matrix block made up of the

first N -th rows of[Ĥ1/2
x V̂sol]

∗.

Step6 If A is an overdetermined mixture, estimation of the signal vector s(k) for

any valuek, by applying tox(k) the SMF source separator defined bŷW = R̂x
−1Â ,

whereR̂x is an estimate ofRx=C0
2, x.

3.2 BIRTH improvements

Once matrix[A�2�A∗] has been estimated, it has to allow to recover matrixA. In fact, we

showed in section 3.1.3 that it was sufficient to take as estimateÂ of A the matrix block made up

of theN first rows of the conjugate of matrix̂A3, whereÂ3 denotes the estimate of[A�2�A∗].

The latter approach will be referred to asMethod 1 in the sequel. Although method 1 appears to

have a low computational complexity, it does not exploit allredundancies present in[A�2�A∗].

So we propose now other methods such as:

Method 2: Extract theN2 matrix blocks, of sizeN×P , made up of the successive rows of the

conjugate of matrix̂A3 and equal toΣ∗
m (1 ≤ m ≤ N2) (3.10); take as estimate the average of

theseN2 blocks.

Method 3: Fully exploit each column vector̂bp of Â3. In order to do this, first extract, from

vector b̂p, theN vectorsb̂p(n) of sizeN2×1, then remodel them intoN matricesB̂p(n) of size

N×N , and finally build the matrix whosep-th column vector is the eigenvector (approximately)



3.2. BIRTH IMPROVEMENTS 43

in common within theN matricesB̂p(n)∗ (1≤n≤N ) and associated with the largest eigenvalue

using the Joint Approximate Diagonalization (JAD) algorithm described in [9].

Methods1 and2 ensue immediately from the structure of matrix̂A3. In fact, it has been shown

in (3.10) that matrix̂A3 may be written as:

Â3 = A3 T = [[A∗T1]
T [A∗T2]

T · · · [A∗TN2 ]T]T (3.12)

whereT and theN2 matricesTn (1≤n≤N2), of sizeP ×P , are trivial. As for method3, it is

shown in appendix C takingq=3 that

∀n, 1 ≤ n ≤ N, b̂p(n) ∝
[
aξ(p) ⊗ a∗

ξ(p)

]
(3.13)

whereξ (·) is a bijective function of{1, 2, . . . , P} into itself (i.e. a permutation function). Then it

is straightforward to show that

∀n, 1 ≤ n ≤ N, B̂p(n) ∝
[
aξ(p) aξ(p)

H

]∗
(3.14)

and hence the method3 result. Note that, although the JAD algorithm [9] is restricted to unitary

joint diagonalizers, it can be used in method3 since matriceŝBp(n)∗ are of rank1, from (3.14).

Method 4: The fourth method we consider performs a unrestricted (non-unitary) LS joint

diagonalization scheme, as for instance the one described by Yeredor in [73], yielding probably a

better LS fit.

We propose a fifth method, namedMethod 5 and based on the the following mathematical

problem:

Problem 1 GivenM matricesΞm, 1≤m≤M , each of sizeN×P , find anN×P matrixA, and

P×P diagonal matricesDm of unit Frobenius norm such that

Ξm Dm ≈ A (3.15)

MatricesA andDm can be obtained as stationary values of the Least Squares (LS) criterion

below:

ε =
M∑

m=1

‖ΞmDm − A‖2
F (3.16)
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where‖B‖F is the Frobenius norm of matrixB. As a consequence, they satisfy the following

system of equations, obtained by cancelling the gradient ofε with respect toDm andA:




∀m, ∀ p, {Ξ
H

m(ΞmDm − A) }(p, p) = 0

∀ (n, p),
∑M

m=1 {ΞmDm − A }(n, p) = 0
(3.17)

whereB(n, p) is the(n, p)-th component of matrixB. It is then not hard to obtain the closed form

expression forA:

A =
1

M

M∑

m=1

ΞmDm (3.18)

By plugging back this solution in system (3.17), one gets after some manipulations:

∀p, 1 ≤ p ≤ P, Fp dp = 0 (3.19)

where

Fp(m1,m2) =




(M−1)

{
Ξ

H

m1
Ξm1

}
(p, p) if m1 =m2

− {ΞH

m1
Ξm2

}
(p, p) otherwise

(3.20)

and wheredp =

[
D1(p, p) D2(p, p) · · · DM(p, p)

]
T

. In other words, the solution to the LS

problem under the constraint that, for any fixed indexp,
∑

m |Dm(p, p) |2 = 1 is obtained when

the vectordp is the right singular vector of matrixFp associated with the minimal singular value.

Once every entryDm(p, p) is obtained, matrixA can be calculated thanks to (3.18). This solution

is thus not iterative (though we could possibly run alternate iterations).

So method 5 is defined by solving problem 1 taking for matricesΞm theM =N2 matrix blocks

Σ
∗
m (3.10) of sizeN×P , made up of the successive rows of the conjugate of matrixÂ3. The latter

algorithm does not take into account the fact that diagonal matricesDm should contain products

of entries ofA, and is therefore expected to yield less accurate results. However, subsequent

simulations demonstrate that the loss in performance is little compared to the gain in computational

complexity.

3.3 Identifiability

3.3.1 The BIRTH approach

Following the development of the previous sections, it appears that the BIRTH method is able to

identify, from an array ofN sensors, the steering vectors ofP (P ≤ N2) non Gaussian sources
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having SixO marginal cumulants with the same sign, providedthat theA�A∗ matrix has full rank

P , i.e. that thevirtual steering vectors[ap⊗a∗
p ] (1≤p≤P ) for the considered array ofN sensors

remain linearly independent. In addition, it has been shownin [13] that the vector[ap⊗a∗
p ] can

also be considered as atrue steering vectorbut for avirtual array of N4 different sensors. This

especially means thatN2−N4 components of each vector
[
ap⊗a∗

p

]
are redundant elements which

bring no information. The rank ofA�A∗ cannot therefore be greater thanN4 and is equal to

min(N4, P ) whenA is of full rank. In these conditions, sinceA�A∗ has full rankP , min(N4, P )

is equal toP , which impliesP ≤N4. So the BIRTH algorithm is able to process up toN4 sources,

whereN4 is the number of different Virtual Sensors (VS) of the VA associated with the chosen

array ofN sensors. QuantityN4 will be described in detail in section 4.2.1. So, it is shown in [13]

that using an array with spatial diversity only, as for instance a UCA,N4 may be equal toN2−N+1,

whereas using an array with angular and polarization diversity, theN4 number may attainN2.

3.3.2 Impact of the hexacovariance structure

According to [13], theN4 number is directly related to both kind of sensors and geometry of

the true array ofN sensors. For example, a Uniform Linear Array (ULA) of identical sensors

generates a VA ofN4 = 2N−1 different VS, whereas for most of other arraysN4 = N2−N+1.

Nevertheless, both kind of sensors and geometry of the true array are not the only factor which

theN4 number depends on. Indeed the way data SixO cumulants are mapped inHx is also a

parameter which affects the number of VS. To show this, consider the following way to sort SixO

Cumulants in the hexacovariance matrix:

Hx

(
I0
1 , I

0
2

)
= Ci4,i5,i6

i1,i2,i3,x (3.21)

where Hx

(
I0
1 , I

0
2

)
is the

(
I0
1 , I0

2

)
-th entry (1 ≤ I0

1 , I0
2 ≤ N3) of Hx and where for all1 ≤

i1, i2, i3, i4, i5, i6≤N ,

I1
1 = ϕ([i1 i2 i3]) = N(N(i1 − 1) + i2 − 1) + i3

I1
2 = ϕ([i4 i5 i6]) = N(N(i4 − 1) + i5 − 1) + i6 (3.22)

what implies:

Hx = [A�3]Hs [A�3]H (3.23)

The FourO virtual array associated with this expression (the correspondingvirtual steering vectors,

for all 1≤p≤P , are thus of the form[ap⊗ap]) is generally different from the one obtained from
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(3.1). In particular, the VA associated with (3.23) and a UCAof odd N identical sensors, is

caracterized byN4 = N(N+1)/2 different VS, whereas the one associated with (3.1) and an UCA

of oddN identical sensors, is caracterized byN4 = N2−N +1 different VS. For anyN≥ 2, the

N2−N+1 value is obviously greater thanN(N+1)/2.

