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Université de Nice Sophia-Antipolis, 2003

La séparation aveugle de sources et plus particulierelfdaralyse en Composantes Indépendan-
tes (ICA) ont recemment suscité beaucoup d’intérétlesEtrouvent en effet leur place dans
un grand nombre d'applications telles que les télecomaeations, le traitement de la parole,
I'analyse de données, ou bien le domaine biomédical. Ireipe de la séparation autodidacte (ou
aveugle) de sources est de restituer les sources émises,uetiqguement a partir des observations
issues des capteurs. Alors que certaines techniques ehneictécorréler (a I'ordrg) les signaux,
comme on peut I'observer en Analyse Factorielle avec I'fe@len Composantes Principales
(PCA), I'lCA pour sa part vise a réduire les dépendandesistiques des signaux aux ordres
supérieurs, et permet de cette maniere de restituer leses Les méthodes proposées sont
donc dédiées de préférence aux sources indépendstatétiquement. Selon I'application, on
peut toutefois choisir de ne retrouver que les paraméetres&lange instantané, ce qui est utile en
goniomeétrie car le dit mélange porte a lui seul toutefiimation nécessaire a la localisation des
sources : on parle alorsidentification aveuglele mélange. Pour d’autres applications telles que
la transmission, il est nécessaire de retrouver les sep@meses : on emploie alors I'expression de
séparationou bien encore @xtraction aveuglele sources. De plus, alors que divers algorithmes,
tres performants notamment sous I'hypothése de bruisgien spatialement et temporellement
blanc, permettent déja depuis une dizaine d’annéesidertle cas de mélanges d#sreetermires
(c'est-a dire lorsque le nombre de sources est infériaunoanbre de capteurs), le cas de mélanges
dits sous-@termirés(c’est-a dire lorsque le nombre de sources est strictegug@rieur au nombre
de capteurs) a été jusqu’a présent peu étudié ern dépinombreuses applications. Les travaux
de thése ont alors permis d’élaborer une famille, BIOM& nduvelles méthodes statistiques de

séparation aveugle de sources, d’'une part traitant lel@rab du bruit gaussien de cohérence



spatiale inconnue, d'autre part permettant I'identificatautodidacte du mélange y compris en
contexte sous-déterminé. Par ailleurs, une étude asyiqpe de performances des méthodes
basées sur la maximisation des contrastes d'otdaepu &tre menée dans le cas de mélanges
orthonormés. Enfin, le comportement, en présence deusignalostationnaires potentiellement
non centrés, des méthodes de séparation aveugle deesaxpgloitant les statistiques d’ordze

et/ou4 a également pu étre étudié et des améliorations org até proposées.
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Chapter

Introduction

Blind Source Separation (BSS), and more particularly ledelent Component Analysis (ICA),
now raise great interest. In fact, ICA plays an importang riol many diverse application areas,
including radiocommunications, speech and audio [1], ratmar, seismology, radio astronomy,
medical diagnosis [32] and data analysis. For example, amBdicine contexts, it is possible
to vizualize the electrical activity of a fetal heart, thetdteElectroCardioGram (FECG), from
non-invasive techniques, say, from ECG-recordings medsom the mother’s skin. In fact, these
cutaneousecordings can be considered, in first approximation, damtsneous linear mixtures of
potential signals generated by underlying bioelectricnpineena (maternal and fetal heart activity,
potential distributions generated by respiration and sihmactivity, ...); noise can be taken into
account as an additive perturbation. So ICA can be used itnastthe FECG from recordings
on the mother’s skin [32] in order to evaluate the well-beofghe fetus and reveal important
diagnostic information, like for the diagnosis afrhytmia Likewise, in digital radiocommu-
nications contexts, if some sources are received by an afragnsors, and if for each source
the channel delay spread associated with the differenbseiis much smaller than the symbol
durations, a static mixture of complex sources is obsertau the sensors. BSS consists in this
case of restoring by a spatial filtering operation the tratisthsources only from the sensor data.
Depending on the application, it may be sufficient to idgndifstatic mixture, as in Direction Of
Arrival (DOA) estimation problems, since the column vestof the mixture are the source steering
vectors: this is referred to ddind identificationof source mixtures. In other contexts such as

radiocommunications, the question is thabbihd extractionof sources, or more commonly BSS.

Whereas some algorithms try to decorrrelate estimatedisigising Second Order (SO) statis-

1



2 CHAPTER 1. INTRODUCTION

tics, as in Factor Analysis with Principal Component Anay{®CA), ICA attempts to restore the
independence of outputs using Higher Order (HO) statisTibsis, under the source independence
assumption, ICA allows one to blindly identify the staticxtoire, and consequently to extract the
transmitted sources. Nevertheless, ICA performance dispam several assumptions: (i) sources
should be independent in some way, and (ii) in most cases itktena has to beverdetermined

in other words, there should be at least as many sensors aespwhich is generally a strong
limitation unless sparsity conditions are assumed; if #tief assumption is not made, the mixture
is calledunderdetermined It is important to note that noisy static mixtures Bfsources can
be viewed as noiseless underdetermined, since the bacidyrmise may be considered A5
additional sources as raised in [16] [69], whé¥ds the number of sensors. So a noiseless model
of P+ N sources may be used, but, some sources modeling the noié¢ aigever not be
independent. Nevertheless, in the presence of a lineae,nimisluding the Gaussian noise, the
latter can be approximated by the output of causal conwsiatifilter of lengthA/ whose inputs
are spatially and temporally white. Moreover, the lattemvadutional filter can be written as a
N x M N matrix. If the observed linear noise is temporally white glging M = 1), the latter
matrix is given by the square root of the noise covarianceirmathus, the data observed from the
N sensors can be written as a noiseless static mixtufejofl/ N independent sources, requiring
the use of blind underdetermined mixture methods. Nevietkewe do not resort to this noiseless
model in the new methods proposed in this thesis, in contodé?], for the following reasons :
(i) underdetermined mixtures can be hardly identified whéarge number of sources is present,
(ii) if the noise is a non linear process, the noisy model came written as a underdetermined
static mixture. In addition, the background noise will beuaaed Gaussian in this thesis, and since

its HO statistic contribution is null, it is not necessaryctmsider it as additional sources.

1.1 Assumptions and problem formulation

1.1.1 Matrix notation

First, define the following compact notation associatedlie usual Kronecker produet and

namedKronecker power

B*" = B B®...QB with B*’=1 (1.1)
N——
mtimes
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where B is any N x P rectangular matrix;B®™ is then N x P™. Next, define a columnwise
Kronecker product, denoted and sometimes referred to as the Khatri-Rao product [39] F&
any rectangular matrica& and H, of size Ng x P and Ny x P respectively, the columns of the
(NaNi) x P matrix Go H are defined ag; ® h;, if g; andh; denote the columns a& and H
respectively. The Khatri-Rao produetmay also be defined [73] as

GoH =[G®1y,] 61y, ® H] 1.2

where® denote the usual Hadamard (element-wise) productigrah IV x 1 vector ofls respec-

tively. So it is also possible to define tKdatri-Rao power

B°" = BoBo...oB with B?’=1 (1.3)
—_———

mtimes

1.1.2 Assumptions and notations

Assume that for any fixed inde N complex outputs:, (k) (1 <n < N) of a noisy mixture of
P statistically independent sourcegk) (1 <p < P) are available. ThéV x 1 vectorz(k) of the

measured array outputs is given by
x(k) = As(k) +v(k) (1.4)

where A, s(k), v(k) are theN x P constant mixing matrix, thé” x 1 source andV x 1 noise
random vectors, respectively. In addition, for any fixeded, s(k) andv (k) are statistically

independent.

We further assume the following hypotheses:

Al. Vectors(k) is stationary, ergodic (cryclostationaryand cycloergodic respectively), with
components a priori in the complex field and mutually undatesl at ordeRq (the cyclo-

stationarity case will be addressed in the statistical estimation sedtid.4);

A2. Noise vectorv (k) is stationary, ergodic and Gaussian with components aigriothe

complex field too;

A3. 2¢-th order marginal source cumulants (they will be definedeictisn 1.2.1) are not null

and have all the same sign;

A4. Column vectorss, of A, also called steering vectors, are not pairwise collinedrraone of

their entries is null;
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A5. The NexP matrix A

implies thatP < N*);

1, which will be defined in section 4.1.1, is of full column rafthkis

where A} = A”""o A*®" andq an arbitrary integer greater than

Under the previous assumptions, the problem addressedsimgjort is the Blind Mixture
Identification (BMI) of mixtureA, to within atrivial matrix Z” (a trivial matrix is of the formAII
whereA is an invertible diagonal matrix arld a permutation), fron2¢-th orderstatistics(these
ones will be defined in section 1.2.1) of the observationssidgss, the classical BSS problem in
the overdetermined case consists of findinghax P matrix (the static source separato¥)/,
yielding aP x 1 output vector

y(k) = Wra (k) (15)

corresponding to the best estimai€k), of the vectors(k), up to a multiplicative trivial matrix.

1.1.3 Performance criterion

Most of the existing performance criteria used to evaluagedquality of the BMI process, in the
overdetermined case [16] or in the underdetermined cade[¢8Y, are global criteria, which
evaluate a distance between the actual mixing ma&iand its blind estimated. Although
practical, a global performance criterion necessarilyt@ios a part of arbitrary considerations in
the manner of combining all the distances between the \@ajainda,. Moreover, it is possible
to find that an estimatgl of A is better than an estimaﬂfg, with respect to the global criterion,
while some columns oft, estimate the associated true steering vectors in a betgethﬂazl.
For these reasons, it may be more appropriate to use a noal gidterion for the evaluation of

the BMI process, which is defined by tiieuplet
D(A71/4\) :(a17a277ap) (16)
where
ap = mini<i<p [d(ap, @;)] 1.7)

and wherel(u, v) is the pseudo-distance between vectw@ndv, defined by:

[uvf

d(u,v) =1- —5——
lulf ol

(1.8)

where||-|| is the Euclidean norm defined @iV by ||u|| = vu"u.
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Likewise, but only in the context of overdetermined mixgré& may be more appropriate
to use the well-known SINRM (Signal to Interference plus $¢oRatio Maximum) criterion,
defined in [11, section 3] and in appendix H (page 118), in otdesvaluate performances of

BSS algorithms.

1.2 Statistics of2¢-th order

1.2.1 Definition

The2¢-th order statistics considered in this report are defined by
Ot e (k) = Cum{my (k),aig(k), . iy (k) i (F) - 30, (K) "} (1.9)

whereq termsz k) are not conjugated angterms are conjugated. Function (1.9) is well-known as
the 2¢-th ordercumulantcomputed fron2q components o (k) with as many conjugated terms
as not conjugated. Consequently, the associ2zgeth ordermarginal cumulanof sources, (k) is
defined by

ChB-P (k) = Cum{s,(k),5(k), ... ,5(k),5(k)% ... ,5(k)*} (1.10)

g components q components

Note that in the presence of stationary sour@esth order statistics do not depend on tifeso
they can be denoted ny;‘fg’iﬁ?;”q. For the sake of convenience, we will describe our new
b2yt

algorithms, names ICAR, BIRTH and BIOME in the sequel, in stegionary case. Nevertheless,

the cyclostationary case will be addressed in short in@edti2.4 and more fully in section 5.2.

1.2.2 Matrix arrangement

Finally, 2¢-th order statistics computed according to (1.9) may benged in anVixN? statistical
matrix C,, -, called2¢-th order statistical matrix af (k) such thatCy, ., is an Hermitian matrix.
Nevertheless, several ways to st@reth order statistics i, ,, are possible and we consider in
the following ¢+ 1 arrangements, indexed by the intedgdb < ¢ < g), each yielding a statistical
matrix C4, ; such that its([f,[ﬁ)—th entry (L < I[,I§ < N9) is given by

ng’ (13(]—1{[5) = Ciqﬂv"vhq (111)

1,12, .-, itb z
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where for any0 </ <q and for all1 <4, 43, ...,i3 < N,

[fztp([il ig Z‘q_g,1 iq_g igq_g+1 igq_l igq])

g first subscript indices £ last superscript indices (1 12)

Igzw(hq—kl Z.q'+2 ’L'2q_é_1 ’LQq_( iq_(+1 i¢1 iq ])

g first superscript indices £ last subscript indices

and where functiorp is defined by
J-1 A
VzeN’,  o(z)=z2(J)+ > N7(z(j) - 1) (1.13)
j=1

denoting withz(j) the j-th component of vectot.

Example 1 Fourth order (FourO) statistics defined by (1.9) fpe= 2 and described explicitly in
appendix D (page 83) for zero-mean complex variables thatdistributed symmetrically with
respect to the origin, may be arranged in th&xN? quadricovariance matriQ,, = C}w such
that

QI 1) = G (1.14)

2,12,&

is the (I}, I3)-th entry (( < I}, I3 < N?) of Q,, and where for alll <3, is, i3,i4 <N,

I = (it ia]) = N(iy — 1) +1i4

Iy = ¢(liy i2]) = N(iz — 1) + 2 (1.15)

Example 2 SixO statistics defined by (1.9) foe=3 and described explicitly in appendix D (page
83) for zero-mean complex variables that are distributemirsyetrically with respect to the origin,

may be arranged in th&/3x N3 hexacovariance matrif, = Cém such that

Hy1 1) = Cite (1.16)

i1 ,82,13,&
is the (I}, I3)-th entry (( < I, I3 < N?3) of H, and where for alll <i, is, i3, i4, i5, 16 <V,

L= p(li iz i) = N(N (it — 1) +i2 — 1) + i

Iy = @(lig i5 i3]) = N(N(ig — 1) +1i5 — 1) + i3 (1.17)
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Remark 1 Another, perhaps more intuitive (especially for readernifear with Matlab), way to
present the construction aﬁfw is the following: first, construct alg-dimensional tensoff’,

whose elements are given by

i?qaqu—la“-vZ’Qq—f—}—b iq—éaiq—é—la---aila Ggidyeeny §
o o S =0 e (1.18)
Lgs Lg—1y - - o5 Ll 5 12g—4) 12415 - - -5 Lgtl
The matrixcfg z IS then given by a simple Matlab reshape operation as foligwi
C5, = = reshapéT’, N4, N) (1.19)

We limit ourselves to arrangements of statistics that gifferént results at the output of the BMI
methods in terms oprocessing powe(i.e. in terms of maximal number of processed sources).
Note that the selection of the ordering paramétaraximizing the processing power for a fixed

cumulant order; will be discussed in section 4.2.2 summarizing results shiovf12].

1.2.3 Multilinearity property

The statistical matrix of the daté;fw (g > 1), has a special structure especially thanks to the
multilinearity property under changes of coordinate systeshared by all moments and cumulants
[55] [19, pp. 1-24]. Under assumption8X)-(A2), this property can be expressed, according to
(1.11), (2.12) and (1.13), by the following equation

VO<l<q, Chya=[A"T'RACCh, ,[AZT A (1.20)

where theVIxN¢ matricesch - and theP4x P4 matricescég s are the statistical matrices ofk)
ands(k) respectively. The numbéris the same as that appearing in equations (1.12) and (1.11).
Moreover, note that the arrangemedﬁg - andcgcfgc (0< £ <q) give rise to the same processing
power of underdetermined mixtures of arbitrary statififdadependent sources as shown in [12].

In fact the first arrangement is the conjugate of the othertevtes the values of and N. Itis then
sufficient to limit the analysis t6 < ¢ < gy whereqy=q/2 if ¢ is even andjy=(¢g—1)/2if ¢ is

odd.

1.2.4 Statistical estimation

Generally, using the well-known Leonov-Shiryaev formub&][ applicable in the complex case

[65], 2¢-th order cumulants (1.9) are computed from moments of @gatadler than or equal g
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given by
MLt () = Elg (k) - @, (k) 5 (R) - i, (R)) (1.22)

wherer + s < 2q. Appendix D illustrates the Leonov-Shiryaev formula for is@itistics and for

zero-mean complex variables that are distributed symoadiyiwith respect to the origin.

However, in practical situations, moments and cumulantmaibe exactly computed: they
have to be estimated from componentse¢k). If components are stationary and ergodic, sample
statistics may be used to estimat¢h order moments [55], and consequently to estimate, \da th

Leonov-Shiryaev formul&g-th order statistics (1.9).

Nevertheless, if sources are cyclostationary, cyclogcgqubtentially non zero-mearg-th

order continuous-time temporal mean statistics have tesbd instead of (1.9), such as

Clothlai2eim <ciq+1’iq+2""’imu<;)> (1.22)

1,82,--4,0gT 0,12,..y0q,T c

where(-), is the continuous-time temporal mean operation defined by

] 1 T/2
Vfite— f(), (f(t)). = lim f/ F()dt (1.23)

T—+o00 T'J—T/2
These continuous-time temporal mean statistics are thimaged using, foy = 2, the estima-
tors described in [42] for zero mean sighals and in [44] (gg@eadix H and more particularly
section 5.2) for potentially non zero-mean signals, anérekhg the previous ones to very HO
statistics forg > 3. Note that the proposed ICAR (see chapter 2), BIRTH (seeteh&®) and
BIOME (see chapter 4) approaches can tolerate (in theienuform), but do not totally exploit,

cyclostationarity of the sources such as in [41]: this willthe subject of forthcoming works.

1.3 Bibliographical survey

The literature related to BMI or BSS in static mixtures isv&yed in this section. For nearly two
decades, SO and HO BSS methods [20] have been developedtateegeveral statistically inde-
pendent sources from measurements. While the first pagtedaio HO BSS has been published
in 1985 by Herault et al. [48], the ICA concept is proposedwa years later in 1991; Comon
proposes a FourO contrast-based method, COM2 [16], Cameddouloumiac [8] develop a
matrix approach, well-known as JADE, and give rise to thetJApproximate Diagonalization

(JAD) algorithm [9]. These approaches use explicitly orligifly FourO statistics.
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In parallel, other approaches attempt to exploit SO siedisinly. This is made possible thanks
to the color of the sources, assumed unknown but differesty Was the first to exploit covariance
matrices at two different delay lags [45]; the complete th&oal background is given only a few
years later by Comon et al. [24]. The same kind of approackvsldped independently ten years
later by Belouchrani et al. [2], who give rise to the so-aal®OBI method, only based on SO

statistics.

Delfosse et al. [34] propose to extract one source at a tinteéchais now referred to as
Deflation procedures. A few years later, Hyvarinen et al.s@né the FastiCA method, first for
signals with values in the real field [51], and later for coexpsignals [3], using the fixed-point
algorithm to maximize a FourO contrast. This algorithm islefiation type, as that of Delfosse et

al. [34], and must extract one source at a time.

Continuing chronologically, Comon proposes a simple saiuf18], named COM1 in this
paper, to the maximization of another FourO contrast fengtiresented in [70] [25]. Whereas all
the latter methods exploit statistics of the data, othewritlyns only use the geometric properties
of the data constellation. Although Diamantaras deals Bithd Channel Identification (BCI)
of one source in [37], he draws up in this recent paper (sedfipan inventory of the current

geometric BSS methods, which are actually born in the reseti

Each of these methods suffers from limitations. To starhwitie current geometric methods
are very attractive, but for the time being, they are unabkeparate any kind of sources but only a
priori real M -ary PAM sources, and are very sensitive to noise. Next, @Bl&algorithm is unable
to restore components that have comparable spectral idsn€in the other hand, though the other
previous methods perform well under some reasonable asgEushey may be strongly affected
by a Gaussian noise with unknown spatial correlation (bezad their prewhitening stage). Such

a noise appears for instance in some HF (High Frequency)cadimunications applications.

Moreover, in such applications, the reception of more segitban sensors is possible and its
probability increases with the reception bandwidth. Thgtane is then calledinderdetermined
[17], which means that the observation vectors are repredaémtheovercompletdasis of source
vectors [50, pp. 305-313]. The previous algorithms, whighuire a SO prewhitening step, are
then unable to identify the mixture and to extract the saurtedeed, the SO prewhitening step,
which aims at orthonormalizing the source steering vectasnot orthonormalize the latter when

the number of sources is greater than the number of sensors.
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In order to deal with the correlated noise problem, Feretall. have proposed a new family
of HO BSS methods exploiting the potential cyclostaticiyaot the received sources [41]. In fact,
the latter family of algorithms uses cyclic statistics of thata; since cyclic covariance matrices
associated with a stationary noise are null for non zerocy@quencies, these cyclic methods
allow the optimal separation of independent sources evéreipresence of a stationary noise (not
necessarily Gaussian) with unknown spatial correlatioweéler, the use of cyclic methods is

more complex because of the estimation of cyclic frequenare time delays.

On the other hand, the underdetermined mixture case is euiffiroblem with sharp identifia-
bility questions. Taleb et Jutten have discussed somedtiearresults on underdetermined source
separation [67, chapitre 7] [69] showing, firstly, that Dlidentification of steering vectors of non
Gaussian sources is possible, and secondly, that non @aussirces can only be restored up to
an arbitrary additive random vector. However, for discistarces, this vector is deterministic.
Several other methods have been developed in order to faaentterdetermined mixtures case,
namely when there are fewer sensors than sources (e.g. h@renénjoys no sparsity property
such as disjoint source spectra, or sources non permargatdgnt).

Contrary to the overdetermined case, the underdetermiindidaBd BSS problems cannot be
solved at the same time. Besides, even assuming that we kmomiking matrix, since the latter
is not invertible, a simple pseudo-inverse does not gelyeyilld a satisfactory solution. A more
sophisticated estimator of sources has to be obtainedistarice, by Maximum Likelihood (ML)
or Maximum A Posteriori (MAP) estimations [54] [49]. Howeayéhe problem with the ML/MAP
estimators is that they are rarely easy to compute. Thisnigdtion cannot be put in a simple
algebraic framework. As a consequence, it leads to a clased $olution only if sources have a
Gaussian distribution: in this case the optimum is giverh®ypseudo-inverse. But since ICA with
Gaussian variables is of little interest (lack of uniquegethe pseudo-inverse is not a satisfactory
solution in most cases.

However, one case where the ML/MAP optimization is easianthsual to compute, is when
sources have a Laplacian distribution. Lee et al. assumd®3] in order to extract three speech
signals from only two mixtures. Nevertheless, usingupergaussiardistribution, such as the
Laplacian distribution, is well justified in feature exttan only if the independent components
have a sparse decomposition, in the sense that they aredjisite equal to zerog(g. speech
signals).

In order to face the BMI problem, one can use a ML estimationthe simplest case of ML
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estimation, we formulate the joint likelihood of the mixtuaind the realization of the sources, and
maximize it with respect to all these variables. Howeverximiation of the joint likelihood

is a rather crude method of estimation, and from a Bayesiewpaint, it is more interesting to
maximize the marginal posterior probability of the mixingimix. So a more sophisticated form
of ML estimation is obtained by using a Laplace approximatid the posterior distribution of
A. This improves the stability of the algorithm, and has bearcessfully used for estimation
of overcomplete bases from audio data [53]. Although thehoe{53] succeeds in identifying
the steering vectors of up to four speech signals with onty gensors, the authors need however
sparsity conditions, and do not address the general case allrsources are always present. Note
that one could also use an Expectation-Maximization (EMpathm [57].

Another approach has been proposed by Grellier et al. indAdpter 6] [23], where the
blind source extraction problem is addressed by formingiairsensor measurements, in order to
make it possible to invert linearly the observation modektuél measurements are a non linear
function of actual measurements, and the choice of thislinearity has to depend on the source
distribution, assumed in [23] to be known and discrete. Twmerical algorithms are proposed,

depending on the fact that the mixture is known (or befordhdantified) or not.

Other approaches have been published [6] [17] [30] [53] [88] [33]. BMI can be addressed
in terms of the diagonalization of some tensor [4] [31] [19he methods proposed in [6] [17]
[30] [33] only exploit the information contained in the dafaurO statistics whereas the one
proposed in [68] exploits the information contained in tikead characteristic function of the
observations. In fact, Cardoso presents in [6] as soon a% tf#9interesting FOOBI (Fourth
Order Only Blind Identification) concept, which exploitsethuper-symmetrié¢-ourO cumulant
tensor, and more particularly, relates symmetries of tlegloovariance to rank properties. Based
on EigenValue Decomposition (EVD) of a real symmetric mxatthe FOOBI algorithm has
recently been improved by De Lathauwer et al. in [33] resgrtio a joint (or simultaneous)
diagonalization. Besides, De Lathauwer et al. define twerothnk one detecting mappings
yielding two other solutions to the blind identification ofidertermined mixtures, with further
weakened constraints on the source numBer Note that De Lathauwer extends in [27] the
FOOBI concept to the canonical decomposition of a HO tensarmecessarily super-symmetric,
computed by means of a joint congruence transformation [K8reover, an application to the
blind identification of convolutive MIMO (Multiple OutputMultiple Outputs) is given in [27].

An other application of the extended FOOBI concept to thetjobngruence transformation of a
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set of underdetermined matrices, say, with more columrigtias, is presented in [28], which is
interesting since many ICA algorithms rely on this jointgbaalization step. In [36], Diamantaras
presents an interesting method allowing to identify thetorix of many binary sources using
a single observation sequence. Assuming additive Gaussime, the probability distribution
function of the sole observation is known to be [47] a mixtof&aussian centered at points that
uniquely determine the mixing parameters and the sourcelsigip to a permutation and a sign
ambiguity. His simulations show that the method can suéalgsdentify the mixture of at least
up to ten binary source signals (this is of course limitedHeyrioise level and the data length).
However, some of these methods have drawbacks in operbtiomizxts. Indeed, The FOOBI
algorithm [6] and its first improvement [33, section 2] allda process up td” sources such
that P(P — 1) < N?(N —1)%/2 where N is the number of sensors. Likewise, the boundron
associated with the second improvement [33, section 3]Je@FBOBI method is such th&t(P —
1) < N3(N —1)/2. However, these three methods are suboptimal in terms ofmagxumber
of processed sources, since the analysis of FourO virtuay®f{13] yields that for arrays with
particular diversity, up ta® = N? steering vectors may be identified from only FourO stasstic
On the other hand, the third improvement [33, section 4] ef ROOBI algorithm allows one
theoretically to reach the latter optimal upper bound. Minadess, although the previous methods
[6] [33] seem very attractive in theory, no simulation hasrbpresented. As for the BMI methods
[17] [30], they assume FourO non-circularity and thus faiseparating FourO circular sources.
Next, the theory developed in [17] only confines itself tothse of three sources and two sensors.
In addition, the method [68] has been developed only formeatures of real-valued sources, and
the issue of robustness with respect to an over estimatitimeafiumber of sources remains open.
Eventually, the geometric approach presented in [36] fesasly on binary antipodal sources, and
does not yet allow to process types of sequences such asevellPAM or QAM signals [61].
Likewise, the latter algorithm assumes that the Gaussi@ens spatially and temporally white.
But more importantly, the application of the method is limitby the combinatorial explosion as
the number of sourceB increases, since the algorithm complexity is exponentiti vespect to

P.

1.4 Chapter summaries

e Chapter 2

The problem of blind separation of overdetermined mixt(feser sources than sensors) of
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sources is addressed in this chapter. Since classicaithlggrmay be strongly affected by
the presence of a Gaussian noise with unknown spatial cotera new method, named
ICAR (Independent Component Analysis using Redundanciethe quadricovariance),
is proposed to overcome this problem. This method, withayt \@hitening operation,

only exploits some redundancies of a particular quadricamae matrix of the data. The
comparison of its performance to those of classical metkbdss off the best behavior of

ICAR in most situations.

Moreover, for several years, contrast-based Blind Sousgation (BSS) has been suc-
cessfully used in several areas, including radiocommtinite. Here a functional approach
relying on differential calculus theory is proposed, aigat analyzing asymptotic perfor-
mances of BBS contrast criteria: the variance of the esitcheg¢parating matrix is expressed
as a function of that of estimated cumulants. As an examipie chapter focuses on three
widely used FourO contrast criteria. This allows one to gifiathe behavior of these three

separators for large samples.

These works have been presented respectively at the tvawfoly conferences:

L. ALBERA, A. FERREOL, P. CHEVALIER and P. COMON, "ICAR, un al gorithme
d’'ICA a convergence rapide, robuste au bruit,” InGRETSI 03, Dix-neuveme colloque
sur le Traitement du Signal et des ImageRaris, France, September 8-11 2003, vol. 1,
pp. 193-196.

L. ALBERA and P. COMON, "Asymptotic performance of contrast -based blind source
separation algorithms,” in SAM 02, Second IEEE Sensor Array and Multichannel Sig-
nal Processing WorkshopRosslyn, US, August 4-6 2002, pp. 244-248.

and have been submitted to:

L. ALBERA, A. FERREOL, P. CHEVALIER and P. COMON, "ICAR: Inde pendent
Component Analysis using Redundancies,” ilSCAS 04, 2004 IEEE International Sym-
posium on Circuits and System¥ancouver, Canada, May 23-26 2004, submitted to the
invited sessions.

A journal paper has been submitted to IEEE Transactions @mabProcessing:

L. ALBERA, A. FERREOL, P. CHEVALIER and P. COMON, ICAR, a tool for Blind
Source Separation using Fourth Order Statistics only,” sulmitted in IEEE Transac-
tions On Signal ProcessingNovember 2003.
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e Chapter 3

The BMI of underdetermined mixtures problem is addressethkiyng advantage of SixO
statistics and the Virtual Array (VA) concept. It is shownh8ixO cumulants can be used
to increase the effective aperture of an arbitrary antemag,aand so to identify the mixture
of more sources than sensors. A computationally simple fiigiemt algorithm, named
BIRTH, is proposed and enables to identify the steeringoreadf up toP = N2 - N +1
sources for arrays ¥ sensors with spatial diversity only, and upRe= N? for those with
angular and polarization diversity. Moreover, improvetsasf BIRTH have been proposed

in this chapter, optimizing differently the compromiseveen performance and complexity.

One part of these works has been presented at the followimigi@mnce:

L. ALBERA, A. FERREOL, P. COMON and P. CHEVALIER, "Sixth orde r blind
identification of underdetermined mixtures (BIRTH) of sources,” in ICA 03, Fourth
International Symposium on Independent Component Analysind Blind Signal Separa-
tion, Nara, Japan, April 1-4 2003, pp. 909-914.

The other part, BIRTH improvements, has been submittedetéafowing conference:

L. ALBERA and P. COMON and P. CHEVALIER and A. FERREOL, "Blind identifi-
cation of underdetermined mixtures based on the hexacovaance,” in ICASSP 04, 2004
IEEE International Conference on Acoustics Speech and SajrProcessing Montreal,
Quebec, May 17-21 2004, submitted.

A journal paper will be submitted to IEEE Transactions Om@idrocessing.

e Chapter 4

The problem of Blind Identification of linear mixtures of implendent random processes is
known to be related to the diagonalization of some tensotsis problem is posed here
in terms of a non conventional joint approximate diagorsion of several matrices. In
fact, a congruent transform is applied to each of these oaatrithe left transform being
rectangular of full rank, and the right one being unitarye®pplication in antenna signal
processing is described, and a family of new methods, nan@¥EB (Blind Identification

of Overcomplete MixturEs of sources), extending the ICARI &1RTH algorithms to
statistics of arbitrary orde2q, whereq is an arbitrary integer greater th&n and giving

rise to the2¢q-BIOME methods, is proposed.
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These works have been submitted to the following journals:

L. ALBERA, A. FERREOL, P. COMON and P. CHEVALIER, "Blind Iden tification
of Overcomplete Mixtures of sources (BIOME),” to appear inLinear Algebra Applica-
tions.

P. CHEVALIER, L. ALBERA, A. FERREOL and P. COMON, "On the virt ual array
concept for higher order array processing,” in IEEE Transactions On Signal Process-

ing.
Besides, a patent has been registered such as:

L. ALBERA, A. FERREOL, P. CHEVALIER and Pierre COMON, "Proc édé d’identi-
fication aveugle de nelanges de sources aux ordres sépeurs”, no. FR 03/4041, 63019
(THALES Communications), April 01 2003.

e Chapter 5
This chapter summarizes my other contributions, whosengdwand conference papers are
given in appendix. First, a new attractive FourO BMI methondmed FOBIUM (Fourth
Order Blind Identification of Underdetermined Mixtures ofisces) and able to identify the
steering vectors of more sources than sensors, has beerspthpThe new method imple-

ments a FourO pre-whitening step and exploits the trispecttiversities of the sources.

On the other hand, we have analysed the behavior and propdsgdations of the current
SO and FourO blind source separation methods for sourceshvainé cyclostationary and
cyclo-ergodic up to FourO, and potentially non zero-meam.fact, most of the SO and
Higher order (HO) blind source separation methods develtie last decade aim at blindly
separating statistically independent sources, assuntednzean, stationary and ergodic.
Nevertheless, in many situations of practical interesthsas in radiocommunications con-

texts, the sources are non stationary and very often cytiosary (digital modulations).

These works have been presented respectively at the falipednferences:

A. FERREOL and L. ALBERA and P. CHEVALIER, "Fourth Order Blin d Identi-
fication of Underdetermined Mixtures of sources (FOBIUM),” in ICASSP 03, 2003
IEEE International Conference on Acoustics Speech and SajiProcessingHong Kong,
China, April 6-10 2003, pp. 41-44.
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P. CHEVALIER, A. FERREOL and L. ALBERA, "On the behavior of cu rrent sec-

ond order blind source separation methods for first and secod order cyclostationary

sources — Application to CPFSK sources,” inlCASSP 02, 2002 IEEE International
Conference on Acoustics Speech and Signal Processidgando, US, May 13-17 2002,
pp. 3081-3084.

A. FERREOL, P. CHEVALIER and L. ALBERA, "Higher order blind s eparation of
non zero-mean cyclostationary sources,” it USIPCO 02, XI European Signal Process-
ing Conference Toulouse, France, September 3-6 2001, vol. 5, pp. 103-106.

P. CHEVALIER, A. FERREOL and L. ALBERA, "M éthodologie gnérale pour la
separation aveugle de sources cyclostationnaires arbitreés — Application a I'écoute
passive des radiocommunications,” irGRETSI 03, Dix-neuvéme colloque sur le Traite-
ment du Signal et des Image®aris, France, September 8-11 2003, vol. 1, pp. 43-46.

and will appear in the following journal:

A. FERREOL, P. CHEVALIER and L. ALBERA, "Second order blind s eparation of
first and second order cyclostationary sources — Applicatio to AM, FSK, CPFSK and
deterministic sources,” inIEEE Transactions On Signal ProcessingApril 2004.

Besides, a journal paper describing in detail the FOBIUMbatgm has be submitted to

IEEE Transactions On Signal Processing:

A. FERREOL, L. ALBERA and P. CHEVALIER, "Fourth Order Blind |  dentification
of Underdetermined Mixtures of sources (FOBIUM),” submitted in IEEE Transactions
On Signal ProcessingNovember 2003.

Finally, two patents have been registered such as:

A. FERREOL, L. ALBERA and P. CHEVALIER, "Proc édeé et dispositif d'identifica-
tion autodidacte d’'un mélange sous-8terminé de sources aw®™¢ ordre”, no. FR
03/4043, 63021 (THALES Communications), April 01 2003.