Proof: Note that the(r, q)th VS associated with thep-th source and the UCA ofN sensors is

such that:

[ap⊗ap]
q
r =exp{j2π[xq

r cos(θp)cos(φp)+yq
rsin(θp)cos(φp)]} (3.24)

(xq
r , yq

r , 0) = ((Rq
r/λ)cos(ϕ

q
r) , (Rq

r/λ)sin(ϕq
r) , 0) are the coordinates of the(r, q)th VS (1≤r, q≤N )

whereRq
r = 2Rcos((ϕr−ϕq)/2) and ϕq

r = (ϕr+ϕq)/2 since it is always possible to choose a

coordinate system in which then-th sensor of the true array has the coordinates(xn, yn, 0) =

(Rcos(ϕn) , Rsin(ϕn) , 0) whereR is the radius andϕn = 2π(n−1)/N . It is thus easy to deduce

from the previous equations that the VS that are not at coordinates(0, 0, 0) lie on(N+1)/2 different

circles if N is odd orN/2 if N is even and that there are VS at coordinates(0, 0, 0) only if N is

even. Moreover, for odd values ofN , N different VS lie on each circle of the VA uniformly spaced.

As a consequence, this VA, for odd values ofN , hasN4 = N(N +1)/2 different VS. As to the

second result, it is given by [13].

It is important to explain that if both FourO VA obtained from(3.1) and (3.23) are not equiva-

lent, however, they have the same radiation pattern.

Proof: The radiation pattern of a[b(θp, φp)]1≤p≤P VA is defined by:

∀ (θ, φ), ∀1≤p≤P,

c((θ, φ), b(θp, φp)) =
|〈 b(θ, φ), b(θp, φp) 〉|
‖b(θ, φ)‖2 ‖b(θp, φp)‖2 (3.25)

whereθp, φp, |·|, 〈·, ·〉, ‖·‖ denote azimuth and elevation angles of thepth source, the complex

modulus, the scalar product and the norm operators, respectively. Since for any(θ, φ) and for

each sourcep, bothc
(
(θ, φ),

[
ap⊗a∗

p

])
andc((θ, φ), [ap⊗ap]) values are equal.

These results are illustrated by figures 3.1 to 3.3, which show the identical radiation pattern of

both FourO VA of a UCA of five identical sensors, and the geometry of each VA, respectively.
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Figure 3.1: Fourth order virtual array radiation pattern (N = 5)

3.4 Simulations

The performance criteria used in this section to evaluate the quality of the BMI process has been

presented in section 1.1.3.

3.4.1 Simple BIRTH

So, to illustrate the results of the simplified version of BIRTH described in section 3.1.3 and

referred to as method 1, we assume thatP = 2 statistically independent sources, i.e.2 non filtered

QPSK and1 non filtered BPSK, are received by a linear array ofN = 2 sensors of radiusR such

thatR/λ = 0.55 (λ: wavelength). The3 sources, assumed synchronized, have the same input SNR

(Signal to Noise Ratio) of20 dB with a symbol periodT = 4Te, whereTe is the sample period.

The normalized marginal source cumulants areκ111
111,QPSK = κ222

222,QPSK = 4 andκ333
333,BPSK = 16

according to appendix D. The direction of arrival of the sources are such thatθ1 = 50◦, θ2 = 136◦,

θ3 = 29.5◦, φ1 = φ2 = φ3 = 0◦ and the associated carrier frequencies verify∆f1Te = 1/3,

∆f2Te = 1/2 and∆f3Te = 0. We apply the COM1 [18], COM2 [16], JADE [8], S3C2 [17] and

BIRTH methods, and the performanceαp for p = 1 . . . 3 is computed and averaged over200

realizations.
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Figure 3.2: FO∗ virtual array defined by
[
ap⊗a∗

p

]
(N = 5)

Under the previous assumptions, figure 3.4 shows the variations ofα3 (source3 performance)

at the output of the COM1, COM2, JADE, S3C2 and BIRTH algorithms as a function of the num-

ber of samples. The COM1, COM2, JADE methods obviously find difficulties in well identifying

the steering vector of the source3 in a underdetermined context. The S3C2 method gives better

results. As to the BIRTH process, it completely succeeds in identifying the steering vector. Figure

3.5 shows, in the same context, all theαp at the output of the BIRTH method as a function of

samples. Note the decreasing values toward zero of all the previous coefficients as the number

of samples increases. In addition, figure 3.6 displays the variations ofα3 (source3 performance)

at the output of the COM1, COM2, JADE, S3C2 and BIRTH methods as a function of SNR.

Likewise, the COM1, COM2, JADE algorithms do not identify the steering vector of the source3

in an underdetermined context even when the SNR increases. The S3C2 results are more pleasing.

As to the BIRTH process, it performs well the identification of the steering vector even for a small

value of SNR.

Finally, consider theP = 3 previous sources are received by a circular array ofN = 3 sensors

such thatR/λ = 0.55. Figure 3.7 shows the variations ofα3 (source3 performance) at the output

of the COM1, COM2, JADE and BIRTH methods as a function of the number of samples : the
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Figure 3.3: Fourth order virtual array defined by[ap⊗ap] (N = 5)

BIRTH method obviously works in overdetermined contexts and although SixO cumulants have

to be estimated, the BIRTH algorithm converges fast enough compared with the other algorithms.

3.4.2 BIRTH improvements

We proceed in this section to two types of simulations. First, in order to test the five blind

identification methods, previously described in section 3.2, independently of the BIRTH algorithm,

we have generatedP vectorsb̂p such that

b̂p = bp + νp (3.26)

wherebp is thep-th column vector of matrix[A�2�A∗] and where theN3×1 noise random vectors

νp are chosen to be Gaussian spatially and temporally white such that their covariance matrices

Rνp verify Rνp = σ2
IN3. We took a uniformly spaced circular array ofN = 3 identical sensors,

of radiusR such thatR/λ = 0.55, andP = 12 directional vectors. The chosen blind identification

performance criterion is yet the pseudo-distance defined insection 1.1.3. We report the average of

theP gaps obtained by the five methods in figure 3.8, as a function ofthe noise level. It can be

seen that method 5 is almost as good as the most complex one, namely method 3. Second, we now

incorporate the BIRTH core step in the comparison. Sources are BPSK modulated, with a raised
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Figure 3.4:α3 for aSNR = 20 dB

cosine pulse shape of roll-off equal to0.25, and assumed synchronized. Figure 3.9 shows BMI

results obtained when7 BPSK sources are received by the same array as above. Their symbol

periods are equal to twice the sample period and their carrier residuals are all null. In this figure,

the label “BIRTHm” corresponds to the BIRTH algorithm followed by methodm of section 3.2.

Again, it can be seen that the five methods can be sorted in the same way: method 3, the most

complex, is followed by method 5. The latter thus appears to exhibit the best trade-off between

performance and computational complexity.

3.5 Conclusion

As surveyed in introduction, there are few algorithms able to identify blindly underdetermined

mixtures (i.e. in the absence of sparsity). This chapter has presented a newBMI method, BIRTH,

in a underdetermined context, i.e. allowing to identify thesteering vectors of more sources than

sensors, using SixO cumulants and the FourO VA concept. The BIRTH algorithm succeeds in

recovering the mixture matrix even for a small number of samples or a weak SNR. Moreover, new

results as for the VA are given: both FourO VA, described in this chapter, are proved to be not

equivalent. As a consequence, the way to store cumulants in the corresponding matrix affects the
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Figure 3.5:D
(
A,Â

)
associated with the BIRTH method

performance of the method. Finally, the BIRTH algorithm hasbeen be improved, in particular the

fifth step of (3.1.4), by proposing five methods optimizing differently the compromise between

performance and complexity.

Note that the BIRTH algorithms, and in particular BIRTH3 andBIRTH5, can be used for

blind beamforming. Yet, there exist techniques based on thearray manifold knowledge that can

handle underdetermined mixtures, such as the so-called4−MUSIC [60]. It could be interesting to

compare its performances with the above as well, which couldyield a performance bound.
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Figure 3.6:α3 for one thousand samples

Figure 3.7:α3 for aSNR = 20 dB
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Chapter 4
BIOME: Blind Identification of

Overcomplete MixturEs

In order to extend the ICAR and BIRTH methods, presented in chapters 2 and 3 respectively, to

an arbitrary order2q, whereq is an arbitrary integer greater than2, a family of new methods,

named BIOME (Blind Identification of Overcomplete MixturEsof sources) is proposed in this

chapter. Operating on statistics at order2q, this family gives rise to the2q-BIOME methods.

The latter algorithms allow to blindly identify both overdetermined (q ≥ 2) and underdetermined

(q ≥ 3) mixtures of sources, and to extract them in the overdetermined case. More generally, the

2q-BIOME algorithm assumes the sources have non zero2q-th order marginal cumulants with

the same sign (the latter assumption is verified in most casesin radiocommunications contexts).