A. FERREOL, P. CHEVALIER and L. ALBERA, "Proc édé de traitement d’antennes
sur des signaux cyclostationnaires potentiellement non o& és”, no. FR 02/5575, 62801
(THALES Communications), May 03 2002, no. FR 2 839 390, Novedper 07 2003



Chapter

Fourth Order Independent Component

Analysis

We present in this chapter, dedicated to overdeterminedunaix and FourO statistics, two inde-
pendent sections: in the former, a new algorithm is preseewen when in the latter, asymptotic

performance of contrast-based BSS methods is analysed.

2.1 ICAR or the fourth order blind source separation

A new method, named ICAR (Independent Component AnalysigyuRedundancies in the qua-
dricovariance) is proposed in this section. Only based antlicorder statistics, ICAR frees o.s.
from second order whitening step in contrast to classicahous [2] [16] [18] [8] [51] [3] and
consequently is not affected asymptotically by the presasfca Gaussian noise with unknown
spatial correlation. Actually, ICAR exploits redundargia a particular FourO statistical matrix
of the data, calledjuadricovariance However, the latter algorithm assumes sources to have
non zero FourO marginal cumulants with the same sign, agsumghich is verified in most
radiocommunications contexts. Furthermore, the perfaomaf ICAR is also analysed in this
chapter in different practical situations, through comgp@imulations, and compared to those of

the classical algorithms named SOBI, COM1, COM2, JADE, Ies#stind FOBIUM method.

2.1.1 The core equation

Under assumptionsA(l)-(A5) of section 1.1.2 fory = 2, the ICAR method precisely exploits

several redundancies in the quadricovariance m@lyixdefined by example 1 of section 1.2.2, of

17
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the data especially thanks to the multilinearity propeA&ithough most of BSS algorithms, such
as JADE, exploits expression (1.20) fpoe 2, the ICAR method precisely uses an alternative form,

described by

Q, = [A0A| Q; [A0 A" (2.1)
where thePx P diagonal matrixQ, = Diag 01111,3 0322,3 ngs (i,e.V1<pi,pa <P,

Q4p1,p2) = CHIPLs if p; =po, 0 otherwise) is of full rank in contrast t@, = C} ; (1.20), and
where theV2x P matrix A® A* is given by

AQA = [a1®a] m®a; - apRap] (2.2)
and more patrticularly by
AQA = [[AB] (A% - A" (2.3)
with
®, = Diag | A(n,1) A(n,2) --- A(n,P) (2.4)

In other words, the non zero elements of feP diagonal matrix®, are the components of the

n-th row of matrix A.

2.1.2 The ICAR concept

The algorithm proposed proceeds in three stages. Firstigitary matrixV is estimated in the
Least Square (LS) sense, and allows one the estimatiof @fA*. In a second stage, several
algorithms may be thought of in order to compute an estimfatk foom A2A*. Finally, estimation

of sourcess(k) is computed using the estimate_ 4f

Identification of Ap A*

Proposition 1 Under assumptionsdd) and (A5) (given in section 1.1.2 taking=2), the N?x P

matrix Ao A* is of full column rank.

The proof of proposition 1 ensues immediately from equatith3), (2.4) and assumptions
(A4) and @A5). In fact, suppose thad © A* is not full column rank. Then there exists sofe 1
vector3 # 0 such thaf A A*] 3=0, which, due to the structure of © A" (2.3) implies that for

all1<n<N, A®,3=0. So it implies thatA cannot be of full column rank (since matrices



2.1. ICAR OR THE FOURTH ORDER BLIND SOURCE SEPARATION 19

®, are P x P diagonal with nonzero entries, due to (2.4) aAd)), which contradicts assumption

(A5).

So proposition 1, assumptioA3g) (the latter assumption is given in section 1.1.2 takjngR)
and equation (2.1) allow together to prove, first, that ma@)j, is of rank P and then tha@),, is
positive if the FourO marginal source cumulants are pasitivhat we assume in this section. So a
square root ofp,,, denotedQ.’? and such tha@, = QY?*[Q?]", may be computed (if the FourO
marginal source cumulants are negative, matriég,, has to be considered instead, for computing
the square root). In fact, we deduce from (2.1) that mauin A*] QY is a natural square root of
Q... Another possibility is to compute this square root via timgslar value decomposition @,
given by

Q, = E; L, E' (2.5)

where L is the real-valued diagonal matrix of the non zero eigerealofQ,,. These latters are
P since matrixQ,, is of rank P, L is thus of sizePx P . Besides Es is the N2 x P matrix of the
associated orthonormalized eigenvectors. Consequensiyuare root of),, can be computed as
following

Q) = E, I} (2.6)

WhereLi/2 denotes a square root 6f. Note that this latter really exists thanks to assumptis) (

and proposition 2.

Proposition 2 For a full rank matrix A @ A*, (A3) is equivalent to assuming that the diagonal
elements of; are not null and have also the same sign, corresponding tb dhahe FourO

marginal source cumulants.

The proof of proposition 2 is straightforward. In fact, itvll-known that two square roots of

a matrix are equal to within a unitary matrix, such that
[A0A Q= E, L’V (=Q*V) 2.7)

for somePx P unitary matrixV'. Equation (2.7) shows that the right-hand side is the SVef t
left-hand side, hence the proposition 2 result, sibg8 A © A*| Qs[A© A'|" Es = L is a positive

matrix.
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In addition, equation (2.7) can be rewritten as following
Q) = E. L = [A0A| QP V" (2.8)

showing the link betwee@? and A2.A*. Plugging (2.3) into (2.8), matrig,/? can be eventually

rewritten as

31/2 _ [[A*‘I,lel/QVH]T . [A*q)NQsl/QVH]T}T

=[O R - Ty (2.9)
where theN matrix blocksI’, of size NxP are given by

V1<n<N, TI,=A®,0M V" (2.10)

Proposition 3 For any1 <n <N, matrixI, is of full column rank.

The proof ensues immediately from assumptioh3){(A5) (given in section 1.1.2 taking=
2), from equation (2.10) and from the fact that the product @ilacolumn rank matrix and an

invertible square matrix is always full column rank.

Using proposition 3, pseudo-inverE of the Nx P matrix T}, is defined by
Vi<n<N, TI¢!=(!L,) 'L} (2.11)
Then, consider th&/(N —1) matrices®,, ,,, below
V1<m #na<N, @, =TT, (2.12)
which can be rewritten, from (2.10) and (2.11), as
Qun, =V E!®, 0 V=V P, V" (2.13)

where Q)2 andD,, ,,, = <I>;11<I>n2 are Px P diagonal full rank matrices. So it appears from (2.13)

that matrixV" jointly diagonalizes theV(N —1) matrices®,, ., .

Proposition 4 Under assumptionA4) and (A5) given in section 1.1.2 taking= 2, for all pair
1<p1#p2 <P, atleast one paitl <m; #ny <N exists such thab,, n,(p1, p1) # Duy,ne(P2 P2)-
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The proof is given in appendix B.

Paper [2] and proposition 4 allow to assert thaV¥jf, jointly diagonalizes matrice®,, .,
thenV,, andV are related througW,,; = V7 whereT is a trivial unitary matrix. So matri¥,,

allows one, in accordance with (2.8), to recovep A* to within a trivial matrix as following

QY Viy = [A0A) QP T (2.14)

Identification of mixture A

Three algorithms are proposed in this section to idensifirom the estimate?V;,;, of A0 A*.

These algorithms optimize differently the compromise leetvperformance and complexity.

Note that equation (2.14) can be rewritten from (2.3) in ienf of NV matrix blocksX,, =
A*®, QY2 T of sizeNxP as

ECR VAN ) YLD YAREES Yl (2.15)

So a first approach to estimatk up to a trivial matrix, called ICAR1 in the sequel, consists o

keeping, for instance, the matrix blo&k made up of theV first rows on;/Q V.o Such that
T =A"® 0T (2.16)

where®, and Q)2 are diagonal matrices, and wheFeis a unitary trivial matrix.

It is also possible to take into account all the matrix bloBkSand to compute their average.

This yields a second algorithm, named ICAR2, of higher caxip}.

A third algorithm, called ICARS3, is now described, and yeelimore accurate solution to the
BSI problem: since matrix4d © A*, given by (2.2), has been identified from the previous sactio
by Q./?V;,; to within a trivial matrix, ICAR3 consists first of mappinga@aN 2x 1 column vector
b, of Qé/g Vso iNto anNxN matrix B, (then-th column of B, is made up from théV consecutive
components o, as from thg N(n—1)+1]-th one), and secondly of diagonalizing each maiBjx

Theorem 1 For any matrixB, (1 < p < P) built from QJ2V,,, there exists a unique column
vectora, (1 <¢ < P) of A such that the eigenvector &; associated with the largest eigenvalue

corresponds, up to a scale factor, dg.
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The proof is given in appendix C. Note that in practical dituas, asA © A* is estimated to
within a trivial matrix, the latter identification step als one to estimate also to within a trivial

matrix.

Remark 2 This third algorithm can be seen as an application of thedemank-1 approximation
[29] [52] to the second-order case, say, the matrix case. datfgiven an hermitianV x N
matrix B, the problem consists of determining a scalaand a vectora € C" such that the
rank-1 matrix B = 1 aa” minimizes the functioa= HB — /EHQF subject to vector having unit
norm, where|| B|| - is the Frobenius norm of matriB. Indeed, the latter problem is solved by
the dominant eigenpainda), wherep is the eigenvalue with the largest absolute value [66] [46].
Note that several techniques for simple computations ofceqpations to a few eigenvectors
and eigenvalues of a hermitian matrix can be found in [71]tsas, for instance, the power

method [72] [59] [22].

Extraction of the P independent components

Finally, to estimate the signal vecte(k) for any valuek, it is sufficient, underA5), to apply a
linear filter built from the identified matri¥A : such a filter may be the Spatial Matched Filter
(SMF) described in [11] by% = R, A, which is optimal in the presence of decorrelated signals.
In practical situations, since matrif is estimated to within a trivial matrix according to section

(2.1.2), neither order of sourcesk) nor their amplitude can be identified.
2.1.3 Implementation of the ICAR method
The different steps of the ICAR method are summarized heeahenk samples of the obser-

vations,z (k) (1<k<K), are available.

SteplEstimation of the FourO statistiafsfi’f; . from the KX’ samplese (k) and sorting

of them, using thed=1)-arrangement, into the matr@w, which is an estimate af,,.

Step2 Eigen Value Decomposition (EVD) of the Hermitian matﬂA)gc, estimation
P of the source numbeP from this EVD, and restriction of), to the P principal
components @, = E;, L, EY, whereL, is the diagonal matrix of thé& eigenvalues

of largest modulus and; is the matrix of the associated eigenvectors.

Step3Estimate the sign, of the diagonal elements d,.
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Step4 Computation of a square root matfie, "2 of eQ,: [¢Q,]2 = E,|Ls[*2,

where|-| denotes the absolute value operator.

Step5 Computation from[e@Q,? of the N matricesI,,, construction of matrices
Ouny = [f‘,ﬁ L] forall 1 < m # ny < N, and estimation},,;, of the unitary
matrix V;,; from the joint diagonalization of th&/(N —1) matrices(:)mm (the joint

diagonalization algorithm is described in [9]).
Step6EstimationA of the mixtureA from the N2 x P matrix [eQ, ]2 V..i] by

1. (ICAR1) taking the matrix block made up of theéfirst rows of[[e Q]2 Viu]*;

2. (ICAR?2) taking the average of thg matrix blocks, of sizeV x P, made up of

the successive rows GtQ, /2 V,,]*;

3. (ICAR3) taking each column vectdAu;J of [[eQ,]/2 V,,;] remodeling them into
NxN matricesB,, and building the matrix whosg-th column vector is the

eigenvector of matri@; associated with the largest eigenvalue.

Step7Estimation of the signal vectar(k) for any valuek applying tox(k) a linear

filter built from A like for example the SMF one defined W:ﬁ;lﬁ\.

2.1.4 Computer results

The synthetic signals used in this section are cyclostatigrand according to sections 1.2.4 and
5.2, other statistical estimators than empirical estimsaghould be employed. However, if the
cyclostationary sources are zero-mean and circular, orcirenlar with a zero carrier residu,
or non circular with different non zero carrier residus, ls&s the sources used subsequently,
the bias due to empirical statistical estimators is neglig[42]. So we decide to employ them
in the following simulations. Moreover, the criterion usedthis section in order to evaluate
performances of BSS algorithms, is the well-known SINRMy(fi to Interference plus Noise

Ratio Maximum) criterion defined in [11, section 3].

The white noise case

The performance of ICAR at the output of the considered sossparator is firstly illustrated
in the presence of a Gaussian noise, spatially and tempaokdiite, and compared with some

well-known BSS algorithms. In fact, we assume tRat 4 statistically independent sources, i.e.
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2 BPSK and2 QPSK, all with a raised cosine pulse shape of roll-off equdl.25, are received
by a Uniformly spaced Circular Array (UCA) oV = 4 identical sensors of radiuB such that
R/\ = 0.55 (A: wavelength). The symbol peridfl associated with the first BPSK is equal to
three times the sample peridd. The other sources have a symbol period equal to twice the
sample period. The directions of arrival of the sources aoh ghat the source steering vectors
are orthogonal and the associated carrier residus are lsattl; =0, f.o 7. =0.3, f.3 1, =0.2
and £.4 T, = 0.1. We apply the COM1 [18], COM2 [16], JADE [8], SOBI [2], Fas#3],
FOBIUM [40], ICAR1, ICAR2 and ICAR3 methods, and the SINRMasiated with each source
is computed and averaged 080 realizations.

Figures 2.1 and 2.2 show the variationsS®NRM; (source3 performance) at the output of the
previous methods as a function of the number of samples lilénput SNR (Signal to Noise

Ratio) of the four sources, is assumed to be equaDtdB. It appears in figure 2.1 that ICAR3

» tetetote g@g SRk
20+ dn%%%&ixggxxx;v-*'~~v-
Optimum SMF
ICAR1
ICAR3
FOBIUM
A COM2
-10§ | | ‘
500 000 1500

Number gT samples

Figure 2.1: SINRM associated with sourgéor a SNR 0f20 dB

converges as fast as COM2 and FOBIUM, but faster than ICARILI@GARZ2: the third method
given in section 2.1.2 exhibits better performances tharothers. In addition, figure 2.2 shows
the good performances of the ICAR3 algorithm facing the lkethwn COM1, JADE, SOBI and
FastICA methods. Note that the SOBI and FOBIUM methods giwhis simulation good results

since sources have been chosen with different spectraitidshgspecially taking different carrier
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Figure 2.2: SINRM associated with sourgéor a SNR 0f20 dB

residus. Similar results have been observed for the otheces.
Figures 2.3 and 2.4 show, for a number of one thousand santipéegariations oSINRM; at

the output of the previous methods as a function of the inplR Sdentical for the four sources.
All the BSS methods have approximately the same behaviest, Fthen the SNR is very small,
they do not succeed perfectly in extracting the third sauf@a the contrary, for signal to noise
ratios contained in values4 to 20 dB, the source separation is optimal. Finally, although the
variations ofSINRM; for signal to noise ratios greater that dB are somewhat surprising, this
result has already been observed by Monzingo and Miller & {&r optimal separators when

mixture A is known. Note that similar results have been obtained f®wother sources.

The colored noise case

Then, the ICAR method is compared to other algorithms in tkegnce of a Gaussian noise with
unknown spatial correlation. In facE = 3 statistically independent sources, iZBPSK andl
QPSK, all with a raised cosine pulse shape of roll-off eqadl.25, are assumed to be received
by a UCA of N = 5 identical sensors of radiuB such thatR/\ = 0.55. Their symbol periods
are equal ta; = 21;, Ty = 31, andT3 = 41, respectively. Their carrier residus are chosen equal

to zero. Finally, the source steering vectors are builtagtimal. This time, we apply the COM1,
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Figure 2.3: SINRM associated with sourgéor 1000 samples

50 JADE ICARS3

30" Optimum SMF

FastICA

.0 . 20
Signal to Noise Ratio

Figure 2.4: SINRM associated with sourgéor 1000 samples
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COM2, JADE, SOBI, FOBIUM, ICAR1, ICAR2 and ICAR3 methodsdaihe SINRM associated

with each source is computed and averaged @@errealizations. Figures 2.5 and 2.6 show

ICARS

. FOBIUM
Optimum SMF

2 ! ! ! ! J

0 IQ'OZISG spat?éﬁcorrelagb%

Figure 2.5: SINRM associated with source 3 for a SNR dB

the variations oSINRM; at the output of the previous methods as a function of theergpstial
correlation factorp. SNR of the three sources is taken equal @B and1500 samples are used
to identify mixture A. Note that the Gaussian noise model employed in this siionlé the sum
of an internal noise/;, (k) and an external noise,(k), of covariance matriceR?; and Ry

respectively such that
in def ou def r—
R} (rq) = 025(r—q)/2 Ryt(r, q) = 02;)‘ q|/2 (2.17)

whereo?, p are the total noise variance per sensor and the noise spatialation factor respec-

tively. Note thatRy (7, q) def

R (r,q) + Ry (r,q) is the(r, ¢)-th component of the total noise
covariance matrix.

It appears in figure 2.5 that the three proposed versionsARISeem to be robust with respect
to the correlated Gaussian noise presence: ICARL and ICARBIly insensitive to a Gaussian
noise with unknown spatial correlation. On the other harglirés 2.5 and 2.6 show that the

well-known COM1, COM2, JADE and SOBI methods are strongfected as soon as the noise
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Figure 2.6: SINRM associated with source 3 for a SNR dB

spatial correlation increases beydnd. In fact, the classical BSS methods require a prior spatial
whitening based on SO moments. This stage theoreticallystbe perfect knowledge of the noise
covariance. If this is not the case, a whitening of the oletdata is performed instead, which is
biased. ICAR does not suffer from this drawback, since isusdy FourO cumulants, which are
(asymptotically) insensitive to Gaussian noise, regasltd its space/time color. Besides, similar

results have been observed for sourtesd?2.

Over estimation of the number of sources

On the other hand, in operational contexts, the number aicesumay be over estimated. It is
then interesting to compare the ICAR method with other dtigors in such situations. To this
aim, we assume thaP = 2 statistically independent sources, i.2.QPSK, both with a raised
cosine pulse shape of roll-off equal @25, are received by a UCA oV = 4 identical sensors
of radius R such thatkR/A = 0.55. Their symbol periods are equal ¥ = 27; and 7, = 31,
respectively. Their carrier residus are chosen such £adf = 0 and f.o 7. = 0.3. Moreover,
the spatial correlation between the two source steerintpreds taken equal t0.5. Finally, the

noise is built Gaussian, spatially and temporally white. agply the COM1, COM2, JADE and
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Figure 2.7: SINRM associated with source 2 for a SNR®HB

ICAR3 methods, assuming th&t=3 sources are received by the previous UCA, and the SINRM
associated with each of the two sources is computed andgagiaer200 realizations at the
output of each method.

Figure 2.7 shows the variations BINRM, (source2 performance) at the output of the previous
methods as a function of the number of samples while the ISR (Signal to Noise Ratio) of
the two sources, is assumed to be equaltaB. Similar results have been observed for source
1. More patrticularly, it appears that the COM2 and ICAR3 mdthare robust with respect to an
over estimation of the number of sources even when, in thisilsition configuration, the JADE
algorithm lossed0 dB, for less thar2000 samples, with respect to the case where 3. Note that
the latter result had already been pointed out in [10]. AdlierCOM1 method, it is affected by
the over estimation of the number of sources, but less tr@dADE algorithm. The explanation

of this surprising phenomenon requires a harder analy$igghws beyond the scope of this paper.

2.1.5 Conclusion

A new method, named ICAR, exploiting the information conéal in the data statistics at FourO

only has been proposed in this paper. This new method allo@st@ process overdetermined
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mixtures of sources, provided the latter have marginal ®auwmulants with the same sign, which
is generally the case in radiocommunications contextse@ konclusions can be drawn: first, in
the presence of a Gaussian noise spatially and temporalkg vthe proposed method gives as
good results as those obtained with the current BSS metls@at®nd, contrary to most of the BSS
algorithm, the ICAR method is not sensitive to a Gaussiaoredl noise whose spatial coherence
is unknown. At last, the ICAR algorithm is robust with respican over estimation of the number
of sources, which is not the case for some methods such as.JA@Ehese reasons, the ICAR
method seems to correspond to the best method currentlialaleato process overdetermined
mixtures of sources. Note that such extensions to oéder more generally to ordemn = 2q
(¢>2), will be proposed under the names of BIRTH and BIOME in chep8 and 4 respectively.
Moreover, forthcoming works will consist of looking for thentrast criterion associated with
ICAR in order to analyse accurately the performance of ttteraising the functional approach

proposed in the following section.

2.2 Asymptotic performance of fourth order contrast-basedBSS al-

gorithms

The purpose of this section is to examine the asymptoticopmdnces €.g. covariance of esti-
mate) of contrast-based algorithms. Although the subjeaspmptotic analysis has already been
addressed in the signal processing literature, for instaperformance of SO [35] and ML [58]
estimators in antenna array processing, or behavior of $IH&hBSS algorithms in the presence
of zero-mean cyclostationary sources [42], this sectiamp@ses a functional approach allowing
to compare asymptotic performances of BSS contrast ait&s an illustration, 3 FourO contrast
criteria already compared in [21] by computer experimeants,mainly focused on, for subsequent

asymptotic performance analysis.

Note that assumptions() to (A3) (given in section 1.1.2 taking= 2) are made in the sequel.
Besides, the mixing matriX is assumed to be square and unitary. Findlly,denotes the FourO
order cumulant tensor whose entries are given by (1.9)yfer2 and U replaces matrixyv*
defined by (1.5). Note that the unitary assumption with respeA is not restrictive if a spatial
prewhitening has been performed as for most of BSS meth@jsB2t we limit our study for the

time being to the effect of fourth-order estimation errongloe separatol/.



2.2. ASYMPTOTIC PERFORMANCE OF FOURTH ORDER CONTRAST-BABBSS ALGORITHMS1

2.2.1 contrast-based BSS methods

Various approaches have been devised for BSS or ICA [7]. \&# &itus exclusively on those
maximizing a contrast measure gf(the latter vector has been defined in (1.5)). Recall that

contrasts are criterid (U ; C,,) satisfying the properties below [16] [70]:

P1. Invariance: The contrast should not change within the’Beff trivial matrices, which means

thatVz € H-S, VU € T, Y(U; Cy) = Y(Iy; Cy).

P2. Domination: If sources are already separated, any matrix should decthasontrast. In

other wordsyU € H,Vx € S, Y(U;Cs) < YT(Iy; Cy).

P3. Discrimination: The maximum contrast should be reached only for matric&sdirio each

other via trivial matricesyz € S, Y(U;C,) = Y(Iy; Cp) = U € T.

whereH, H - S, Iy are a set of matrices, the set of processes obtained by mappingsH on
processes af, and theN x N identity matrix, respectively. Note that tiévial matrix definition

is given page Xxiii of the preface.

The goal of this section is to evaluate the asymptotic sizdisproperties €.g. covariance) of
the matrixU delivered by contrast-based algorithms.
2.2.2 Asymptotic properties: a functional approach

From now on, it is assumed that(-, C) is of classC?, and Y (U, -) is of classC!. This will
be satisfied for criteria given in section 2.2.3. The optis@utionU, is defined as the absolute

maximum of a contrast (U; Cy,):
U, = ArgmaxyY(U; Cy) (2.18)

whereC,, is the exact cumulant tensor of the observation. In praafitds estimated by a quantity

Cm, which involves estimation errors di; this yields a solutiorU:
U= Argmaxy Y (U; C’m) (2.19)
Both U, andU are maxima ofr, and thus satisfy the stationary point equations:
hU,,Cy) =0, hU,Cp) =0 (2.20)

whereh(-, C) denotes the gradient &f(U, C) with respect tdJ, in a sense subsequently defined.
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Now, his a well defined function in 2 —dimensional linear space on the real fiRdin fact,
T is twice continuously differentiable with respectltf, and the tangent space to the manifold
of unitary matrices is the linear space of skew-hermitiarrices (BH = —B) on the real field,
which is indeed of dimensiof?? and admits as a basis the set of matrigs, null everywhere
except in rows and columng, ), (r, ¢), such that

P
dU = > dygBgeU (2.21)

q,r=1

where the(v, w)-th component of matrifB,, is given by

d(g—v)o(r—w) — §(g—w)d(r—wv) if g<r
By (v, w) « Jo(g—v)d(r—w) if q=r (2.22)
J16(g—v)é(r—w) +6(g—w)d(r—v)] if g>r

with j2 4f 1. Note that among th&? elementsB,,. generating the basis of the linear space of

skew-hermitian matrices? (P —1)/2 matrices are real antt(P+1)/2 matrices are imaginary.

Next, h(-, -) is continuously differentiable, which allows one to redorthe implicit function

theorem in the neighborhood @,, C.,). This yields, from (2.20):
hu(U,, Cp) dU + he(U,, Cy) dC = o(dU , dC) (2.23)

Thus, in the neighborhood QU,, C;,), U = U, + dU can be expressed as a function(®f =
C, + dC. This can be rewritten in block form as [21], definingc[B] by the vector built from

the columns ofB stacked one below another:
F vec|dU] = F3 vec[dC] (2.24)

where F; and F;, are matrices of dimensioR? x P2 and P? x M, respectively, built from the
second derivatives df, 62T/8U6U and 82T/6U80, stored in the proper manner. Herd,
denotes the number of free parameterCin and, for anyP > 4, is equal toM = P(P +
1)(P? + P +1)/8 in the complex case, which deflatesitd = P(P + 1)(P + 2)(P + 3)/24 in

the real case.

The variance oflU (v, w) and therefore, the one ﬁf\(v, w) can thus theoretically be accessed
by the formula:
Var{vec {ﬁ} } =Fy FQVar{vec {éw} }F; F" (2.25)
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Nevertheless, matri¥’ is in general not of full rank, because the setinf. does not form a free
family. Its rank isP(P — 1), so that the inverse above should be replaced by a pseuds@v
Nevertheless, this covariance can be consequently stitbated once we know the covariance

of sample cumulants. Using McCullagh bracket notation (@efiin appendix D), and noting

[2]expr = expr 4+ expr*, this covariance is given in [21] in the general case. In theetrically
distributed case in which we are interested, the covaritalas the form:

K Var{Clf, Gy} = i + IO Cor + RIMICITECE + RI4ICE Cly
+RIMICE LOFM + Gy L CFRE 1 O OP + 8107 epf +
2)[4]C7, ,CFH + 6]t CR K ey, + 16)CE Ch ok
+[2)[81C] " CF Oy + [218]CHy, 1 C7 X CF + 2121 i1, 7 O
+R)RIc cict + 6oy, i crel + (e ciciel

+[4]C; ;CH OMEC, L (2.26)

wherelC denotes the number of snapshots.

2.2.3 Examples and asymptotic analysis of particular contasts

Define the three FourO contrast criteria below:

P P
N (U;Co) =€) CPE, T (UiCe) =3 (CII’):II’JJJ)Q
p=1 p=1
P & 2
GU:C) = S \cg;&y\ (2.27)

p,kl=1
wheree is a fixed sign. Note [21] thl; is a contrast if, for anyt <p < P, C}} s have the same

signe, and thatYs is the contrast linked with the JADE algorithm [7].

Asymptotic results

After a first differential calculus with respect &d, we obtain:

dY = 4e (2.28)

> dppr{Cad, - Cor b =3 duS{Cyry, + Ol

q<r q>r

o =813 dy(Coa w{cra b —crr {1

q<r

B Z dbigr (C:,’:,ys{cg::,y} + 03,’3,1;3{03,’3,1,})] (2.29)

q>r
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d3u =8 Z Z dl@“%{cgﬁycg,f,y - C::zycqrzi,y}

a<r k0

-3 dpyy %{c;“;,ﬁyqj;ﬁ,y 1 cg;,f,ycﬁ;,ﬁﬁy} (2.30)

a>r kL

whereR {z} andS {z} are respectively the real and imaginary parts of the commulenber:.

So for each contrast, we can easily deduce from (2.28), Y228 (2.30) the functioth,,
defined in section (2.2.2). In particular, according to 82,12.19), (2.20) and (2.28) the function
hy associated witllY; ¢ is described by

R{CTiy — Caryy Hag<r
MU, Clgr = —S{Cqry +Clyt ifg>r (2.31)
0 ifg=r

The implicit relation (2.23) rewrites:
d [dhy);(Us, Cp) = —d [dhy) o(Us, C) + o(dU ,dC) (2.32)

where, forY; and for anyl < ¢,r < P:

P

dmU,Clply = > OL duy, (2.33)
q/’rlzl

AU, Cgle= Y. OuFdci), (2.34)

ivjvk;vl:

—_

where@g;f’ and @é{ﬁl are given in appendix E. Similar (but more complicated)trete, derived
for Y5 and Y3, are not reported here for reasons of space.
Simulations

Empirical variance estimates. Simulations have been run fér = 2 independent QPSK sources,

in the presence of Gaussian complex circular noise. Thengpixiatrix was of the form
cos sin 6 el®
—sinfe ¥  cosh

with § = n/7 andp = 7 /7. The separating matrix has been computed using algorithms

reported in [16], [7], and [18]. In order to obtain reliablariance estimates, 100 independent trials
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Figure 2.10: Variance of estimated separating mdtfinbtained by maximization df'3(U).

have been run, and the variances of each of the four eiiffjgsas been estimated. In figures 2.8

to 2.10, we have plotted the sum of varian8és_, Var{U;;} as a function of the sample size.

Theoretical asymptotic variance. In order to compute the theoretical variance, it was necgssa
to first calculate all the cumulants of even order up to eidfdr this purpose, the multilinearity
property of cumulants has been used, yielding the cumutaritse two outputs of a linear trans-
form as a function of those of its inputs. For QPSK sourceshese the following (omitting

subscripts in Cy):

1 1 1,1
Cl,l =0 Cl =1 Cl,l,l,l =1 01,1,1 =0 Cl,l =-1
_ 1 _ 11 1,11 _ _
Cii1111=0 Cii1110=-4 C11,=0 Cinth =4 Ciiiaaaa=-34
1 _ 1,1 _ 1,1,1 _ 1,1,1,1
Ci11111=0 Ciy1111=34 Ciii0=0 Ciypp =33

sLyty IR

(2.35)
General formulas are given in appendix D. Sid¢e= 2 is a simple case, first and second order
derivatives can be computed directly in termsi6fanddp, and the2 x 2 matrix F; obtained is
invertible. Thus, expressions such as (2.28) to (2.33) dicheed to be used. On the other hand,
expression (2.26) is central in this calculation. Resulsraported in the figures 2.8 to 2.10, and

show a good accordance with empirical results for large sesnp
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2.2.4 Concluding remarks

The whole analytical calculus allows one to write, for eaohtrast in (2.27), the link between
the covariance of the unbiased estimated sepaﬁmd the covariance of the unbiased estimated
cumulantC,. Using also (2.26), the asymptotic performance¥ofl;; andY; can be compared to
each other, and to those obtained by averaging indepentkdat Two conclusions can be drawn:
first, empirical performances tend to reach theoreticaltdims sample sizes tend to infinity, which

justifies our approach. Second, the contrast leading tontiadiesst variance ;.
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Chapter

BIRTH or SixO statistics for the

underdetermined case

In order to process underdetermined mixtures of sourcegxtmsion of the ICAR method to
order6, named BIRTH (Blind Identification of mixtures of sourcesngsRedundancies in the daTa
Hexacovariance matrix), is proposed, able to blindly idgrihe steering vectors of up t& =
N?—N+1 sources for arrays ¥ sensors with spatial diversity only, and upRo= N? for those
with angular and polarization diversity. The sources aseiia®d to have non zero SixO marginal
cumulants with the same sign (the latter assumption is gépeserified in radiocommunications
contexts). Besides, BIRTH exploits implicitly the VA comtelescribed in [38] [13] and explicitly
redundancies in the SixO statistical matrix of the dataledahexacovariancewithout SO or

FourO prewhitening.

3.1 The BIRTH Method

3.1.1 Hexacovariance property

Under assumptionsAQ)-(A5) of section 1.1.2 foiy = 3, the BIRTH method precisely exploits
several redundancies in the hexacovariance m&fix defined by example 2 of section 1.2.2, of
the data especially thanks to the multilinearity propetypwever, instead of using the classical

matrix form of the multilinearity property, described by

— AQAQA| H, [AD A AT = [ A2 A" A2 A"
H, =[A®A® A Hs [A® A® A"] R A"| Hy ® (3.1)

39
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where theN3x N® H,, and theP?x P? H, matrices are the hexacovariance matrices(@f) and

s(k) respectively, the BIRTH method exploits an alternative, @ieen by
H, = [A??0 A" H [AP?0 A" (3.2)

where contrary to matri#,, the diagonafH, = diag( [01111118 C335 s leﬁﬁs}) matrix is of
full rank. On the orther hand, th&3 x P matrix [A9?© A*], which is of full column rank under

assumptionsA4) and @AD), is given by:
A?QA* = [ @a;®a; - apRapRa}]
= [[(A0A)®]" [(A0A)B]" - [(ACA)BN]']T 3.3)

with the N2x P matrix A @ A*, which is of full column rank under assumptioAR) for ¢ = 3,
defined by

A0A =[am®a; - apRap] = [[A®]" [AB]" - [ADN]]T (3.4)

and:
®, =Diag | A(n,1) A(n,2) --- A(n,P) (3.5)

In other words, the non zero elements of feP diagonal matrix®, are the components of the

n-th row of matrix A.

3.1.2 Data structure

If SixO marginal source cumulants are strictly positi®é), then a square root df, called f :
has to be computed (if these cumulants are strictly negdtiee- H,, matrix has to be considered

for computing the square root) for example as following :
HP = E, I}’ = [A2?0 A*| HP V" (3.6)

where L (Lé/2 denotes a square root &f) is the Px P real-valued diagonal matrix of the non
zero eigen-values aoff,, and E; is the N3x P matrix of the associated orthonormalized eigen-
vectors. For a full ranKA“? o A*] matrix, it is possible to verify thatA3) is equivalent to
assuming that the diagonal elementsIgfare not null and have also the same sign. In addition,
(3.6) shows the link betweehé/2 and[A“?» A*] whereV is a unitary matrix. Finally, (3.6) and

(3.3) allow to prove the link betwe ;/2 and A A*, as follows:

H [A0 A BHLVH - [A0 A By HPVHT]

= [ - IN'TT (3.7)
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wherel,, = AQ A*®, Hi/z V" is then-th N2x P matrix block of iﬂ.

3.1.3 SixO blind identification step

In this section, the purpose is to exploit the informatiomteined in thel%[tl,f2 matrix to blindly
identify A. Indeed, theV matrix diagonalizes thé&V(N —1) ©,, ,, matrices described, for all
1<ni1#n9 <N, by:

@, =LiT,=VH & ®, HAV =V& !, V" (3.8)

wheref denotes the pseudo-inverse operator and wherdthg, = ®,!®,, matrices are di-
agonal. Thus, by construction, the rank @, ,,, denoted byrk(®,, ,,), cannot exceed the
min(rk(L,,), rk(I,,)) = min(P,rk(A©® AY)) value, hence another bound of the maxi number of
sources,P. The unitaryV,,; = V7T matrix, solution to the previous problem of joint diago-
nalization to within a unitary trivial matrixZ’, allows one, in accordance with (3.6), to recover

[A92 % A*] to within a trivial matrix as follows :
HP Vi = [AP?0 A" | HP T (3.9)
Since, consistent with (3.3) and (3.4), the (3.9) equatammalso be written as follows:
HPV = [[ABSHLT - [ASySHP - [AdyayH]T||
= BTN BT (3.10)

So, theX; matrix block made up of the firs¥-th rows of matrixHif2 Vo1 corresponds to within a
trivial matrix to A* such as:

o= A (@) HET (3.11)

where’l—éf2 and®,, for all 1 <n <N, are diagonal matrices.