Besides, BIOME, without SO prewhitening, explicitly exploits the redundancies in the2q-th order

statistical matrix of the data and implicitly uses the Virtual Array (VA) concept presented in [38]

[13] for FourO methods and extended in [12] for HO methods. Note that, for a given value of

q, the maximum numberPN,q
max of independent sources that can be processed by the2q-BIOME

method, such thatPN,q
max≥N , increases withN andq.

From the linear algebra viewpoint, it is shown in section 4.1that the BMI problem can be

expressed in the form of the problem below, even in the underdetermined case.

Problem 2 GivenN matrices,Γn, 1≤n≤N , each of sizeM×P , M ≥P , find a full rankM×P

matrixA, N diagonal matricesΛn of sizeP×P , and a unitaryP×P matrixV , such that

Γn = AΛn V H

55
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4.1 The2q-BIOME method

It is subsequently shown that, under assumptions (A1)-(A5) of section 1.1.2, the2q-BIOME

method exploits the structure of the statistical matrixC`
2q, x, for the chosen value of̀, 0≤ `≤ q0,

so that the joint diagonalization to perform is actually somewhat more complicated than that given

in problem 2, and better described by

Problem 3 GivenN matricesΓn, 1≤n≤N , each of sizeN q×P , N q ≥P but possiblyN < P ,

find a full rankN×P matrix A, N invertible diagonal matricesΛn of sizeP×P , and a unitary

P×P matrixV , such that

Γn = A`
q Λn V H

whereA`
q =A

�q−`�A∗�`

.

4.1.1 The core equation

The2q-BIOME method precisely exploits several redundancies in the statistical matrixC`
2q, x (q≥

2) of the data especially thanks to the multilinearity property. Although most of BSS algorithms

use the matrix multilinearity property form (1.20) (the JADE method uses it for(q, `) = (1, 0) and

for (q, `) = (2, 1)), the2q-BIOME method precisely exploits the second form, described by

C`
2q, x = A`

q ζ2q,s A`
q

H

(4.1)

whereζ2q,s
def
= Diag

[
C1, 1, ..., 1

1, 1, ...1, s C2, 2, ..., 2
2, 2, ..., 2, s · · · CP,P, ..., P

P, P, ..., P, s

]
is aP×P diagonal matrix of full

rank in contrast toC`
2q, s (1.20), and where theN q×P matrixA`

q is given by

A`
q = A

�q−` � A∗�`

=
[
a1

⊗q−̀ ⊗(a∗
1)
⊗` · · · aP

⊗q−̀ ⊗(a∗
P)⊗`

]

=
[
[A`

q−1Φ1]
T [A`

q−1Φ2]
T · · · [A`

q−1ΦN ]T
]

T

(4.2)

with

Φn = Diag[ A(n,1) A(n,2) · · · A(n,P ) ] (4.3)

In other words, the non zero elements of theP×P diagonal matrixΦn are the components of the

n-th row of matrixA. Note, as shown in appendix A, that the matrix form of the multilinearity

property described by (4.1) ensues immediately from equations (1.11), (1.12), (1.13) and from

the multilinearity property shared by cumulants [55] [19, pp. 1-24]. Moreover, it appears from

equation (4.2), that matrixA`
q, also calledq-th order Virtual Mixture (VM), can be written by

stackingG=N q−1 matrix blocks of sizeN×P , denotedΨg, and such that



4.1. THE2Q-BIOME METHOD 57

∀ 1≤g≤N q−1, ∃ 1≤n1,. . ., nq−1≤N, g = ϕ([nq−1 nq−2 . . . n1]),

and Ψg =





A
∏q−1

j=1 Φnj
if ` = 0

A∗ ∏ −̀1
j=1 Φnj

∗ ∏q−1
k=̀ Φnk

otherwise (o.w.)
(4.4)

and

A`
q = [Ψ1

T
Ψ2

T · · ·ΨG
T]T . (4.5)

4.1.2 The BIOME concept

Firstly, a unitary matrixV is estimated in the Least Squares (LS) sense, and yields an estimate of

A`
q. In a second stage, several algorithms may be thought of in order to compute an estimate ofA

from A`
q. Finally, estimate of sourcess(k) can be computed using the estimate ofA.

Identification of the q-th order VM A`
q

If 2q-th order marginal source cumulants are strictly positive (A3), then, according to (4.1), matrix

C`
2q, x is positive. So a square root ofC`

2q, x, denoted[C`
2q, x]1/2 and such that[C`

2q, x]1/2[C`
2q, x]H/2 =

C`
2q, x, may be computed (if marginal source cumulants are strictlynegative, matrix−C`

2q, x has to

be considered instead, for computing the square root). In fact, we deduce from (4.1) that matrix

A`
q ζ

1/2
2q,s is a natural square root ofC`

2q, x. Another possibility is to compute this square root via the

singular or eigen value decomposition ofC`
2q, x given by

[C`
2q, x]1/2 = Es L1/2

s (4.6)

whereL
1/2
s denotes a square root ofLs, Ls is theP ×P real-valued diagonal matrix of theP

largest (in terms of modulus) eigenvalues ofC`
2q, x, andEs is theN q×P matrix of the associated

orthonormalized eigenvectors.

Proposition 5 Under assumptions (A4) and (A5), theN q×P matrixA`
q is of full column rank.

The proof of proposition 5 ensues immediately from equations (4.2), (4.3) and assumption

(A4). In fact, suppose thatA`
q is not full column rank. Then there exists someP ×1 vector

β 6= 0 such thatA`
q β = 0, which, due to the structure ofA`

q (4.2) implies that for all1≤n≤N ,

A`
q−1 Φn β=0. So it implies thatA`

q−1 cannot be of full column rank (since matricesΦn areP×P

diagonal with nonzero entries, due to (4.3) and (A4)), which contradicts assumption (A5).

Asumptions (A3) to (A5), proposition 5, and equations (4.1) and (4.6) allow together to prove

that matricesC`
2q, x and[C`

2q, x]1/2, and thusEs andLs, are of rankP as well.
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Proposition 6 For a full rank matrixA`
q, (A3) is equivalent to assuming that the diagonal ele-

ments ofLs are not null and have also the same sign.

The proof of proposition 6 is also straightforward. In fact,it is well-known that two square

roots of a matrix are equal to within a unitary matrix, so that

A`
q ζ

1/2
2q,s = Es L1/2

s V
(
= [C`

2q, x]1/2 V
)

(4.7)

for someP×P unitary matrixV . Note the latter is unique up to a multiplicative unitary invertible

diagonal matrix. We deduce from (4.7) that

Es
H A`

q ζ2q,s A`
q

H

Es = Ls (4.8)

and hence proposition 6.

In addition, equation (4.7) can be rewritten as follows

[C`
2q, x]1/2 = Es L1/2

s = A`
q ζ

1/2
2q,s V H. (4.9)

showing the link between[C`
2q, x]1/2 and A`

q. Plugging (4.2) into (4.9), matrix[C`
2q, x]1/2 can be

eventually rewritten as

[C`
2q, x]1/2 =

[
[A`

q−1Φ1ζ
1/2
2q,sV

H]T [A`
q−1Φ2ζ

1/2
2q,sV

H]T· · · [A`
q−1ΦNζ

1/2
2q,sV

H]T
]

T

= [ Γ1
T

Γ2
T · · · ΓN

T ]T (4.10)

where theN matrix blocksΓn of sizeN q−1×P are given by

∀ 1 ≤ n ≤ N, Γn = A`
q−1Φn ζ

1/2
2q,s V H (4.11)

Proposition 7 For any1≤n≤N , matrixΓn is of full column rank.

The proof results from proposition 5, in addition to all other stated conditions.

Using proposition 7, the pseudo-inversesΓ
]
n of theN q−1×P matricesΓn may be defined by

∀ 1 ≤ n ≤ N, Γ
]
n = (Γn

H
Γn)

−1
Γn

H (4.12)

Then, the information contained in matrix[C`
2q, x]1/2 allows one to blindly identifyA`

q. Indeed,

matrixV jointly diagonalizes theN(N−1) matricesΘn1,n2 below

∀ 1 ≤ n1 6= n2 ≤ N, Θn1,n2 = Γ
]
n1

Γn2 . (4.13)
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To see this, let us computeΘn1,n2 from (4.11) and (4.12). We obtain

Θn1,n2 = V [ζ`
2q,s]

−1/2
Φ
−1
n1

Φn2 ζ
1/2
2q,s V H = V Φ

−1
n1

Φn2 V H (4.14)

whereζ
1/2
2q,s andDn1,n2 = Φ

−1
n1

Φn2 areP×P diagonal full rank matrices, which shows the result.