3.1.4 Implementation of the BIRTH method

The different steps of the BIRTH method are summarized ffiwreavhen K samples of the

observationsz (k) (1 <k < K), are available.

SteplCompute the estimatil,, of H,, from the K samplese (k) using for instance
appendix D and the empirical estimate of moments, unbiardctansistent for er-

godic stationary sources.
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Step2 EigenValue Decomposition (EVD) of the matriéd,,, estimation,P, of the
number of source® and restriction of this EVD to the® principal components:
H, = E; L, EY, whereL, is the diagonal matrix of thé eigen-values of largest

moduli andE; is the matrix of the associated eigenvectors.

Step3Computation of a square root matdiy’ of H,: HY> = E; |Ls|"2, where]-|

denotes the complex modulus operator.

Step4 Computation fromHY> of the ©,,,,, = [T}, T,] matrices for alll < n; #

ni

ny <N, and estimationVsol, of the unitary matrixy/,; from the joint diagonalization

of the N(N —1) matrices®, .

Step5EstimationA of the A mixture matrix taking the matrix block made up of the

first N-th rows of[l?Icl,;/2 ?Sol]*.

Step6If A is an overdetermined mixture, estimation of the signal arestk) for
any valuek, by applying tox(k) the SMF source separator definedﬁy: R;lfal\,
whereR, is an estimate 0R, =CJ ;..

3.2 BIRTH improvements

Once matrix[A“? » A*] has been estimated, it has to allow to recover ma#tix In fact, we
showed in section 3.1.3 that it was sufficient to take as @stisd of A the matrix block made up
of the NV first rows of the conjugate of matr&t;, Wherejcl; denotes the estimate pA“2 A*].
The latter approach will be referred to Biethod 1 in the sequel. Although method 1 appears to
have a low computational complexity, it does not exploitralundancies present [d©?» A*].

So we propose now other methods such as:

Method 2: Extract theN? matrix blocks, of sizé/ x P, made up of the successive rows of the
conjugate of matrix,/él; and equal toX, (1 <m < N?) (3.10); take as estimate the average of

theseN?2 blocks.

Method 3: Fully exploit each column vectcfrp of.7t\3. In order to do this, first extract, from
vectorgp, the NV vectorsBp(n) of sizeN? x 1, then remodel them intey matrices?B\p(n) of size

N x N, and finally build the matrix whoseth column vector is the eigenvector (approximately)
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in common within thev matrices/ﬁp(n)* (1<n < N) and associated with the largest eigenvalue

using the Joint Approximate Diagonalization (JAD) algbnit described in [9].

Methodsl and2 ensue immediately from the structure of matdx. In fact, it has been shown

in (3.10) that matrix?t\3 may be written as:
Ay = AT = [[AE) [AE] - [A T (3.12)

where7 and theN? matricesZ, (1 <n < N?), of size P x P, are trivial. As for method, it is

shown in appendix C taking=3 that
Vn, 1 <n <N, Bp(n) x {aﬁ(p) ® ag‘(p)} (3.13)

where¢ (+) is a bijective function of 1,2, ..., P} into itself (i.e. a permutation function). Then it

is straightforward to show that

Vn, 1 <n <N, /E}p(n) x [ag(p) ag(p)H} (3.14)
and hence the methddresult. Note that, although the JAD algorithm [9] is res&itto unitary

joint diagonalizers, it can be used in metl®gince matrices/ép(n)* are of rankl, from (3.14).

Method 4: The fourth method we consider performs a unrestricted @mitary) LS joint
diagonalization scheme, as for instance the one descrigetetedor in [73], yielding probably a

better LS fit.

We propose a fifth method, namétethod 5 and based on the the following mathematical

problem:

Problem 1 GivenM matricesE,,,, 1 <m <M, each of sizeV x P, find anN x P matrix A, and

P x P diagonal matricesD,,, of unit Frobenius norm such that

[

D, ~ A (3.15)

Matrices A and D,,, can be obtained as stationary values of the Least Squarg<i(ts3ion

below:
M

e= Y |EnDn - Al% (3.16)
m=1
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where || B||  is the Frobenius norm of matril. As a consequence, they satisfy the following

system of equations, obtained by cancelling the gradienwdth respect taD,,, and A:

vm, Vp, {ENEnDn—A)}p,p) =0

. (3.17)
v (nap)a m:l{EmDm_A}(n7p) =0

whereB(n, p) is the(n, p)-th component of matrixB. It is then not hard to obtain the closed form
expression forA:

1M

A=—S"E,D, 3.18
Vi (3.18)

m=1

By plugging back this solution in system (3.17), one getsrafome manipulations:
Vp,1<p<P, Fd,=0 (3.19)

where

(M—l) EZLIEWH }(pap) if my=mao

Fp(ml, mg) = (320)

— {E},,Em, J(p, p) otherwise

T

and whered, = | Dy(p,p) Dy(p,p) --- Du(p,p)| - In other words, the solution to the LS
problem under the constraint that, for any fixed inge%_,, | Dy(p, p) |* = 1 is obtained when
the vectord,, is the right singular vector of matrik;, associated with the minimal singular value.
Once every entnyD,,(p, p) is obtained, matrixA can be calculated thanks to (3.18). This solution

is thus not iterative (though we could possibly run altegritgrations).

So method 5 is defined by solving problem 1 taking for matrEgsthe M = N2 matrix blocks
3 (3.10) of sizelNV x P, made up of the successive rows of the conjugate of mEtEixThe latter
algorithm does not take into account the fact that diagorsdtioesD,,, should contain products
of entries of A, and is therefore expected to yield less accurate resultavekr, subsequent
simulations demonstrate that the loss in performancdlesdibmpared to the gain in computational

complexity.

3.3 Identifiability

3.3.1 The BIRTH approach

Following the development of the previous sections, it app¢hat the BIRTH method is able to

identify, from an array ofV sensors, the steering vectors Bf(P < N?) non Gaussian sources



3.3. IDENTIFIABILITY 45

having SixO marginal cumulants with the same sign, provitiatithe A® A* matrix has full rank
P, i.e. that thevirtual steering vectorsa,®a,] (1 <p < P) for the considered array 6f sensors
remain linearly independent. In addition, it has been shiw[i3] that the vectofa, @ a;] can
also be considered astraie steering vectobut for avirtual array of N different sensors. This
especially means thaf2— A\ components of each vect{)ﬁp@)a;} are redundant elements which
bring no information. The rank oA © A* cannot therefore be greater thAf and is equal to
min(N,, P) whenA is of full rank. In these conditions, sinc& A* has full rankP, min (N, P)
is equal toP, which impliesP <Aj;. So the BIRTH algorithm is able to process up\fpsources,
where A is the number of different Virtual Sensors (VS) of the VA asated with the chosen
array of N sensors. Quantityt will be described in detail in section 4.2.1. So, it is showifli3]
that using an array with spatial diversity only, as for ime@a UCA N, may be equal taV2—N+1,

whereas using an array with angular and polarization diyetbe \; number may attainv?.

3.3.2 Impact of the hexacovariance structure

According to [13], theA; number is directly related to both kind of sensors and gegnueft
the true array ofV sensors. For example, a Uniform Linear Array (ULA) of ideati sensors
generates a VA ol = 2N — 1 different VS, whereas for most of other arrays = N2 — N +1.
Nevertheless, both kind of sensors and geometry of the tmag are not the only factor which
the N, number depends on. Indeed the way data SixO cumulants argedhapH,, is also a
parameter which affects the number of VS. To show this, camghe following way to sort SixO

Cumulants in the hexacovariance matrix:

Hy( ), 19) = Ciiee (3.21)

2,12,13,%
where Hy(I", I9) is the (10, I9)-th entry (( < I?, I9 < N3) of H, and where for alll <
i1, 12,13, 14, 15,16 <N,
I' = ([ ip i3)) = N(N(iy — 1) 49 — 1) + i3
I3 = ¢([iq i5 ig]) = N(N(ig — 1) +i5 — 1) + ig (3.22)
what implies:
H, = [A%°| Hy [AZ°]" (3.23)

The FourO virtual array associated with this expressioa drrespondingirtual steering vectors

forall 1 <p < P, are thus of the fornia, @ a,)) is generally different from the one obtained from
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(3.1). In particular, the VA associated with (3.23) and a UGffodd NV identical sensors, is
caracterized b\, = N(N+1)/2 different VS, whereas the one associated with (3.1) and ad UC
of odd NV identical sensors, is caracterized by = N?— N +1 different VS. For anyN > 2, the
N?2— N +1 value is obviously greater thak(N +1)/2.

Proof: Note that thg(r, q)th VS associated with theth source and the UCA a¥ sensors is

such that:
la,2a, ! = exp{j2n{x] cos @,os (@ Hyisin@,cos (@)} (3.24)

(z4,42,0) = ((RYNcos(p?) , (RYNsin(g?) ,0) are the coordinates of the-, ¢)" VS (<r, ¢<N)
where R = 2Rcos((g—¢y)/2) and ¢ = (o-+yy)/2 since it is always possible to choose a
coordinate system in which theth sensor of the true array has the coordinates, 4,,0) =
(Rcos(g,) , Rsin(g,) ,0) whereR is the radius andg, = 2w (n—1)/N. It is thus easy to deduce
from the previous equations that the VS that are not at coateis(0, 0, 0) lie on (N +1)/2 different
circles if N is odd or NJ2 if N is even and that there are VS at coordinates0, 0) only if N is
even. Moreover, for odd values df, N different VS lie on each circle of the VA uniformly spaced.
As a consequence, this VA, for odd valuesVothas A\, = N(IV +1)/2 different VS. As to the

second result, it is given by [13].

It is important to explain that if both FourO VA obtained frg®1) and (3.23) are not equiva-

lent, however, they have the same radiation pattern.

Proof: The radiation pattern of 8(6,, ¢)], ., p VA is defined by:

V(0,¢), VI<p<P,

(66, 6), bty )]
c((0, ), Wb, é)) = 3.2
(000U %) = e )7 1601 (3:29)

whered,, ¢, ||, (-,-), ||-|| denote azimuth and elevation angles of i source, the complex
modulus, the scalar product and the norm operators, respagt Since for anyd, ¢) and for

each source, bothc((e, b), [ap®a;D andc((0, ¢), [a,®a,)) values are equal.

These results are illustrated by figures 3.1 to 3.3, whiclvghe identical radiation pattern of

both FourO VA of a UCA of five identical sensors, and the geoynet each VA, respectively.
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Figure 3.1: Fourth order virtual array radiation patteih£ 5)

3.4 Simulations

The performance criteria used in this section to evaluaeajthality of the BMI process has been

presented in section 1.1.3.

3.4.1 Simple BIRTH

So, to illustrate the results of the simplified version of BHRdescribed in section 3.1.3 and
referred to as method 1, we assume tRat 2 statistically independent sources, Raon filtered
QPSK andl non filtered BPSK, are received by a linear array\ot= 2 sensors of radiu® such

that R/A = 0.55 (\: wavelength). Th& sources, assumed synchronized, have the same input SNR
(Signal to Noise Ratio) 020 dB with a symbol period” = 47;, wherel; is the sample period.
The normalized marginal source cumulants & (psk = K333 gpsk = 4 @ndkiss ppgk = 16
according to appendix D. The direction of arrival of the smgrare such th& = 50°, & = 136°,

6 = 29.5°, & = ¢ = ¢ = 0° and the associated carrier frequencies vedfy7, = 1/3,

ART, = 1/2 andAfs7, = 0. We apply the COM1 [18], COM2 [16], JADE [8], S3C2 [17] and
BIRTH methods, and the performaneg for p = 1...3 is computed and averaged OVJ0

realizations.
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Figure 3.2: FO virtual array defined b)[ap®a;} (N =5)

Under the previous assumptions, figure 3.4 shows the vamg&tfag (source3 performance)
at the output of the COM1, COM2, JADE, S3C2 and BIRTH algwonishas a function of the num-
ber of samples. The COM1, COM2, JADE methods obviously fiffficdities in well identifying
the steering vector of the sour8en a underdetermined context. The S3C2 method gives better
results. As to the BIRTH process, it completely succeeddentifying the steering vector. Figure
3.5 shows, in the same context, all theat the output of the BIRTH method as a function of
samples. Note the decreasing values toward zero of all #nequs coefficients as the number
of samples increases. In addition, figure 3.6 displays thiatians of o3 (source3 performance)
at the output of the COM1, COM2, JADE, S3C2 and BIRTH methosls dunction of SNR.
Likewise, the COM1, COM2, JADE algorithms do not identifetbteering vector of the sour8e
in an underdetermined context even when the SNR increabesS3C2 results are more pleasing.
As to the BIRTH process, it performs well the identificatidritee steering vector even for a small

value of SNR.

Finally, consider the® = 3 previous sources are received by a circular array of 3 sensors
such thatR/\ = 0.55. Figure 3.7 shows the variations @f (source3 performance) at the output

of the COM1, COM2, JADE and BIRTH methods as a function of thenber of samples : the



3.4. SIMULATIONS 49
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Figure 3.3: Fourth order virtual array defined layxa,] (N = 5)

BIRTH method obviously works in overdetermined contextd atthough SixO cumulants have

to be estimated, the BIRTH algorithm converges fast enoogmpared with the other algorithms.

3.4.2 BIRTH improvements

We proceed in this section to two types of simulations. Fimstorder to test the five blind
identification methods, previously described in secti@ iBidependently of the BIRTH algorithm,

we have generatel vectorsb, such that
b, = b, + v, (3.26)

whereb, is thep-th column vector of matrixA“%»A*] and where théV3x1 noise random vectors
v, are chosen to be Gaussian spatially and temporally white that their covariance matrices
R, verify R, = o® Iys. We took a uniformly spaced circular array &f = 3 identical sensors,
of radiusR such thatR/\ = 0.55, andP = 12 directional vectors. The chosen blind identification
performance criterion is yet the pseudo-distance defineddtion 1.1.3. We report the average of
the P gaps obtained by the five methods in figure 3.8, as a functidheohoise level. It can be
seen that method 5 is almost as good as the most complex anelynaethod 3. Second, we now

incorporate the BIRTH core step in the comparison. Source8BSK modulated, with a raised
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Figure 3.4:05 for aSNR = 20 dB

cosine pulse shape of roll-off equal @25, and assumed synchronized. Figure 3.9 shows BMI
results obtained when BPSK sources are received by the same array as above. Thddoby
periods are equal to twice the sample period and their cagsduals are all null. In this figure,
the label “BIRTH=" corresponds to the BIRTH algorithm followed by methadof section 3.2.
Again, it can be seen that the five methods can be sorted inathe svay: method 3, the most
complex, is followed by method 5. The latter thus appearstobé the best trade-off between

performance and computational complexity.

3.5 Conclusion

As surveyed in introduction, there are few algorithms ablédentify blindly underdetermined
mixtures (.e. in the absence of sparsity). This chapter has presented 8k#wnethod, BIRTH,

in a underdetermined context, i.e. allowing to identify #teering vectors of more sources than
sensors, using SixO cumulants and the FourO VA concept. TR&H algorithm succeeds in
recovering the mixture matrix even for a small number of das\pr a weak SNR. Moreover, new
results as for the VA are given: both FourO VA, described is tihapter, are proved to be not

equivalent. As a consequence, the way to store cumulante icdrresponding matrix affects the
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Figure 3.5:DQ4,;1\) associated with the BIRTH method

performance of the method. Finally, the BIRTH algorithm bhaen be improved, in particular the

fifth step of (3.1.4), by proposing five methods optimizindfetently the compromise between

performance and complexity.

Note that the BIRTH algorithms, and in particular BIRTH3 aBtRTHS5, can be used for

blind beamforming. Yet, there exist techniques based ormattay manifold knowledge that can

handle underdetermined mixtures, such as the so-c&liddUSIC [60]. It could be interesting to

compare its performances with the above as well, which cgield a performance bound.
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Chapter

BIOME: Blind Identification of

Overcomplete Mixturks

In order to extend the ICAR and BIRTH methods, presented aptdrs 2 and 3 respectively, to
an arbitrary ordeRq, whereq is an arbitrary integer greater th&na family of new methods,
named BIOME (Blind Identification of Overcomplete Mixture$ sources) is proposed in this
chapter. Operating on statistics at ordgt this family gives rise to th€q¢-BIOME methods.
The latter algorithms allow to blindly identify both ovetdemined § > 2) and underdetermined
(¢ > 3) mixtures of sources, and to extract them in the overdetexdhcase. More generally, the
2¢-BIOME algorithm assumes the sources have non 2erth order marginal cumulants with
the same sign (the latter assumption is verified in most dasesliocommunications contexts).
Besides, BIOME, without SO prewhitening, explicitly exiothe redundancies in ttxg-th order
statistical matrix of the data and implicitly uses the Vattérray (VA) concept presented in [38]
[13] for FourO methods and extended in [12] for HO methodsteNbat, for a given value of
g, the maximum numbeP:¢ of independent sources that can be processed b@@BIOME

max

method, such thaP:¢ > N, increases withV andg.

From the linear algebra viewpoint, it is shown in section that the BMI problem can be

expressed in the form of the problem below, even in the urederchined case.

Problem 2 Given N matrices I, 1<n <N, each of sizé/ x P, M > P, find a full rank M x P

matrix .4, N diagonal matrices\,, of sizeP x P, and a unitaryP x P matrix V', such that
r,=AA,V"
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4.1 The2q-BIOME method

It is subsequently shown that, under assumptioht){A5) of section 1.1.2, thq-BIOME
method exploits the structure of the statistical maﬂfg]gm, for the chosen value df, 0 </ < qq,
so that the joint diagonalization to perform is actually swhat more complicated than that given

in problem 2, and better described by

Problem 3 Given N matricesl,, 1 <n < N, each of sizéV?x P, N7 > P but possiblyN < P,
find a full rank NV x P matrix A, N invertible diagonal matriced\,, of sizeP x P, and a unitary
P x P matrix V, such that

L, = A A, V"

WhereAfI — A% oA,

4.1.1 The core equation

The2¢-BIOME method precisely exploits several redundancieténstatistical matri)qu, = (@>
2) of the data especially thanks to the multilinearity prapeAlthough most of BSS algorithms
use the matrix multilinearity property form (1.20) (the JEInethod uses it fofg, /) = (1,0) and
for (¢,¢) = (2, 1)), the2¢-BIOME method precisely exploits the second form, describg

H
Chyw = Al Coys A, (4.1)
whereCo, s < Diag{ Chlml o222 Cﬁﬁ’,‘,‘;ﬁs ] is a P x P diagonal matrix of full

rank in contrast taﬁéq s (1.20), and where th& %< P matrix .Ag is given by

e
= [MALe] AL - (AL (4.2)
with
®, = Diag[ A(n,1) A(n2) --- A(n,P) | (4.3)

In other words, the non zero elements of fAeP diagonal matrix®, are the components of the
n-th row of matrix A. Note, as shown in appendix A, that the matrix form of the ifindtarity

property described by (4.1) ensues immediately from egost{1.11), (1.12), (1.13) and from
the multilinearity property shared by cumulants [55] [19®, d-24]. Moreover, it appears from
equation (4.2), that matrixd’, also calledg-th order Virtual Mixture (VM), can be written by

stackingG = N matrix blocks of sizeVx P, denoted¥®,, and such that



4.1. THE2Q)-BIOME METHOD 57

V1I<g<NT' 31<m,..,ng1<N, g=o([ng1 ngo ... ml),
AL ®, if=0
and ¥, = HFl K ) (4.4)
A 12 @, 117, ®,  otherwise (0.w.)
and
Al = [0 & BT (4.5)

q

4.1.2 The BIOME concept

Firstly, a unitary matrixy is estimated in the Least Squares (LS) sense, and yielddiarats of
.Af;. In a second stage, several algorithms may be thought oflier &0 compute an estimate df

from Af;. Finally, estimate of sources k) can be computed using the estimatedof

dentification of the g-th order VM A/

If 2¢-th order marginal source cumulants are strictly positA®)( then, according to (4.1), matrix
Cj, = is positive. So a square root 66, .., denotedCs, »['* and such thafCs, .**[CS, =] =
Ci, =, may be computed (if marginal source cumulants are stigyative, matrix- C4, », has to

be considered instead, for computing the square root). din fée deduce from (4.1) that matrix
.Af; (‘;/;S is a natural square root oﬁ% «- Another possibility is to compute this square root via the
singular or eigen value decomposition(tfgm given by

[CS,o]? = E, I} (4.6)

WhereLi/2 denotes a square root @&f, L, is the P x P real-valued diagonal matrix of th®
largest (in terms of modulus) eigenvaluescé& =, andE; is the N7 x P matrix of the associated

orthonormalized eigenvectors.
Proposition 5 Under assumptions®4) and (A5), the N4 x P matrix .Ag is of full column rank.

The proof of proposition 5 ensues immediately from equati(h?2), (4.3) and assumption
(A4). In fact, suppose tha,tétg is not full column rank. Then there exists sorftex 1 vector
B # 0 such that4, 3= 0, which, due to the structure o4, (4.2) implies that for alll <n < N,

.Af;L1 ®, 3=0. So itimplies thatAéH cannot be of full column rank (since matric®s are Px P
diagonal with nonzero entries, due to (4.3) aAd)), which contradicts assumptioA%).
Asumptions A3) to (A5), proposition 5, and equations (4.1) and (4.6) allow togeth prove

that matrice<’s, .. and[C4, »[?, and thusFE, and L, are of rankP as well.
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Proposition 6 For a full rank matrix A%, (A3) is equivalent to assuming that the diagonal ele-

ments ofL, are not null and have also the same sign.

The proof of proposition 6 is also straightforward. In fatis well-known that two square

roots of a matrix are equal to within a unitary matrix, so that
AL, =B LV (=[Chal?V) 4.7)

for somePx P unitary matrixV'. Note the latter is unique up to a multiplicative unitaryentible

diagonal matrix. We deduce from (4.7) that
EsH Ag C2q,s AgH Es = Ls (48)

and hence proposition 6.

In addition, equation (4.7) can be rewritten as follows
[CQZq, w]1/2 = E, L‘};/Q = A, C;qs (4.9)

showing the link betweefiCs, ,[* and .A%. Plugging (4.2) into (4.9), matri{C5, »'* can be

eventually rewritten as

(Chq ]

[[ l(I)lC2q sV C;qs fﬁl(I)NC;/qQ,sVH]T} !
= [’ - I‘NT]T (4.10)

where theV matrix blocksT;, of size N4!x P are given by
V1<n<N, AL ®, G V" (4.11)
Proposition 7 For any1 <n <N, matrix T}, is of full column rank.

The proof results from proposition 5, in addition to all atkéated conditions.

Using proposition 7, the pseudo-inverdg&isof the N4 x P matricesI,, may be defined by

Vi<n<N, TIf=(@'T,)'L’ (4.12)

n

Then, the information contained in matfi®, |/ allows one to blindly identify4. Indeed,

matrix V' jointly diagonalizes theV(N —1) matrices®,, ,, below

V1<m #ny <N, @,,,=IT,. (4.13)
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To see this, let us compu®,, ,,, from (4.11) and (4.12). We obtain

Ouny = V [y 2 8.1 B, 45/;3 vVi—vaels, V" (4.14)

Whereg‘;gs and D, ,, = ®,'®,, are Px P diagonal full rank matrices, which shows the result.
The unitary matrixV;,;, solution to the previous problem of joint diagonalizatwmfithe N(N —1)
matrices®,, ,, has necessarily the for¥,,, = VT where7 is a unitary matrix. This allows

one, in accordance with (4.9), to recomﬁ to within an orthogonal matrix as
Chyal? Vi = AL G2, T (4.15)

Proposition 8 Under assumptionA4), for every pair(pl,pg)\mép2 of {1, 2,... ,P}Q, at least
one pair (ny, nQ)|nHén2 belonging tof1,2, ... ,N}2 exists such thab, ,,.(p1, 1) # Dy no(D2, P2)-

The proof is given in appendix B.
Proposition 8 and [2] allow to assert that the previous upitaatrix 7~ is also trivial. So

matrix .Af; may be identified, according to (4.15), up to a trivial matrix

Identification of mixture A

Three algorithms are proposed in this section, with ine@éasomputational complexity and per-
formances.

Note, from (4.5) and (4.4), that equation (4.15) can also kittem in the form ofG = N¢!
matrix blocksX, = \Ifgg‘;fjs T of sizeNxP as

[CQZq, w]l/Q V;‘ol = [ElT EZT T EGT]T (4.16)

So a first approach to estimat up to a trivial matrix, name@q-BIOMEL1 in the sequel,
consists of retaining only the matrix blo® if £ = 0 (33" otherwise) made up of th¥ first rows

of [CS4 «]* Vi Such that

A®) QT ife=0
3 = [ ]“éqv N (4.17)
A" @) [ @) G, T ow,

whereéﬁs and®,, forall 1<n <N, are diagonal matrices.
It is also possible to take into account all the matrix bloBksif ¢ = 0 (X7 otherwise) and to

compute their average. This yields a second algorithmedal}-BIOME2, of higher complexity.
A third algorithm, name@q-BIOME3, is now described, and yields a more accurate soiuti

to the BMI problem: as shown in appendix C, it consists, fazheeolumnb, of [Cf% w]l/g‘/;ol,
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first of extracting theH = N% 2 vectorsh,(h) (1 < h < H) of size N>x1 (such thatyh, =
b,1)"8,Q7 - - - b,(H)]"), then of remodeling them intl matricesB,(h) of size NxN (then-th
column of B,(h) is made up from théV consecutive elements 8f(%) as from thg N(n—1)+1]-th
one), and finally of jointly diagonalizing the sAf, of matrices defined by

B,(h)", (By(h)"By(h))" / 1<h<H} if£=0
N =1 {By(h)* /1<h<H} ift=1 (4.18)

{(By(h)By(h)")", (By(h)"By(h)) / 1<h<H} ow.

Theorem 2 The eigenvector, in common to all matricesﬁsj;f, and associated with the largest

eigenvalue, is, up to a scale factor, a column vector of rradri

The proof is given in appendix C. So each joint diagonalatf matrices belonging to the
setA‘; allows one to estimate a column vector Af and finally to identify A to within a trivial

matrix.

Remark 3 Although the algorithm of joint approximate diagonalizatiin the LS sense [9] is
restricted to unitary joint diagonalizers, it can be usedpmcess the previous problem since
matrices belonging tcﬁf; are of rankl as shown in (C.5). However it is reasonable to believe that,
if an unrestricted (non-unitary) LS joint diagonalizatisnheme is applied, as for instance the one
described by Yeredor in [73], a better LS fit can be attainexsibly leading to a better estimate of
A. However, both approaches have been compared by simuddtiaghe previous chapter (section

3.4.2), showing that the former gives best results.

Extraction of the P independent components

Finally, to estimate the signal vects(k) for any valuek, and only in overdetermined situations
(i.e. for P < N), it is sufficient to apply a particular matrix filter builtdm the estimated of A
: such a filter may be the Spatial Matched Filter (SMF) souegmgator described in [11], which
is optimal in the presence of decorrelated signals and wastmate is given b)ﬁ\/ = R;lfﬁl\,

whereR,, is an estimate oR,, = Cy .

4.1.3 Implementation of the BIOME method

The different steps of theg-BIOME method are summarized hereafter whiérsamples of the

observationsz (k) (1 <k < K), are available.
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Stepl Choose the adequafty-th statistical order in accordance with the alleged
source numbeP to be potentially processed: see section 4.2.2 for mordisleta
practical situationsg is the minimal value which ensures the processing of all the

sources potentially present.

Step2 Estimate the2g-th order statistics?fl"z’;'jﬁi“m from the K’ samplesz (k) and

choose, using section 4.2.2 and [12], the best arrange@fgnt whereC,, is an

estimate ofC4, 5.

Step3Compute the Eigen Value Decomposition (EVD) of the Hermitiwatrix@%%;
estimateﬁ, an estimate of the source numberfrom an eigenvalue test and restrict
the EVD to theP principal components€4ys; ~ E, L, EY, whereL, is the diagonal
matrix of the P eigenvalues of largest modulus aBy is the matrix of the associated

eigenvectors.
Step4Estimate the sigr, of the diagonal elements dt,.

Step5 Compute a square root matraChyps]/? of eChyps @ [eChips]? = E, |Ls|'2,

where|-| denotes the elementwise complex modulus operator.

StepBEXxtract from[eCls /2 the N matricesT},, construct matrice®,, ,,, = [T, T,]
for all 1 <m #ne <N, and compute the estimaiéol of the unitary matrixy;,; from

the joint diagonalization of th&/( N—1) matricesz(:)m,712 (with the algorithm described
in [9]).

Step7ComputeA , an estimate of mixturet, from matrix [[eChps]/2 V,,] by either

one of the following:

1. (2¢-BIOMEL) taking the matrix block made up of thé first rows of[[eaéﬁ]m
ff\sol} if £,,, =0, and of[[eClps "2 V,oi]* Otherwise;

2. (2¢-BIOME2) taking the average of th¥ matrix blocks, of sizeV x P, made
up of the successive rows BECps "2 Vi) if £y =0, and of[eChpsl’2 Vi) )*
otherwise;

3. (2¢-BIOMES3) fully exploiting each column vectab, of [[eCpil’2 Vo). In
order to do this, first extract thil = N7—2 vectorsgp(m) of size N%2 x 1, then

remodel them intd// matrices?R\p(m) of size Nx NV, and finally build the matrix
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whosep-th column vector is the eigenvector in common within fifematrices

ﬁf;(m) (1<m< M) and associated with the largest eigenvalue.

Step8If A is an overdetermined mixture, estimate the signal vegtoy for any value
k, by applying tox(k) the SMF source separator definedﬁ?:ﬁ;lﬁ, whereR,,
is an estimate oR, =C5 ..

4.2 ldentifiability

The identifiability properties of th@¢-BIOME method are directly related to th-th order
Virtual Array (VA) concept described in [38] [13] far=2 and extended in [12] fag > 2. For this
reason, we recall the main results about the VA array corioeggction 4.2.1 before discussing,

in section 4.2.2, the identifiability properties 2f-BIOME.

4.2.1 The VA concept

In the absence of coupling between sensors, compenefithe p-th column vectom, = a(6,, )
of A, denoteds,(6,, ¢,) wheref, andy, are the azimuth and the elevation angles of sopr@an

be written, in the general case of an array with space, angathpolarization diversity, as [26]

anlOp, pp) = Flbps s wp) exp {j2m [y cos(6p) cos(p) +
yn sin(6,) cos(yp) + 2 sin(yy)] /A } (4.19)

where\ is the wavelength(x,,, y,, z,) are the coordinates of sensowf the array,f(6,, ¥, wp)
is a complex number corresponding to the response of sertea unit electric field coming from
the direction(6,, ¢,) and having the state of polarizatiop (characterized by two angles in the
wave plane) [26]. Let us recall that an array of sensors hatsadliversity if the sensors have not
all the same phase center. The array has angular and/oizatilam diversity if the sensors have
not all the same radiating pattern and/or the same polangaespectively.

Assuming no noise, we note that matri«‘.é@m andR, :(}Em, defined by (4.1), have the same
algebraic structure, where the marginal source cumulgst 2 s and the vecto.{ap@?q—f@(a;)@f]
= [a(Hp,cpp)®H®(a(0p,cpp)*)®q play, for C5, ., the role played forR, by the powerChs and
the steering vectos(6,, ¢,) respectively. Thus, for BMI methods exploiting express{éri), the
N9x1 vector [a(ep, @ P (@6, gap)*)@“} can be considered as thquivalentor virtual steering

vectorof the source for the true array ofV sensors with coordinatés:,, v, z,,) and amplitude
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pattern £,(6,, v, wp,) (1 < n < N). Moreover, comparing the components [@n‘(ﬁp,app)®H®
(a(Hp,gap)*)W} to expression (4.19), it is shown in [12] that vec{u(ep,wp)@q%@(a(ep,gap)*)@q
can also be considered as the true steering vector of theespusut for a VA of N? Virtual
Sensors (VS) with particular coordinates and particulangiex amplitude patterns deduced from
(@, Yn, 2n) @NA fi(6y, @, wp) (1 <n < N) respectively.

Nevertheless, some of thed&! VS may coincide. If we note\/'fq the number of different
VS of the VA associated with thigy-th order array processing problem for the arrangerdém,
/\/fq is also a upper bound to the rank of matmé. Conversely, if the2g-th order VA has no
ambiguities [63] of rank smaller than or equalt§,, the rank of matrixAg is equal tQ/\/'fq under
(A4). In particular it is shown in [12] that in the general caseanfarbitrary array ofV sensors
with no particular symmetries, for large valuesiéfand for a given value of (2 < g < N), the

number of different VS\/fq can be approximated by
Ni, = NI/[(N —q)l (g — 0! (4.20)

In these conditions, the optimal arrangemééﬂgffw is such that/,,; maximizes/\/fq defined by
(4.20) and thus minimizes the quantity — ¢)! ¢! with respect td (0 </ < qo wheregy=¢q/2 if ¢

is even andyy = (¢—1)/2if ¢ is odd). It is straightforward to show thés,, =g, and it is verified

in [12] for 2 < ¢ < 4 that this result remains true whatev&r. In other words/,,; generates
steering vectors{a(ﬁp, @ P @b, gap)*)®"} for which the number of conjugate vectors is the
least different from the number of non conjugate vectors.