The unitary matrixVsol, solution to the previous problem of joint diagonalizationof theN(N−1)

matricesΘn1,n2 has necessarily the formVsol = V T whereT is a unitary matrix. This allows

one, in accordance with (4.9), to recoverA`
q to within an orthogonal matrix as

[C`
2q, x]1/2 Vsol = A`

q ζ
1/2
2q,s T (4.15)

Proposition 8 Under assumption (A4), for every pair (p1, p2)|p1 6=p2
of {1, 2, . . . , P}2, at least

one pair (n1, n2)|n16=n2
belonging to{1, 2, . . . , N}2 exists such thatDn1,n2(p1, p1) 6=Dn1,n2(p2, p2).

The proof is given in appendix B.

Proposition 8 and [2] allow to assert that the previous unitary matrix T is also trivial. So

matrixA`
q may be identified, according to (4.15), up to a trivial matrix.

Identification of mixture A

Three algorithms are proposed in this section, with increased computational complexity and per-

formances.

Note, from (4.5) and (4.4), that equation (4.15) can also be written in the form ofG = N q−1

matrix blocksΣg = Ψgζ
1/2
2q,s T of sizeN×P as

[C`
2q, x]1/2 Vsol = [Σ1

T
Σ2

T · · ·ΣG
T]T (4.16)

So a first approach to estimateA up to a trivial matrix, named2q-BIOME1 in the sequel,

consists of retaining only the matrix blockΣ1 if ` = 0 (Σ1
∗ otherwise) made up of theN first rows

of [C`
2q, x]1/2Vsol such that

Σ1 =





A [Φ1]
q−1

ζ
1/2
2q,s T if ` = 0

A∗ [Φ∗
1 ] −̀1 [Φ1]

q−̀ ζ
1/2
2q,s T o.w.

(4.17)

whereζ
1/2
2q,s andΦn, for all 1≤n≤N , are diagonal matrices.

It is also possible to take into account all the matrix blocksΣg if ` = 0 (Σg
∗ otherwise) and to

compute their average. This yields a second algorithm, called2q-BIOME2, of higher complexity.

A third algorithm, named2q-BIOME3, is now described, and yields a more accurate solution

to the BMI problem: as shown in appendix C, it consists, for each columnbp of [C`
2q, x]1/2Vsol,
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first of extracting theH = N q−2 vectorsbp(h) (1 ≤ h ≤ H) of size N2×1 (such thatbp =

[bp(1)
Tbp(2)

T · · · bp(H)T]T ), then of remodeling them intoH matricesBp(h) of sizeN×N (then-th

column ofBp(h) is made up from theN consecutive elements ofbp(h) as from the[N(n−1)+1]-th

one), and finally of jointly diagonalizing the set∆̀p of matrices defined by

∆`
p =





{Bp(h)Bp(h)H, (Bp(h)HBp(h))∗ / 1≤h≤H} if ` = 0

{Bp(h)∗ / 1≤h≤H} if ` = 1

{(Bp(h)Bp(h)H)∗, (Bp(h)HBp(h)) / 1≤h≤H} o.w.

(4.18)

Theorem 2 The eigenvector, in common to all matrices of∆̀p, and associated with the largest

eigenvalue, is, up to a scale factor, a column vector of matrix A.

The proof is given in appendix C. So each joint diagonalization of matrices belonging to the

set∆̀p allows one to estimate a column vector ofA, and finally to identifyA to within a trivial

matrix.

Remark 3 Although the algorithm of joint approximate diagonalization in the LS sense [9] is

restricted to unitary joint diagonalizers, it can be used toprocess the previous problem since

matrices belonging to∆̀p are of rank1 as shown in (C.5). However it is reasonable to believe that,

if an unrestricted (non-unitary) LS joint diagonalizationscheme is applied, as for instance the one

described by Yeredor in [73], a better LS fit can be attained, possibly leading to a better estimate of

A. However, both approaches have been compared by simulations in the previous chapter (section

3.4.2), showing that the former gives best results.

Extraction of the P independent components

Finally, to estimate the signal vectors(k) for any valuek, and only in overdetermined situations

(i.e. for P ≤N ), it is sufficient to apply a particular matrix filter built from the estimatêA of A

: such a filter may be the Spatial Matched Filter (SMF) source separator described in [11], which

is optimal in the presence of decorrelated signals and whoseestimate is given bŷW = R̂x
−1Â ,

whereR̂x is an estimate ofRx=C0
2, x.

4.1.3 Implementation of the BIOME method

The different steps of the2q-BIOME method are summarized hereafter whenK samples of the

observations,x(k) (1≤k≤K), are available.
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Step1 Choose the adequate2q-th statistical order in accordance with the alleged

source numberP to be potentially processed: see section 4.2.2 for more details. In

practical situations,q is the minimal value which ensures the processing of all the

sources potentially present.

Step2Estimate the2q-th order statisticsCiq+1,...,i2q

i1,i2,...,iq,x
from theK samplesx(k) and

choose, using section 4.2.2 and [12], the best arrangementĈ`opt
2q,x, whereĈ`

2q,x is an

estimate ofC`
2q, x.

Step3Compute the Eigen Value Decomposition (EVD) of the Hermitian matrixĈ`opt
2q,x;

estimateP̂ , an estimate of the source numberP , from an eigenvalue test and restrict

the EVD to theP̂ principal components :̂C`opt
2q,x ≈ Ês L̂s Ês

H, whereL̂s is the diagonal

matrix of theP̂ eigenvalues of largest modulus andÊs is the matrix of the associated

eigenvectors.

Step4Estimate the sign,ε, of the diagonal elements of̂Ls.

Step5 Compute a square root matrix[εĈ`opt
2q,x]1/2 of εĈ`opt

2q,x : [εĈ`opt
2q,x]1/2 = Ês |L̂s|1/2,

where| ·| denotes the elementwise complex modulus operator.

Step6Extract from[εĈ`opt
2q,x]1/2 theN matricesΓ̂n, construct matriceŝΘn1,n2 =[Γ̂

]
n1

Γ̂n2 ]

for all 1≤n1 6=n2≤N , and compute the estimatêVsol of the unitary matrixVsol from

the joint diagonalization of theN(N−1) matricesΘ̂n1,n2 (with the algorithm described

in [9]).

Step7ComputeÂ , an estimate of mixtureA, from matrix [[εĈ`opt
2q,x]1/2 V̂sol] by either

one of the following:

1. (2q-BIOME1) taking the matrix block made up of theN first rows of
[
[εĈ`opt

2q,x]1/2

V̂sol

]
if òpt =0, and of[[εĈ`opt

2q,x]1/2 V̂sol]
∗ otherwise;

2. (2q-BIOME2) taking the average of theN matrix blocks, of sizeN×P , made

up of the successive rows of[[εĈ`opt
2q,x]1/2 V̂sol] if òpt =0, and of[[εĈ`opt

2q,x]1/2 V̂sol]
∗

otherwise;

3. (2q-BIOME3) fully exploiting each column vector̂bp of [[εĈ`opt
2q,x]1/2 V̂sol]. In

order to do this, first extract theM = N q−2 vectorsb̂p(m) of sizeN2×1, then

remodel them intoM matriceŝBp(m) of sizeN×N , and finally build the matrix
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whosep-th column vector is the eigenvector in common within theM matrices

∆̂̀p(m) (1≤m≤M ) and associated with the largest eigenvalue.

Step8If A is an overdetermined mixture, estimate the signal vectors(k) for any value

k, by applying tox(k) the SMF source separator defined bŷW =R̂x
−1Â , whereR̂x

is an estimate ofRx=C0
2, x.

4.2 Identifiability

The identifiability properties of the2q-BIOME method are directly related to the2q-th order

Virtual Array (VA) concept described in [38] [13] forq=2 and extended in [12] forq≥2. For this

reason, we recall the main results about the VA array conceptin section 4.2.1 before discussing,

in section 4.2.2, the identifiability properties of2q-BIOME.

4.2.1 The VA concept

In the absence of coupling between sensors, componentn of thep-th column vectorap =a(θp, ϕp)

of A, denotedan(θp, ϕp) whereθp andϕp are the azimuth and the elevation angles of sourcep, can

be written, in the general case of an array with space, angular and polarization diversity, as [26]

an(θp, ϕp) = fn(θp, ϕp, ωp) exp {j2π[xn cos(θp) cos(ϕp) +

yn sin(θp) cos(ϕp) + zn sin(ϕp)] /λ} (4.19)

whereλ is the wavelength,(xn, yn, zn) are the coordinates of sensorn of the array,fn(θp, ϕp, ωp)

is a complex number corresponding to the response of sensorn to a unit electric field coming from

the direction(θp, ϕp) and having the state of polarizationωp (characterized by two angles in the

wave plane) [26]. Let us recall that an array of sensors has spatial diversity if the sensors have not

all the same phase center. The array has angular and/or polarization diversity if the sensors have

not all the same radiating pattern and/or the same polarization, respectively.