The computation of the number of different V/S’;fq, of the2¢-th order VA for the arrangement
wa is not easy for arbitrary values &f, g (¢ > 2) and/. For this reason, Chevalier et al. [12]
limit their analysis to some values @f2 < ¢ < 4), which extends the results of [13] up to the eighth
order for arbitrary arrangements of the data cumulants.adt, for these values af, Chevalier
et al. give a upper bound Wfq, N2at first for an array with space, angular and polarization
diversities, summarized in table 4.1, then for an array witgular and polarization diversity only,
and finally for an array with only spatial diversity summauzin table 4.2. These upper bounds
are shown in [12] to be reached for most array geometries.eftfesless, for Uniformly spaced

Linear Arrays (ULA), these upper bounds are not reached/\éfads shown in [12] to be given by
Nog=q(N —=1)+1 (4.21)

whateverg, N and/, showing that the numbe’v’fq of different VS of the2¢-th order VA associated
with a ULA is independent of and of the chosen arrangemedt, .. However, for UCAs ofV
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sensors, the upper bound is shown in [12] to be reached whisra prime number as depicted in

table 4.3.
NobS

g=2|¢=0 N(N+1)/2
(=1 N?

g=3|¢=0 NV[6(N—=3)]+ N(N—-1)+ N
(=1 NU/[2(N =3)]+2N(N —-1)+ N

g=4 | ¢{=0| N!/[24(N —4)!] + Nl/[2(N = 3)]]+ 1.5N(N - 1)+ N
¢=1| N!/[6(N—-4!]+15N!I/(N—-3)!+3N(N—-1)+N
¢=2| N!/[AN -4 +2N!/(N-3)!+35N(N—-1)+ N

Table 4.1:N2%:¢ associated with arrays with space, angular and polarizaliersities

max

N
g=2|¢=0 N(N+1)/2
(=1 N2-N+1
g=3| (=0 N!/[6(N =3)]+N(N —1)+ N
(=1 N!/[2(N=3)]+ NN —-1)+ N

Q=4 | £=0 | NV/[24(N — )] + NI/2(N = 3)] + LEN(N — 1) + N
(=1 NY6(N—4)]+N/(N-3)!+15N(N—1)+N
(=2| NIMAN -4+ NI/(N =31 +2N(N —1)+1

Table 4.2:N2%:¢ associated with arrays with spatial diversity only

max

4.2.2 The BIOME processing power

From the results of section 4.2.1, it is possible to identiify maximum numberPn%g, of inde-
pendent non Gaussian sources that can be processed By-BI® ME method. Indeed, it has
been shown in the previous sections tfasources can be blindly identified by tBe-BIOME
method from an array olV sensors, provided condition&X)-(A5) are verified. For an array

without any rankt ambiguities, conditionA4) is verified as soon as the sources have different
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N,
N=3|N=5|N=7|N=9| N=11
qg=2| (=0 6 15 28 45 66
(=1 7 21 43 73 111
qg=3| (=0 10 35 84 163 286
(=1 12 55 154 306 616
qg=4 | (=0 15 70 210 477 1001
(=1 18 115 420 918 2486
=2 19 131 505 1135 3191

Table 4.3;/\/2{1 associated with a UCA aV identical sensors

directions of arrival. In a same manner, assuming2fe— 1)th order VA associated with the
arrangemencﬁ(ﬂ)m and the considered VA array éf? VS has no ambiguities of rank lower
than/\[{q_l), condition @A5) is verified provided A4) is verified andP is lower than or equal to
/\/%(H). Otherwise, A5) cannot be verified. We deduce from this result that the makimmmber
PN of non Gaussian sources that can be processe@g-BIOME is /\[;qftl)

As far as the choice of parametgis concerned, it depends on the numbeof independent
sources that BIOME's user wants to process. Since we haviopsty shown the link between
PNa and/\[;;’ftl) for a given value of, it is sufficient to choose the smaller valuegafy > 2) such

that P < PN.a.

4.3 Simulations

The performance criterion used to evaluate the quality ®BMI process has been presented in
section 1.1.3. On the other hand, the quality of the BSS proiseevaluated using the well-known
SINRM (Signal to Interference plus Noise Ratio Maximum})emion defined in [11, section 3].
Moreover, the synthetic signals used in this section arstationary, and according to sections
1.2.4 and 5.2, other statistical estimators than empigstimators should be employed. However,
if the cyclostationary sources are zero-mean and circotarpn circular with a zero carrier residu,
or non circular with different non zero carrier residus,tsas the sources used subsequently, the
bias due to empirical statistical estimators is neglig[dt&]. So we decide to employ them in the

following simulations.
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The overdetermined case

The previous results are firstly illustrated in the overdataed case comparing-BIOME and
6-BIOME with the well-known BSS algorithms. In fact, we assuihat P = 4 statistically
independent sources, i.2. BPSK and2 QPSK, all with a raised cosine pulse shape of roll-off
equal to0.25, are received by a UCA aV =4 identical sensors of radius such that?/A = 0.55

(A: wavelength). The four sources, assumed synchronize@, thavsame input SNR (Signal to
Noise Ratio) o20dB and the noise is spatially and temporally white Gaussiée. symbol period

T; associated with the first BPSK is equal to three times the Eapgriod7.. The other sources
have a symbol period equal to twice the sample period. Thexiilins of arrival of the sources
are such that the source steering vectors are orthogondharagsociated carrier residus are such
that fu 7. = 0, fro Tt = 0.3, f3. = 0.2 and f.4 . = 0.1. We apply the COM1 [18], COM2
[16], JADE [8], SOBI [2], FastICA [3], FOBIUM [40]4-BIOME1, 4-BIOMEZ2, 4-BIOME3 and
6-BIOME1 methods, and the SINRM associated with each sosrcemputed and averaged over
200 realizations. Figures 4.1 and 4.2 show the variatiorSINRM; (source3 performance) at the

output of the previous methods as a function of the numbearmixdes.
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Figure 4.1: SINRM associated with source 3 for a SNR®HB

Although the6-BIOME1 method obviously works in overdetermined contektsippears in
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figure 4.1 that thel-BIOMEm (1 < m < 3) methods give better results, which shows that it
is sufficient and more appropriate to use, as proposed ifogeé4t2.2, the2¢q-BIOME method

of smallest value; allowing to process thé sources. Figure 4.1 also shows tHaBIOME3
converges as fast as COM2 and FOBIUM, but faster th&dlOME1 and4-BIOMEZ2: the third
method given in section 4.1.2 exhibits better performanicas the others and it is reasonable to
believe that th&-BIOME3 method would give better results than thos&-®IOME1, as shown

in the previous chapter (section 3.4.2).
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Figure 4.2: SINRM associated with source 3 for a SNR®HB

In addition, figure 4.2 shows the good performance of 4 ®IOMES3 algorithm facing the
well-known COM1, COM2, JADE, SOBI and FastICA methods. Ntitat the SOBI and FO-
BIUM methods give in this simulation good results since searhave been chosen with different

spectral densities, especially taking different carrésidus.

The colored noise case

Then, the4-BIOME method is compared to other algorithms in an ovemieited context and
especially in the presence of a Gaussian noise with unknatias correlation. In factpP = 3

statistically independent sources, 28BPSK andl QPSK, all with a raised cosine pulse shape of
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roll-off equal t00.25, are assumed to be received by a UCANOE 5 identical sensors of radius
R such thatR/\A = 0.55. Their symbol periods are equal ¥ = 27;, T, = 31, and T3 = 4T,
respectively. Their carrier residus are chosen equal t Znally, the source steering vectors are
built orthogonal. This time, we apply the COM1, COM2, JADE)E, FOBIUM, 4-BIOMEL1,
4-BIOME2 and4-BIOME3 methods, and the SINRM associated with each sowo®mputed

and averaged ove00 realizations.

4-BIOME3

- FOBIUM
Optimum SMF

4 O'O
COM2 Og
3r o}
2 I I I I ]
0 IQ.Z 0.4 0.6 0.8 1
oise spatial correlation

Figure 4.3: SINRM associated with source 3 for a SNR dB

Figures 4.3 and 4.4 show the variationsS®iNRM; (source3 performance) at the output of the
previous methods as a function of the noise spatial coieldctorp. SNR of the three sources
is taken equal t® dB and1500 samples are used to identify the overdetermined mixturete No
that the Gaussian noise model employed in this simulatitineisum of an internal noise,, (k)

and an external noise,..;(k), of covariance matriceR:; and Ry respectively such that
R (r q) % 5285(r—q)/2 RO (r,q) & 52 plr=dl /2 4.22
v(rg) = o°6(r—q)/ v (rgq) =o°p" 1/ (4.22)

wherecd?, p are the total noise variance per sensor and the noise spattialation factor respec-

def

tively. Note thatRy (r,q) = Ri}(r,q) + R (r,q) is the(r, ¢)-th component of the total noise
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covariance matrix.
It appears in figure 4.3 that the three proposed versiodsB3OME seem to be robust with re-
spect to the correlated Gaussian noise preserB@OME1 and4-BIOME3 are totally insensitive

to a Gaussian noise with unknown spatial correlation.

10
Optimum SMF

4-BIOME3

JADE

0 |q'02IS€ spat?aflcorrelag'o(sn 0.8 1

Figure 4.4: SINRM associated with source 3 for a SNR dB

On the other hand, figures 4.3 and 4.4 show that the well-knrd@M1, COM2, JADE and

SOBI methods are strongly affected as soon as the noisebkpatielation is close to.

The underdetermined case

Finally, the 6-BIOME method is compared, in an underdetermined conteith the FOBIUM
and JADE algorithms. Statistically independent sourcél avraised cosine pulse shape of roll-off
equal td0.25, assumed synchronized, are generated with the same infpub82 dB. The noise is
spatially and temporally white Gaussian. Besides, the SixiDal steering vectors of the sources
are built orthogonal. Figure 4.5 and 4.6 show the variatiohB (A, 2) (performance of the?
sources), averaged ovep0 realizations, at the output of the JADE, FOBIUM a6«BIOME1

algorithms as a function of the number of samples.
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10 % :
i 4FOBIUM
X* . 6-BIOME1
10 K& w/u % J/ 6-BIOMEL1
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Figure 4.5:D(A, Z) for a SNR of20 dB

In figure 4.5,1 BPSK and2 QPSK are received by a UCA of =3 identical sensors of radius
R such thatkR/A = 0.55. Their symbol periods]; =27;, T, = 31, andT3 = 2T, respectively, and
their carrier residusf; 7. =0, f.2 7. =0.1 and f.3 T, = 0.2 respectively, are such that both QPSK
have different FourO spectral densities: this assumpsarduired by the FOBIUM algorithm.
Figure 4.5 shows the threg at the output of the FOBIUM an@-BIOME1 methods as a function
of samples. In fact, note the decreasing values toward Zeah the previous coefficients as the
number of samples increases for both methods: whateverdtieooh FOBIUM o16-BIOMEL, the
three sources have correctly been identified. Moreovee tit the SixG5-BIOMEL algorithm

is not ridiculous in terms of convergence rate, comparel thi¢ FourO FOBIUM method.

On the other hand, figure 4.6 shows BMI results obtained WhBRSK sources are received
by a UCA of N = 3 identical sensors of radiuB such thatR/\ = 0.55. Their symbol periods
are equal to twice the sample period and their carrier resdde all null. Instead of showing the
variations of the seven, at the output of the JADE ar¢tBIOME1 methods, we decided to show
only the minimal and maximal variations of, associated with both algorithms, and denoted by
min{a, } andmax{a, } respectively. Whereas the JADE method obviously cannaitiiyeall the

steering vectors of sources in a underdetermined context;-BIOMEL algorithm completely
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Figure 4.6:D(A, ,/4\) for a SNR of20 dB

succeeds in identifying them, according to table 4.3(for) = (2,1). Moreover, according to
figures 4.5 and 4.6, it appears that the sample number negdssidentifying accurately the?

source steering vectors increases with

4.4 Conclusion

A family of new BMI methods, named BIOME, exploiting the imfoation contained in the data
statistics at an arbitrary even order has been proposedsintthpter. These new methods allow to
process both over and underdetermined mixtures of soyro@dded the latter have marginal HO
cumulants with the same sign. The proposed methods aremsitige to a Gaussian colored noise
whose spatial coherence is unknown and allow the proces$§iaghumber of sources depending
on both the kind of sensors and the array geometry, and isioge®avith both the number of sensors
and the order of the data statistics. For underdetermingtlires of sources, the proposed methods
seem to outperform most of the methods currently available.

From a mathematical point of view, the so-called BIOME ajpgt®es allow to pose and to

solve the BMI problem in terms of a non conventional jointi@ximate diagonalization of several
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given matrices, even in the presence of more inputs (soutisas observations (sensors). This
problem is difficult to solve because of its structure. Hogreby ignoring part of the structure,
it has been possible to compute in the LS sense the left ahtl ignsforms. More accurate

numerical algorithms, taking fully into account the sturet still remain to be devised.
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Other contributions

5.1 The FOBIUM approach

Another new BMI method has also been proposed, exploitieginformation contained in the
FourO data statistics only, able to process both over anérdetermined mixtures of sources
without the drawbacks of the existing methods, but assuthiagources have different trispectrum
and have non zero kurtosis with the same sign. This new BMhatktcalled FOBIUM (Fourth
Order Blind Identification of Underdetermined Mixtures afusces), corresponds to the FourO
extension of the SOBI approach [45] [24] [2] and is able tadily identify the steering vectors of
up toP=N?—N+1 sources, from an array éf sensors with spatial diversity only, and of up to
N? sources, from an array of different sensors. Moreover, this method is robust to a §ans
spatially colored noise since it does not exploit the infation contained in the SO data statistics.
The FOBIUM approach is presented in detail in [40] and moréiqadarly in appendix F. Finally,
an application of the FOBIUM method will be soon presentea iforthcoming journal paper
through the introduction of a FourO direction finding methbdilt from the blindly identified
mixing matrix and called MAXCOR (MAXimum of spatial CORréian), which is shown to be
very powerful with respect to SO [64] and FourO subspacedbatirection finding methods [5]
[15] [60].

5.2 Blind separation of non zero-mean cyclostationary sowes

Most of the SO and HO blind source separation methods deselthps last decade aim at blindly

separating statistically independent sources, assuntednzean, stationary and ergodic. Nev-
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ertheless, in many situations of practical interest, sicimaadiocommunications contexts, the
sources are non stationary and very often cyclostatiordigitdl modulations). The behavior of
the current SO and FourO cumulant-based blind source d&paraethods in the presence of
cyclostationary sources has been analysed, recently,rievéops paper [42], assuming zero-mean
sources. However some cyclostationary sources used itigalagituations are not zero-mean but
have a first order cyclostationarity property, which is imtjgalar the case for some AM signals
and for some non linearly modulated digital sources suchSi¢ & some CPFSK sources. For
such sources, the results presented in [42] do no longer $mitthas been necessary to analyse the
behavior and to propose adaptations of the current SO an®Huind source separation methods
for sources which are cyclostationary and cyclo-ergodicaipO. These results are presented

in [43] (see appendix G) and in [44] (see appendix H) [14] eetipely.
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Conclusion

We addressed in this this report the blind identificationbpem of static linear underdetermined
mixtures (i.e. in which the number of sources present exxé@egermanence the number of
sensors), as well as the blind source separation probleteiverdetermined case, both in the

presence of additive Gaussian noise, of unknown spatiareolce.

In order to process the latter problem, we proposed the ICAfhad consisting of getting
rid of the whitening stage, and of using exclusively HO stats, namely FourO cumulants.
More precisely, the redundancy theoretically present énghadricovariance of the observations

is exploited.

This concept can be extended to statistics of order stiiigfger thant, allowing for instance
to address the case of underdetermined mixtures. Suchsexterto ordet have been proposed
under the name of BIRTH. Surprisingly, identification math@olely based on the hexacovariance
well succeed, despite their expected high estimation negiathis is due to the inherently good
conditioning of the problem. The BIRTH algorithm is comgigaally simple but efficient and
enables to identify the steering vectors of ugite= N2 — N + 1 sources for arrays oV sensors

with spatial diversity only, and up t&® = N? for those with angular and polarization diversities.

More generally, a family of new BMI methods, named BIOME, lexjing the information
contained in the data statistics at an arbitrary even ordebleen proposed. These new methods
allow to process both over and underdetermined mixturesoofcgs, provided the latter have
marginal HO cumulants with the same sign. The proposed rdsthe not sensitive to a Gaussian

colored noise whose spatial coherence is unknown and dllewrbcessing of a number of sources
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depending on both the kind of sensors and the array georaatiyncreasing with both the number
of sensors and the order of the data statistics. For undgndieted mixtures of sources, the

proposed methods seem to outperform most of the methodsntiyravailable.

Moreover, we have examined the asymptotic performanees ¢ovariance of estimate) of
contrast-based BSS algorithms by proposing a functionatogeh. As an illustration, 3 FourO
contrast criteria already compared by computer experispdrave been mainly focused on, for
asymptotic performance analysis. Forthcoming works wilhgist of looking for the contrast
criterion associated with ICAR in order to analyse acclyatées performance using for instance

the latter functional approach.

Now, it can be interesting to compare the BIOME solution vitik exact one given by the
minimization of the mutual information, which is defined &® tKullback divergence between
the source joint distribution and the product of the margmzes. Note that a practical way
to approximate the mutual information consists of computm Edgeworth expansion of its

negentropy components.

In addition, we will soon analyse the computational speddba2¢-BIOME methods, and
test the latter algorithms with experimental signals, say synthetic signals, borrowed from the

radiocommunication context.

Besides, the blind source extraction problem deservestatteespecially in the underdeter-
mined case, assuming the mixture is known (or beforehandifail). However, as we said it in
section 1.3, itis a difficult problem since the underdeteedimixtures cannot be linearly inverted.
Moreover, we will try to process this problem in a way as blsdpossible, i.e. limiting the source

a priori assumptions.