Assuming no noise, we note that matricesC`
2q, x andRx=C0

2, x, defined by (4.1), have the same

algebraic structure, where the marginal source cumulantCp,p,...,p
p,p,...,p,s and the vector

[
ap

⊗q−̀ ⊗(a∗
p)
⊗`
]

=
[
a(θp, ϕp)

⊗q−̀ ⊗(a(θp, ϕp)
∗)⊗`

]
play, for C`

2q, x, the role played forRx by the powerCp
p,s and

the steering vectora(θp, ϕp) respectively. Thus, for BMI methods exploiting expression(4.1), the

N q×1 vector
[
a(θp, ϕp)

⊗q−̀ ⊗(a(θp, ϕp)
∗)⊗`

]
can be considered as theequivalentor virtual steering

vectorof the sourcep for the true array ofN sensors with coordinates(xn, yn, zn) and amplitude
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patternfn(θp, ϕp, ωp) (1 ≤ n ≤ N ). Moreover, comparing the components of
[
a(θp, ϕp)

⊗q−̀ ⊗
(a(θp, ϕp)

∗)⊗`
]

to expression (4.19), it is shown in [12] that vector
[
a(θp, ϕp)

⊗q−̀ ⊗(a(θp, ϕp)
∗)⊗`

]

can also be considered as the true steering vector of the source p but for a VA of N q Virtual

Sensors (VS) with particular coordinates and particular complex amplitude patterns deduced from

(xn, yn, zn) andfn(θp, ϕp, ωp) (1≤n≤N ) respectively.

Nevertheless, some of theseN q VS may coincide. If we noteN `
2q the number of different

VS of the VA associated with the2q-th order array processing problem for the arrangementC`
2q, x,

N `
2q is also a upper bound to the rank of matrixA`

q. Conversely, if the2q-th order VA has no

ambiguities [63] of rank smaller than or equal toN `
2q, the rank of matrixA`

q is equal toN `
2q under

(A4). In particular it is shown in [12] that in the general case ofan arbitrary array ofN sensors

with no particular symmetries, for large values ofN and for a given value ofq (2≤ q ≤N ), the

number of different VSN `
2q can be approximated by

N `
2q ≈ N !/ [(N − q)! (q − `)! `!] (4.20)

In these conditions, the optimal arrangementC`opt
2q, x is such that̀ opt maximizesN `

2q defined by

(4.20) and thus minimizes the quantity(q − `)! `! with respect tò (0≤ `≤ q0 whereq0 = q/2 if q

is even andq0 =(q−1)/2 if q is odd). It is straightforward to show that`opt = q0 and it is verified

in [12] for 2 ≤ q ≤ 4 that this result remains true whateverN . In other words,̀ opt generates

steering vectors
[
a(θp, ϕp)

⊗q−̀ ⊗(a(θp, ϕp)
∗)⊗`

]
for which the number of conjugate vectors is the

least different from the number of non conjugate vectors.

The computation of the number of different VS,N `
2q, of the2q-th order VA for the arrangement

C`
2q, x is not easy for arbitrary values ofN , q (q ≥ 2) and`. For this reason, Chevalier et al. [12]

limit their analysis to some values ofq (2≤q≤4), which extends the results of [13] up to the eighth

order for arbitrary arrangements of the data cumulants. In fact, for these values ofq, Chevalier

et al. give a upper bound toN `
2q, N 2q,`

max, first for an array with space, angular and polarization

diversities, summarized in table 4.1, then for an array withangular and polarization diversity only,

and finally for an array with only spatial diversity summarized in table 4.2. These upper bounds

are shown in [12] to be reached for most array geometries. Nevertheless, for Uniformly spaced

Linear Arrays (ULA), these upper bounds are not reached andN `
2q is shown in [12] to be given by

N `
2q = q(N − 1) + 1 (4.21)

whateverq, N and`, showing that the numberN `
2q of different VS of the2q-th order VA associated

with a ULA is independent of̀ and of the chosen arrangementC`
2q, x. However, for UCAs ofN
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sensors, the upper bound is shown in [12] to be reached whenN is a prime number as depicted in

table 4.3.

N 2q,`
max

q=2 ` = 0 N(N + 1)/2

` = 1 N2

q=3 ` = 0 N !/[6(N − 3)!] + N(N − 1) + N

` = 1 N !/[2(N − 3)!] + 2N(N − 1) + N

q=4 ` = 0 N !/[24(N − 4)!] + N !/[2(N − 3)!] + 1.5N(N − 1) + N

` = 1 N !/[6(N − 4)!] + 1.5N !/(N − 3)! + 3N(N − 1) + N

` = 2 N !/[4(N − 4)!] + 2N !/(N − 3)! + 3.5N(N − 1) + N

Table 4.1:N 2q,`
max associated with arrays with space, angular and polarization diversities

N 2q,`
max

q=2 ` = 0 N(N + 1)/2

` = 1 N2 − N + 1

q=3 ` = 0 N !/[6(N − 3)!] + N(N − 1) + N

` = 1 N !/[2(N − 3)!] + N(N − 1) + N

q=4 ` = 0 N !/[24(N − 4)!] + N !/[2(N − 3)!] + 1.5N(N − 1) + N

` = 1 N !/[6(N − 4)!] + N !/(N − 3)! + 1.5N(N − 1) + N

` = 2 N !/[4(N − 4)!] + N !/(N − 3)! + 2N(N − 1) + 1

Table 4.2:N 2q,`
max associated with arrays with spatial diversity only

4.2.2 The BIOME processing power

From the results of section 4.2.1, it is possible to identifythe maximum number,PN,q
max, of inde-

pendent non Gaussian sources that can be processed by the2q-BIOME method. Indeed, it has

been shown in the previous sections thatP sources can be blindly identified by the2q-BIOME

method from an array ofN sensors, provided conditions (A1)-(A5) are verified. For an array

without any rank-1 ambiguities, condition (A4) is verified as soon as the sources have different
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N `
2q

N = 3 N = 5 N = 7 N = 9 N = 11

q=2 ` = 0 6 15 28 45 66

` = 1 7 21 43 73 111

q=3 ` = 0 10 35 84 163 286

` = 1 12 55 154 306 616

q=4 ` = 0 15 70 210 477 1001

` = 1 18 115 420 918 2486

` = 2 19 131 505 1135 3191

Table 4.3:N `
2q associated with a UCA ofN identical sensors

directions of arrival. In a same manner, assuming the2(q−1)th order VA associated with the

arrangementC`
2(q−1), x and the considered VA array ofN q VS has no ambiguities of rank lower

thanN `
2(q−1), condition (A5) is verified provided (A4) is verified andP is lower than or equal to

N `
2(q−1). Otherwise, (A5) cannot be verified. We deduce from this result that the maximal number

PN,q
max of non Gaussian sources that can be processed by2q-BIOME is N `opt

2(q−1).

As far as the choice of parameterq is concerned, it depends on the numberP of independent

sources that BIOME’s user wants to process. Since we have previously shown the link between

PN,q
max andN `opt

2(q−1) for a given value ofq, it is sufficient to choose the smaller value ofq (q≥2) such

thatP ≤PN,q
max.

4.3 Simulations

The performance criterion used to evaluate the quality of the BMI process has been presented in

section 1.1.3. On the other hand, the quality of the BSS process is evaluated using the well-known

SINRM (Signal to Interference plus Noise Ratio Maximum) criterion defined in [11, section 3].

Moreover, the synthetic signals used in this section are cyclostationary, and according to sections

1.2.4 and 5.2, other statistical estimators than empiricalestimators should be employed. However,

if the cyclostationary sources are zero-mean and circular,or non circular with a zero carrier residu,

or non circular with different non zero carrier residus, such as the sources used subsequently, the

bias due to empirical statistical estimators is negligible[42]. So we decide to employ them in the

following simulations.
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The overdetermined case

The previous results are firstly illustrated in the overdetermined case comparing4-BIOME and

6-BIOME with the well-known BSS algorithms. In fact, we assume thatP = 4 statistically

independent sources, i.e.2 BPSK and2 QPSK, all with a raised cosine pulse shape of roll-off

equal to0.25, are received by a UCA ofN =4 identical sensors of radiusR such thatR/λ = 0.55

(λ: wavelength). The four sources, assumed synchronized, have the same input SNR (Signal to

Noise Ratio) of20dB and the noise is spatially and temporally white Gaussian.The symbol period

T1 associated with the first BPSK is equal to three times the sample periodTe. The other sources

have a symbol period equal to twice the sample period. The directions of arrival of the sources

are such that the source steering vectors are orthogonal andthe associated carrier residus are such

that fc1 Te = 0, fc2 Te = 0.3, fc3 Te = 0.2 and fc4 Te = 0.1. We apply the COM1 [18], COM2

[16], JADE [8], SOBI [2], FastICA [3], FOBIUM [40],4-BIOME1, 4-BIOME2, 4-BIOME3 and

6-BIOME1 methods, and the SINRM associated with each source is computed and averaged over

200 realizations. Figures 4.1 and 4.2 show the variations ofSINRM3 (source3 performance) at the

output of the previous methods as a function of the number of samples.

500 1000 1500

−10

−5

0

5

10

15

20

25

Optimum SMF          

4−BIOME3        

4−BIOME2        
4−BIOME1        

6−BIOME1        

COM2         

FOBIUM       

Number of samples

Figure 4.1: SINRM associated with source 3 for a SNR of20 dB

Although the6-BIOME1 method obviously works in overdetermined contexts, it appears in
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figure 4.1 that the4-BIOMEm (1 ≤ m ≤ 3) methods give better results, which shows that it

is sufficient and more appropriate to use, as proposed in section 4.2.2, the2q-BIOME method

of smallest valueq allowing to process theP sources. Figure 4.1 also shows that4-BIOME3

converges as fast as COM2 and FOBIUM, but faster than4-BIOME1 and4-BIOME2: the third

method given in section 4.1.2 exhibits better performancesthan the others and it is reasonable to

believe that the6-BIOME3 method would give better results than those of6-BIOME1, as shown

in the previous chapter (section 3.4.2).
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Figure 4.2: SINRM associated with source 3 for a SNR of20 dB

In addition, figure 4.2 shows the good performance of the4-BIOME3 algorithm facing the

well-known COM1, COM2, JADE, SOBI and FastICA methods. Notethat the SOBI and FO-

BIUM methods give in this simulation good results since sources have been chosen with different

spectral densities, especially taking different carrier residus.

The colored noise case

Then, the4-BIOME method is compared to other algorithms in an overdetermined context and

especially in the presence of a Gaussian noise with unknown spatial correlation. In fact,P = 3

statistically independent sources, i.e.2 BPSK and1 QPSK, all with a raised cosine pulse shape of
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roll-off equal to0.25, are assumed to be received by a UCA ofN = 5 identical sensors of radius

R such thatR/λ = 0.55. Their symbol periods are equal toT1 = 2Te, T2 = 3Te andT3 = 4Te

respectively. Their carrier residus are chosen equal to zero. Finally, the source steering vectors are

built orthogonal. This time, we apply the COM1, COM2, JADE, SOBI, FOBIUM, 4-BIOME1,

4-BIOME2 and4-BIOME3 methods, and the SINRM associated with each source is computed

and averaged over200 realizations.
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Figure 4.3: SINRM associated with source 3 for a SNR of0 dB

Figures 4.3 and 4.4 show the variations ofSINRM3 (source3 performance) at the output of the

previous methods as a function of the noise spatial correlation factorρ. SNR of the three sources

is taken equal to0 dB and1500 samples are used to identify the overdetermined mixture. Note

that the Gaussian noise model employed in this simulation isthe sum of an internal noiseνin(k)

and an external noiseνout(k), of covariance matricesRin
ν andRout

ν respectively such that

Rin
ν (r, q)

def
= σ2δ(r−q)/2 Rout

ν (r, q)
def
= σ2ρ|r−q|/2 (4.22)

whereσ2, ρ are the total noise variance per sensor and the noise spatialcorrelation factor respec-

tively. Note thatRν(r, q)
def
= Rin

ν (r, q) + Rout
ν (r, q) is the(r, q)-th component of the total noise
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covariance matrix.

It appears in figure 4.3 that the three proposed versions of4-BIOME seem to be robust with re-

spect to the correlated Gaussian noise presence:4-BIOME1 and4-BIOME3 are totally insensitive

to a Gaussian noise with unknown spatial correlation.
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4−BIOME3        

SOBI         

COM1         
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Figure 4.4: SINRM associated with source 3 for a SNR of0 dB

On the other hand, figures 4.3 and 4.4 show that the well-knownCOM1, COM2, JADE and

SOBI methods are strongly affected as soon as the noise spatial correlation is close to1.

The underdetermined case

Finally, the6-BIOME method is compared, in an underdetermined context, with the FOBIUM

and JADE algorithms. Statistically independent sources with a raised cosine pulse shape of roll-off

equal to0.25, assumed synchronized, are generated with the same input SNR of20 dB. The noise is

spatially and temporally white Gaussian. Besides, the SixOvirtual steering vectors of the sources

are built orthogonal. Figure 4.5 and 4.6 show the variationsof D(A, Â ) (performance of theP

sources), averaged over200 realizations, at the output of the JADE, FOBIUM and6-BIOME1

algorithms as a function of the number of samples.
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In figure 4.5,1 BPSK and2 QPSK are received by a UCA ofN =3 identical sensors of radius

R such thatR/λ = 0.55. Their symbol periods,T1 =2Te, T2 =3Te andT3 =2Te respectively, and

their carrier residus,fc1 Te =0, fc2 Te =0.1 andfc3 Te =0.2 respectively, are such that both QPSK

have different FourO spectral densities: this assumption is required by the FOBIUM algorithm.

Figure 4.5 shows the threeαp at the output of the FOBIUM and6-BIOME1 methods as a function

of samples. In fact, note the decreasing values toward zero of all the previous coefficients as the

number of samples increases for both methods: whatever the method, FOBIUM or6-BIOME1, the

three sources have correctly been identified. Moreover, note that the SixO6-BIOME1 algorithm

is not ridiculous in terms of convergence rate, compared with the FourO FOBIUM method.

On the other hand, figure 4.6 shows BMI results obtained when7 BPSK sources are received

by a UCA of N = 3 identical sensors of radiusR such thatR/λ = 0.55. Their symbol periods

are equal to twice the sample period and their carrier residus are all null. Instead of showing the

variations of the sevenαp at the output of the JADE and6-BIOME1 methods, we decided to show

only the minimal and maximal variations ofαp associated with both algorithms, and denoted by

min{αp} andmax{αp} respectively. Whereas the JADE method obviously cannot identify all the

steering vectors of sources in a underdetermined context, the 6-BIOME1 algorithm completely
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succeeds in identifying them, according to table 4.3 for(q, `) = (2, 1). Moreover, according to

figures 4.5 and 4.6, it appears that the sample number necessary for identifying accurately theP

source steering vectors increases withP .

4.4 Conclusion

A family of new BMI methods, named BIOME, exploiting the information contained in the data

statistics at an arbitrary even order has been proposed in this chapter. These new methods allow to

process both over and underdetermined mixtures of sources,provided the latter have marginal HO

cumulants with the same sign. The proposed methods are not sensitive to a Gaussian colored noise

whose spatial coherence is unknown and allow the processingof a number of sources depending

on both the kind of sensors and the array geometry, and increasing with both the number of sensors

and the order of the data statistics. For underdetermined mixtures of sources, the proposed methods

seem to outperform most of the methods currently available.

From a mathematical point of view, the so-called BIOME approaches allow to pose and to

solve the BMI problem in terms of a non conventional joint approximate diagonalization of several
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given matrices, even in the presence of more inputs (sources) than observations (sensors). This

problem is difficult to solve because of its structure. However, by ignoring part of the structure,

it has been possible to compute in the LS sense the left and right transforms. More accurate

numerical algorithms, taking fully into account the structure, still remain to be devised.



Chapter 5
Other contributions

5.1 The FOBIUM approach

Another new BMI method has also been proposed, exploiting the information contained in the

FourO data statistics only, able to process both over and underdetermined mixtures of sources

without the drawbacks of the existing methods, but assumingthe sources have different trispectrum

and have non zero kurtosis with the same sign. This new BMI method, called FOBIUM (Fourth

Order Blind Identification of Underdetermined Mixtures of sources), corresponds to the FourO

extension of the SOBI approach [45] [24] [2] and is able to blindly identify the steering vectors of

up toP =N2−N+1 sources, from an array ofN sensors with spatial diversity only, and of up to

N2 sources, from an array ofN different sensors. Moreover, this method is robust to a Gaussian

spatially colored noise since it does not exploit the information contained in the SO data statistics.

The FOBIUM approach is presented in detail in [40] and more particularly in appendix F. Finally,

an application of the FOBIUM method will be soon presented ina forthcoming journal paper

through the introduction of a FourO direction finding method, built from the blindly identified

mixing matrix and called MAXCOR (MAXimum of spatial CORrelation), which is shown to be

very powerful with respect to SO [64] and FourO subspace-based direction finding methods [5]

[15] [60].

5.2 Blind separation of non zero-mean cyclostationary sources

Most of the SO and HO blind source separation methods developed this last decade aim at blindly

separating statistically independent sources, assumed zero-mean, stationary and ergodic. Nev-
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ertheless, in many situations of practical interest, such as in radiocommunications contexts, the

sources are non stationary and very often cyclostationary (digital modulations). The behavior of

the current SO and FourO cumulant-based blind source separation methods in the presence of

cyclostationary sources has been analysed, recently, in a previous paper [42], assuming zero-mean

sources. However some cyclostationary sources used in practical situations are not zero-mean but

have a first order cyclostationarity property, which is in particular the case for some AM signals

and for some non linearly modulated digital sources such as FSK or some CPFSK sources. For

such sources, the results presented in [42] do no longer hold, so it has been necessary to analyse the

behavior and to propose adaptations of the current SO and FourO blind source separation methods

for sources which are cyclostationary and cyclo-ergodic upto FO. These results are presented

in [43] (see appendix G) and in [44] (see appendix H) [14] respectively.



Chapter 6
Conclusion

We addressed in this this report the blind identification problem of static linear underdetermined

mixtures (i.e. in which the number of sources present exceeds in permanence the number of

sensors), as well as the blind source separation problem in the overdetermined case, both in the

presence of additive Gaussian noise, of unknown spatial coherence.

In order to process the latter problem, we proposed the ICAR method consisting of getting

rid of the whitening stage, and of using exclusively HO statistics, namely FourO cumulants.

More precisely, the redundancy theoretically present in the quadricovariance of the observations

is exploited.

This concept can be extended to statistics of order strictlyhigher than4, allowing for instance

to address the case of underdetermined mixtures. Such extensions to order6 have been proposed

under the name of BIRTH. Surprisingly, identification methods solely based on the hexacovariance

well succeed, despite their expected high estimation variance; this is due to the inherently good

conditioning of the problem. The BIRTH algorithm is computationally simple but efficient and

enables to identify the steering vectors of up toP =N2 − N + 1 sources for arrays ofN sensors

with spatial diversity only, and up toP = N2 for those with angular and polarization diversities.

More generally, a family of new BMI methods, named BIOME, exploiting the information

contained in the data statistics at an arbitrary even order has been proposed. These new methods

allow to process both over and underdetermined mixtures of sources, provided the latter have

marginal HO cumulants with the same sign. The proposed methods are not sensitive to a Gaussian

colored noise whose spatial coherence is unknown and allow the processing of a number of sources
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depending on both the kind of sensors and the array geometry,and increasing with both the number

of sensors and the order of the data statistics. For underdetermined mixtures of sources, the

proposed methods seem to outperform most of the methods currently available.

Moreover, we have examined the asymptotic performances (e.g. covariance of estimate) of

contrast-based BSS algorithms by proposing a functional approach. As an illustration, 3 FourO

contrast criteria already compared by computer experiments, have been mainly focused on, for

asymptotic performance analysis. Forthcoming works will consist of looking for the contrast

criterion associated with ICAR in order to analyse accurately his performance using for instance

the latter functional approach.

Now, it can be interesting to compare the BIOME solution withthe exact one given by the

minimization of the mutual information, which is defined as the Kullback divergence between

the source joint distribution and the product of the marginal ones. Note that a practical way

to approximate the mutual information consists of computing an Edgeworth expansion of its

negentropy components.

In addition, we will soon analyse the computational speeds of the 2q-BIOME methods, and

test the latter algorithms with experimental signals, say,non synthetic signals, borrowed from the

radiocommunication context.

Besides, the blind source extraction problem deserves attention especially in the underdeter-

mined case, assuming the mixture is known (or beforehand identified). However, as we said it in

section 1.3, it is a difficult problem since the underdetermined mixtures cannot be linearly inverted.

Moreover, we will try to process this problem in a way as blindas possible, i.e. limiting the source

a priori assumptions.

Eventually, as shown in the report, the proposed ICAR (see chapter 2), BIRTH (see chapter

3) and BIOME (see chapter 4) approaches can tolerate (in their current form), but do not totally

exploit, cyclostationarity of the sources such as in [41]: this will be the subject of forthcoming

works.



Appendix A
Proof of the second matrix multilinearity

property (4.1)

Assuming (A1)-(A2), the 2q-th order statisticsCiq+1,..., i2q

i1, i2,..., iq, x
defined by (1.9) may be described,

using (1.4) and the multilinearity property shared by cumulants [55] [19, pp. 1-24], by

C
iq+1,..., i2q

i1, i2,..., iq, x
=

P∑

p=1

Cp,..., p
p,..., p, s

( q∏

m=1

A(im, p)

)


2q∏

m=q+1

A(im, p)∗


 (A.1)

It is straightforward to show that
(∏q−`

m=1 A(im, p)
) (∏2q

m=2q−`+1 A(im, p)∗
)

is theI`
1 -th compo-

nent of vector
[
ap

⊗q−̀ ⊗(a∗
p)
⊗`
]

and that
(∏2q−`

m=q+1 A(im, p)∗
) (∏q

m=q−`+1 A(im, p)
)

is theI`
2-th

component of vector
[
ap

⊗q−̀ ⊗(a∗
p)
⊗`
]∗

whereI`
1 , I`

2 are given by (1.12) and (1.13). Consequently,

since
[
ap

⊗q−̀ ⊗(a∗
p)
⊗`
]

is thep-th column vector of matrixA`
q (4.2), equation (A.1) may be written

as

C
iq+1,..., i2q

i1, i2,..., iq, x
=

P∑

p=1

Cp,..., p
p,..., p, s A`

q(I
`
1 , p) A`

q(I
`
2, p)∗ (A.2)

whereA`
q(n, p) is the(n, p)-th component of theN q×P matrix A`

q. So, sinceζ2q,s denotes the

P×P invertible diagonal matrixDiag
[
C1, 1, ..., 1

1, 1, ...1, s, C2, 2, ..., 2
2, 2, ..., 2, s, · · · , CP, P, ..., P

P, P, ..., P, s

]
, equation (A.2) may

take the following expression

C
iq+1,..., i2q

i1, i2,..., iq, x
=

P∑

p=1

A`
q(I

`
1 , p) ζ2q,s(p, p) A`

q
H

(p, I`
2). (A.3)

That means

C
iq+1,..., i2q

i1, i2,..., iq, x
=
[
A`

q ζ2q,s A`
q

H
]
(I`

1 , I`
2). (A.4)
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And, since quantityCiq+1,..., i2q

i1, i2,..., iq, x
is also the(I`

1 , I`
2)-th component of theN q ×N q matrix C`

2q, x,

according to (1.11), we finally have

C`
2q, x = A`

q ζ2q,s A`
q

H

. (A.5)



Appendix B
Proof of propositions 4 and 8

Proposition 8 may be rewritten as

(A4) ⇒ {∀ 1≤p1 6=p2≤P, ∃ 1≤n1 6=n2≤N : Dn1,n2(p1, p1) 6=Dn1,n2(p2, p2)} (B.1)

To prove it, assume the contrary:

∃ 1≤p1 6=p2≤P : ∀ 1≤n1 6=n2≤N, Dn1,n2(p1, p1)=Dn1,n2(p2, p2) (B.2)

This implies, sinceDn1,n2 =Φ
−1
n1

Φn2 areP×P diagonal full rank matrices, that

∃ 1≤p1 6=p2≤P : ∀ 1≤n1 6=n2≤N,
Φn2(p1, p1)

Φn1(p1, p1)
=

Φn2(p2, p2)

Φn1(p2, p2)
(B.3)

which is equivalent, according to (4.3), to

∃ 1≤p1 6=p2≤P : ∀ 1≤n1 6=n2≤N,
A(n2, p1)

A(n1, p1)
=

A(n2, p2)

A(n1, p2)
(B.4)

This means

∃ 1≤p1 6=p2≤P : ap1 ∝ ap2 (B.5)

In other words, assuming (B.2) implies that at least two columns of A are collinear, which

contradicts (A4). Consequently, proposition 8 is true.
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Appendix C
Proof of theorem 2

Each columnbp of [C`
2q, x]1/2Vsol is defined, according to (4.15), by

∀ 1≤p≤P, bp = λξ(p) [(aξ(p))
⊗q−̀ ⊗(a∗

ξ(p))
⊗`] of sizeN q×1 (C.1)

whereξ(·) is a bijective function of{1, 2, . . . , P} into itself (i.e. a permutation function) and

where|λp|= |Cp, p, ..., p
p, p, ..., p, s|1/2, | ·| denoting the complex modulus operator. Moreover, vectorsbp may

be written as

bp = [bp(1)
T bp(2)

T · · · bp(M)T]T (C.2)

whereM =N q−2 andbp(m) is of sizeN2×1. Now it is important to notice that each vectorbp(m)

(1≤m≤M ) may be expressed as a Kronecker product of the column vectorap of A by itself:

bp(m)=





λξ(p)

(∏q−2
j=1 A(nj ,ξ(p))

)[
aξ(p)⊗aξ(p)

]
if ` = 0

λξ(p)

(∏q−2
j=1A(nj ,ξ(p))

)[
aξ(p)⊗a∗

ξ(p)

]
if ` = 1

λξ(p)

(∏q−̀
j=1A(nj ,ξ(p))

)(∏q−2
j=q−̀+1 A(nj,ξ(p))∗

)[
aξ(p)⊗aξ(p)

]∗
o.w.

(C.3)

So we transform theM vectorsbp(m) of sizeN2×1 into N×N matricesBp(m) (1≤m≤M )

where the(i1,i2)-th component ofBp(m) corresponds to theϕ([i2 i1])-th component ofbp(m) so

that

Bp(m)=





λξ(p)

(∏q−2
j=1 A(nj,ξ(p))

)[
aξ(p) aξ(p)

T

]
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λξ(p)

(∏q−2
j=1A(nj ,ξ(p))

)[
aξ(p) aξ(p)

H

]∗
if ` = 1

λξ(p)

(∏q−̀
j=1A(nj ,ξ(p))

)(∏q−2
j=q−̀+1 A(nj ,ξ(p))∗
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aξ(p) aξ(p)

T

]∗
o.w.

(C.4)

Consequently, plugging (C.4) into (4.18), the set of matrices∆̀p may be expressed as

∆`
p =
{
µ`
p, nj

aξ(p) aξ(p)
H / 1≤nj ≤N

}
(C.5)
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with

µ`
p, nj

=


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|λξ(p)|2
∣∣∣
∏q−2

j=1 A(nj ,ξ(p))
∣∣∣
2 ∥∥∥aξ(p)

∥∥∥
2

if ` = 0

λ∗
ξ(p)

∏q−2
j=1A(nj ,ξ(p))∗ if ` = 1

|λξ(p)|2
∣∣∣
(∏q−̀

j=1A(nj,ξ(p))
) (∏q−2

j=q−̀+1 A(nj ,ξ(p))∗
)∣∣∣
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(C.6)

where‖ ·‖ denotes the norm operator respectively. So a joint diagonalization of matrices belonging

to ∆̀p indeed allows one to extract theξ(p)-th column vectoraξ(p) of A.



Appendix D
Multivariate high-order complex

cumulants

Cumulants are given as a function of moments in statistics text books, but only in the real case [55].

Therefore, it seems useful to report here their expressionsin the complex case. Again, we consider

only zero-mean complex variables that are distributed symmetrically with respect to the origin.

However, they do not need to be circularly distributed. Below, cumulants are denoted withκ and

moments withµ. As before, superscripts correspond to variables that are complex conjugated. We

have for orders 4 and 6:

κijk` = µijk` − [3]µijµk`

κ`
ijk = µ`

ijk − [3]µijµ
`
k

κk`
ij = µk`

ij − [2]µk
i µ`

j − µijµ
k`

κijk`mn = µijk`mn − [15]µijk`µmn + 2[15]µijµk`µmn

κn
ijk`m = µn

ijk`m − [5]µijk`µ
n
m − [10]µn

ijkµ`m

+2[15]µijµk`µ
n
m

κmn
ijk` = µmn
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mn − [8]µm

ijkµ
n
` − [6]µmn

ij µk`

+[6]µijµk`µ
mn + 2[12]µijµ

m
k µn

`

κ`mn
ijk = µ`mn

ijk − [3]µ`
ijkµ

mn − [9]µ`m
ij µn

k − [3]µijµ
`mn
k

+2[9]µijµ
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and eventually for order 8:

κijk`mnpq= µijk`mnpq − [28]µijk`mnµpq − [35]µijk`µmnpq

+2[210]µijk`µmnµpq − 6[105]µijµk`µmnµpq
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Appendix E
Expression of second order differentials

For contrastΥ1, we give below the expressions of the coefficients of the second order differential

with respect toU (omitting subscripty in Cj,k
i,`,y):

Θq′r′

qr =


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−={(δ(r′ − r) − δ(r′ − q))(Cq,q
r,q + Cr,r

q,r)} if q < r andq′ = r′

−={δ(r′ − r)(Cq,q
q′,q + 2Cq′,r

q,r − Cr,r
q′,q) + δ(q′ − r)(Cq,q

r′,q + 2Cr′,r
q,r − Cr,r

r′,q)+

δ(r′ − q)(Cq,q
q′,r − 2Cq′,q

q,r − Cr,r
q′,r) + δ(q′ − q)(Cq,q

r′,r − 2Cr′,q
r,q − Cr,r

r′,r)}
if q < r andq′ > r′

−={δ(q′ − q)(Cr,r
r′,r + 2Cr′,q

r,q + Cq,q
r′,r) − δ(r′ − q)(Cr,r

q′,r + 2Cq′,q
r,q + Cq,q

q′,r)+

δ(q′ − r)(Cq,q
r′,q + 2Cr′,r

q,r + Cr,r
q,r′) − δ(r − r′)(Cq,q

q′,q + 2Cq′,r
q,r + Cr,r

q,q′)}
if q > r andq′ < r′

<{(δ(r′ − q) − δ(r′ − r))(Cq,q
r,q − Cr,r

q,r)} if q > r andq′ = r′

−<{δ(r′ − q)(Cr,r
q′,r − 2Cq′,q

r,q + Cq,q
q′,r) + δ(q′ − q)(Cr,r

r′,r − 2Cr′,q
r,q + Cq,q

r′,r)+

δ(r′ − r)(Cq,q
q′,q − 2Cq′,r

q,r + Cr,r
q′,q) + δ(q′ − r)(Cq,q

r′,q − 2Cr′,r
q,r + Cr,r

r′,q)}
if q > r andq′ > r′

0 if q = r

(E.1)

85



86 APPENDIX E. EXPRESSION OF SECOND ORDER DIFFERENTIALS

and those of the second order differential with respect toCx:

Θijkl
qr =





U(r, i)U(q, j)∗ U(q, k)∗ U(q, l) + U(q, i)U(r, j)∗ U(q, k)∗ U(q, l)−
U(q, i)U(r, j)∗ U(r, k)∗ U(r, l) − U(r, i)U(q, j)∗ U(r, k)∗ U(r, l)

if q < r

0 if q = r

U(q, i)U(r, j)∗ U(r, k)∗ U(r, l) − U(r, i)U(q, j)∗ U(r, k)∗ U(r, l)+

U(r, i)U(q, j)∗ U(q, k)∗ U(q, l) − U(q, i)U(r, j)∗ U(q, k)∗ U(q, l)

if q > r

(E.2)
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Laboratoire des Images et des Signaux (LIS), September 1999.

[68] ——, “An algorithm for the blind identification ofN independent signal with2 sensors,”

in ISSPA 01, sixteenth symposium on signal processing and its applications, Kuala-Lumpur,

Malaysia, August 13-16 2001, pp. 5–8.

[69] A. TALEB and C. JUTTEN, “On underdetermined source separation,” in ICASSP 99, 1999

IEEE International Conference on Acoustics Speech and Signal Processing, vol. 3, Phoenix,

US, May 15-19 1999, pp. 1445–1448.

[70] N. THIRION and E. MOREAU, “New criteria for blind signalseparation,” inIEEE Workshop

on Statistical Signal and Array Processing, Pennsylvania, US, August 2000, pp. 344–348.

[71] D. W. TUFTS and C. D. MELISSINOS, “Simple, effective computation of principal eigen-

vectors and their eigenvalues and application to high-resolution estimation of frequencies,”



156 BIBLIOGRAPHY

IEEE Transactions On Acoustics, Speech, And Signal Processing, vol. 34, no. 5, pp.

1046–1053, October 1986.

[72] WILKINSON, The Algebraic Eigenvalue Problem. Clarendon Press, 1965.

[73] A. YEREDOR, “Non-orthogonal joint diagonalization inthe least-squares sense with

application in blind source separation,”IEEE Transactions On Signal Processing, vol. 50,

no. 7, pp. 1545–1553, July 2002.