Eventually, as shown in the report, the proposed ICAR (septehn 2), BIRTH (see chapter
3) and BIOME (see chapter 4) approaches can tolerate (indhgient form), but do not totally
exploit, cyclostationarity of the sources such as in [4h]s will be the subject of forthcoming

works.
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Proof of the second matrix multilinearity

property (4.1)

Assuming A1)-(A2), the 2¢-th order statisticg>/*"" ’”q defined by (1.9) may be described,

B,y 12,05

using (1.4) and the multilinearity property shared by cumtB [55] [19, pp. 1-24], by

m=q+1

q 2q
Cprtn = Z Ch-P (H A(im,m) ( 11 A(z'm,m*) (A1)
m=1

It is straightforward to show the(t]'[?n_f1 A(z‘m,p)) (Hi‘jﬂq_eﬂ A(im,p)*) is the I/ -th compo-

nent of vector[ap@?q—f@(a;)@q and that(]‘[if;fHA(im,p)*) ( r —gti1 A(im,p)) is the I;5-th
component of vecto[ap@@H@(ag)@ér wherelI!, I{ are given by (1.12) and (1.13). Consequently,
since[ap®H®(a;)®’f} is thep-th column vector of matrix4’, (4.2), equation (A.1) may be written

as
P
z yeenl 0
11(71-;127 ,z?:m Z 7p) A (127 ) (A-Z)

where AL (n,p) is the (n, p)-th component of theV x P matrix.A.. So, Sincels4s denotes the
PxP invertible diagonal matrlDlag[CLL Le O35 5 e C]’jﬁjgs} , equation (A.2) may

take the following expression

z i H
Car i, = Zﬂh Coqs(p,p) AL (p, I5). (A.3)

That means

Gty = [ AL Caus A| (. 1), (A.4)

1, %2,..5 g, T
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And, since quantityC;”" "2 is also the(L{, I)-th component of theV? x N7 matrix C5, z,

11, 92..5 Ug, T

according to (1.11), we finally have

c2£q,:1: = Af] C2q,s Ag H- (A5)
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Proof of propositions 4 and 8

Proposition 8 may be rewritten as

(A4) = {V1§pl7ép2fpv ngnl#HQSN: Dn1,n2(pl7pl)#Dnl,nz(p27p2)} (B'l)

To prove it, assume the contrary:

Ellépl#I)QSP: V1§n17én2§N’ Dm,VLQ(plapl):Dn17n2(p2>p2) (BZ)

This implies, sinceD,, ,, = ®, ' ®,, are PxP diagonal full rank matrices, that

q)n 9 q)n 9
FJ1<p#po<P : VI<m#ny<N, A pl): o2, p2) (B.3)

q)nl(plapl) (I)nl(p2>p2)

which is equivalent, according to (4.3), to

J1I<p #p2<P : V1<m#na <N, Alnzm) _ Alnz, p2) (B.4)

A(r,p) A, p2)

This means

J1<p#p2<P : @y xap, (B.5)

In other words, assuming (B.2) implies that at least two mwia of A are collinear, which

contradicts A4). Consequently, proposition 8 is true.
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Appendix

Proof of theorem 2

Each columr, of [C4, =]? V4, is defined, according to (4.15), by
VI<p<P, b =Ag)l(ag) " @, "]  of sizeNx1 (C.1)

where((+) is a bijective function of{1,2,..., P} into itself (i.e. a permutation function) and
where|)\,| = | G2 ¥ s[2, | -| denoting the complex modulus operator. Moreover, vediprsay

be written as
b=[B0" Q" O] (C.2)

whereM = N9~2 andb,(m) is of sizeN%x 1. Now it is important to notice that each vectgtm)

(1<m< M) may be expressed as a Kronecker product of the column vectufr A by itself:

Agp) (Hﬁ A(nji(p))) [ag@@af@)} if £ =0
b(m) =1 Ag) ([T A(n; 0))) |agpy @z, | i €= 1 (C.3)
)‘5(10) (HﬁA(nﬂ7£(p)))(H?;§_g+l A(ﬂj,f(p))*) [Gf@) ®G§(p)} " 0.W.

So we transform thé/ vectorsh,(m) of size N? x 1 into N x N matricesB,(m) (1 <m < M)
where the(s ,i2)-th component oB,(m) corresponds to the([iz i ])-th component ob,(m) so
that
Ay (T2 A(n;.,60)) ) | agy) agyy'| i €= 0
By(m) =14 Agp) ([ A(n£0)) agp) ag’] 1T € =1 (C.4)
My (TS A o)) ([T22 041 Al &0))") ) agpy’] 0

Consequently, plugging (C.4) into (4.18), the set of matrif% may be expressed as

N={tin, o) agp)' / 1< <N} (€5)
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with

2 2
gy [T Ay 80))| | i £=0
Homy =4 Ny [T Al &) i £ =1 (C.6)
e [T Ay ) ([T 0 Ay 00 |

where|| -|| denotes the norm operator respectively. So a joint diagaatedn of matrices belonging

to A‘; indeed allows one to extract tij@)-th column vectoiag, of A.
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Multivariate high-order complex

cumulants

Cumulants are given as a function of moments in statistiddtmoks, but only in the real case [55].
Therefore, it seems useful to report here their expressithie complex case. Again, we consider
only zero-mean complex variables that are distributed sgtrically with respect to the origin.
However, they do not need to be circularly distributed. Belocumulants are denoted withand
moments withu. As before, superscripts correspond to variables that@amplex conjugated. We

have for orders 4 and 6:

Kijke = Hijke = [3]pijlne
1 ¢ ‘
Kigk =  Higk — [3Hij
ke ke k¢ ke
Kij = Mg — (2] My — Hij b

Kijkemn = Mijkemn — [15]iijrettmn + 2[15]pij ppettmn
’%njkem = Nznjkém — [5]pijettn, — [10],“?]'ka
+2[15] s prreptyy,
Kiike = Higke — Migkett™" — [Blupmg — (611" bie
16 a5 ppep™™ + 2[12) it
R = g — (3™ — (90 gy — Bluagug™

+2[00 g p ™™ + 2[6] s 17 i
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and eventually for order 8:

Kijkemnpg= Mijkemnpg — [28)ijkemntipg — [35]tijhelimnpq
+2[210]pije tamntpg — 6[105]1ij pursettmn bpg
ngumnpz Ngjkgmnp - ml‘z‘jkﬁmnﬂg - [21]Ngjkgm/‘np
—[35] ikt + 2[105] 11 prerm b
+2[105] pijoe timn ey — 6[105] s poke pamm 11}
“I;jqkzmn = Ng']kgmn — ijkemn Pl — [12]lu1i)jk5mlu%
— (18] gt — [15] pagme s, — (20018751 147 e
+2[15] pijne tmn P + 2[30] e pth 11
+2(120] 17 prem ey + 2[45] 1] prrceptmn

—6[15] 114 ke toamm Pt — 6190] pag porce gy, 15

Kitktm = Hitkom — Bl komi?? — (5] h oy

— 101453 pem — [B)ijnepit® — [301uf . i,
+2([15] ket 19 + 2[30] 1 o frem P!
+2[60] 17 417 1ty + 2(90]7F pue e,
2(15]11; ™ pjrobsem

+

—6[45] i propigy P — 6[60] i pf pry pul,

Rignt - = Hight - — (6] oiP? =61 e —[16] 10775, g
—[16] g™ — (18] " pig — pagers™ P
+2[2] ([B]ijmep™ uP? + [48] a7 1 1)
2[36] ™ purepP? + 2[72) " a1

— (72 g gt 1P — 6[24] " 1}l

_l’_

[
6[9] gt pre ™" P4
where[d][],, ™ ") 1y denotes McCullagh bracket notation defined in [55], which is

mluil,.., Z,,(m), xr

written instead of a linear combination éterms of the form [,y ™" "™ (1) permuting

mlu’il,.., Lp(m) T

on one hand superscripts, and on the other hand subscrghtsasufor instance

[6]/“1’:13, 2, a}(k) :U’;:i a}(k) = :U’Z 19, a}(k) Méi :zz(k) + :U’;S, 19, :zz(k) Méi, m(k) +
M;ﬁ 4, a}(k) M;g, a}(k) + ,u;s, 4, a}(k) //Jii :zz(k) + N;Z 19, m(k) ,UZS, m(k) +

His i ol k) 13 o ) (D.1)
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Expression of second order differentials

For contrasfl’y, we give below the expressions of the coefficients of thersgtooder differential

with respect tdJ (omitting subscripty in Cf;’elfy):

R{6(q — r)(Cf,’zl —2077" — C:,’Tq) +4(q — q)(Cf,’gn + 207 9 — C:/’Sn)—F

(' =) (C 4 2C8r — CH) +6(r' — q)(Cy, — 2081 — C)}
if g <randq <7’
=S{(6(r" = 7) = 6(r' = @))(CLI+ Cyy)}if g <randg =1’

=S{o(r" =) (CPe + 209 — Cyl) +ald —r)(Ch + 20 — O )+

r’.q
3(r' — q)(CHL — 2089 — CI") +6(d' — q)(CHL — 2010 — CI7 )}
if ¢ <randq >’
04 =1 ~S{(¢' — ) (O}, + 2073+ C%) = 8(r" — q) (O, + 201 + Ot )+
8(q =) (O + 2055 + Cg) = o(r = ') (City + 20437 + Cy)}

if ¢ >randq <1’

R{(60" = q) = 80" =) (Cf = Cg)}if ¢ > r andg’ =17

—R{O(r" — q)(Cl7 = 20439+ C%L) +8(q' — q)(Cl, — 20039 + CL4 )+
8(r' — r)(CHL — 208 + Ol )+ 8(q — r)(CLE — 201 + C )}
if ¢ >randq >’

0 ifg=1r
(E.1)
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and those of the second order differential with respe€tto

U(r,i)Ulq,j)" Ula, k)" U(g, 1) + U(q, 1) U(r, )" Ulq, k)" Ulq,1)—
U(q,))U(r,5)* U(r,k)* U(r,l) —U(r,i) U(q,5)* U(r,k)* U(r,1)

ifg<r
O =S 0  ifg=r (E.2)
Ulg, i) U(r,j)* U(r k)" U(r,1) = U(r,i) Ulq, j)* U(r, k)" U(r, 1)+

U(r,i)U(q,5)" U(g, k)* U(q,1) = U(q,i) U(r,§)* Ulq, k)* Ul(g,1)
if g >r
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APPENDIX F. THE FOBIUM APPROACH

FOURTH ORDER BLIND IDENTIFICATION OF UNDERDETERMINED MIXTURES OF
SOURCES (FOBIUM)

Anne Ferréol, Laurent Albera and Pascal Chevalier

THALES COMMUNICATIONS — TSR/TSI/LTC
66 rue du Fossé Blanc, 92231 Gennevilliers, France

ABSTRACT

Most of the current Second Order (SO)[1] and Fourth Order
(FO)[3][6] Blind Sources Identification (BSI) methods aim at
blindly identifying the steering vectors of statistically
independent sources, provided the number of sources is not
greater than the number of sensors. However in practical
situations, the probability of receiving more sources than
sensors increases with the reception bandwidth. In this context
the purpose of this paper is to propose a new attractive FO BSI
method, able to identify the steering vector of more sources than
sensors, jointly with a new pertinent performance criterion for
the quality evaluation of the BSI process. The new method
implements a FO pre-whitening step and exploits the tri-
spectrum diversities of the sources.

1. INTRODUCTION

For more than a decade, SO [1] and FO [3][6] methods
have been developed to blindly identify the steering
vectors of several statistically independent sources,
provided the number of sources remains lower than or
equal to the number of sensors. However, in practical
situations, such as in the HF context, the reception of more
sources than sensors is possible and its probability
increases with the reception bandwidth. To process such
situations, several BSI methods have been developed this
last decade, among which we find the methods [2] [7-8]
[10]. The methods proposed in [2] and [7-8] only exploit
the information contained in the FO statistics of the data
whereas the one proposed in [10] exploits the information
contained in one of the characteristic function of the
observations. However, all these methods suffer from
severe drawbacks in operational contexts. Indeed, the
method [2] is still very difficult to implement and does not
ensure the BSI of the sources steering vectors when the
sources have the same kurtosis. The methods [7-8] assume
non circular sources and fail in separating circular sources,
omnipresent in practice. Finally, the method [10] has been
developed only for real mixtures of real-valued sources
and is probably not robust to an over estimation of the
source number. To overcome these drawbacks we propose
in this paper a new FO method, corresponding to the FO

extension of the SOBI algorithm [1], able to blindly
identify the steering vectors of up to A= N +1 sources with
N sensors, without the previously mentioned drawbacks
but assuming the sources have different tri-spectrum and
have non zero kurtosis with the same sign (the latter
assumption is generally verified in radiocommunications
contexts). This method implements a FO pre-whitening
step and fully exploits the assumed non whiteness property
of the sources. Finally a new performance criterion, able to
quantify the identification quality of the steering vector of
each source and allowing the quantitative comparison of
two methods for the blind identification (BI) of each
source is proposed.

2. PROBLEM FORMULATION

A noisy mixture of P Narrow-Band (NB) statistically
independent sources is assumed to be received by an array
of N sensors. The vector, x(z), of the complex envelopes of
the signals at the output of the sensors is thus given by

P
X)=), ma+nl) =Am®+n®) (1)

p=l

where myf) is the p-th component of the vector m(r),
assumed zero-mean and stationary, n(f) is the noise vector,
assumed zero-mean, stationary, Gaussian, spatially and
temporally white in the reception band, a, corresponds to
the steering vector of the source p and A is the (NXP)
matrix whose columns are the vectors a,,.

The problem adressed in this paper is the BI of the
steering vectors a, from the FO statistics of the data.

3. THE FOBIUM METHOD

The purpose of the FOBIUM method is to extend the
SOBI method [1] at the FO. It firstly implements a FO
pre-whitening step aiming at orthonormalizing the so-
called virtual steering vector [5] of the sources in some
data quadricovariance matrices and secondly it jointly
diagonalizes several well chosen pre-whitened
quadricovariance matrices in order to identify the steering
vectors of more sources than sensors. The number of



sources able to be processed by this method is addressed
in section 4.

3.1 FO statistics of the data

Under the assumption of zero-mean stationary sources,
the FO statistics of the observations are characterized by
the (N2W2) quadricovariance matrices Q.(1,,15,13), whose
elements, Q,(1,,72,%3)[4, J, k, [], are defined by

Qx(TlsTZaT.’»)[i’j ’ ks [.I é Cum(xi(t)s xf(t'Tl)*a xk(t'TZ)" xl(t'TS()z))
where * means complex conjugate and x(f) is the "
component of the vector x(7). Using (1) into (2) and
assuming that Q,(t,,7,,%:)[i, j, £, [] is the element [N(i —1)
+j, N(k — 1) + ] of the matrix Q,(t,T,,T;), We obtain the
expression of the latter, given, under a Gaussian noise
assumption, by

01,10,13) = (A BL) Ot A R4 (3)

where Q,(11,12,13) is the (P2XP2) quadricovariance matrix
of m(f), ® is the Kronecker product and " means transpose
and complex conjugate.

Under the assumption of statistically independent
sources, the matrix Q,(t1,75,73) contains at least P-P
zeros and the expression (3) degenerates in a simpler one
given by

0mm) =) o) @946,) @04 (4a)
p=1
= AQ Co(11,12,13) AQH (4b)

where 4, is the (N2x P) matrix defined by 4, 4 [(@:®a),

cves (8,84,))], Co(11,12,7) s the (P x P) diagonal matrix
defined by C,(1,,72,13) = diag[ei(T1,72, 1), 6(T1,T2,T3)]
and cp(11,12,13) is defined by

6(11,15%) 2 Cum(m (0, my(t-1), my(t1), my(t-13)) (5)

The expression (4b), which has an algebraic structure
similar to that of data correlation matrices [1], is at the
basis of the FOBIUM method as it is shown in the next
gections.

WeAnote in the following Qx 0,0,0,0),¢c,= cP(O 0,
0), C, = C,(0, 0, 0) and we obtain

0, = 4y C, Ap" (6)

We also assume in the following that P < N2, the matrix
Ag is full rank, the ¢, 1 < p < P, are non zero (non
Gaussian sources) and have the same sign and whatever
the couple (i, j) of sources, it exists at least three delays
(11,12,73) such that |vy|#|to|+|t5| # 0 and

cl1,1,1) / el # ¢fn,10,13) / [ (7

Note that the condition (7) requires in particular that the
sources have different tri-spectrum.
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3.2 FO Pre-whitening step

The first step of the FOBIUM method is to
orthonormalize, in the O, matrix (6), the columns of 4,
which can be considered as virtual steering vectors of the
sources for the considered array of sensors [5]. For this
purpose, let us consider the eigen decomposition of the
Hermitian matrix Q,, whose rank is P under the previous
assumptions, given by

O« = EAES ®)

where A, is the (P X P) real-valued diagonal matrix of the
P non zero eigen-values of Q, and E, is the (NZXP) matrix
of the associated orthonormalized eigen-vectors. For a full
rank 4, matrix, it is possible to verify that assuming P
sources with non zero kurtosis having the same sign ¢ (g =
11) is equivalent to assume that the diagonal elements of
A, are not zero and have also the same sign corresponding
to €. In this context, considering the (P x N2) whitening
matrix T defined by

& ()"EN )
where (A,C)_”2 is the inverse of a square root of A,, we
obtain, from (6) and (§8)

eTQ ! = Tdy(eC A ' T" =1, (10

where Ip is the (P X P) identity matrix and where £C, =
diag[lc|,..., [e]]. ThlS last expression shows that the (PxP)
matrix T4y (G, )" is an unitary matrix U and we obtain

Tdy=U@ECY" 1)

3.3 FO Blind identification step
We deduce from expressions (4b) and (11) that
T W) =U(eCa) Caltinty) (6Co) - U (12)

which shows that the unitary matrix U diagonalizes the
matrices T Qft;,1,13) T whatever the set of delays
(11,75,73) and the associated eigen-values correspond to the
dlagonal terms of the diagonal matrix (sC,,,) C,,,(11,12,13)
(eCo)

For a given set (14,T5,13), U is unique to within a
permutation and an unitary d1agona1 matnx if and only 1f
the eigen-values of the matrix (sC,,,) C,,,(rl,rz,n) (eCm)
are all different. If it is not the case, we have to consider
several sets (1 1",12",13"), 1< k <K, such that for each couple
of sources (i, j), it exists at least a set (1,,1,",15") such that
the condition (7) is verified. In these conditions, the
unitary matrix U/ becomes, to within a permutation and an
unitary diagonal matrix, the only one which jointly
diagonalizes the K matrices T Qx(‘ﬁk,‘tzk,‘fgk) T In other
words, the unitary matrix, U,,, solution to the previous
problem of joint diagonalization can be written as
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U =UAIL (13)

where A and II are unitary diagonal and permutation
matrices respectively. Using (11) and (13), the matrix 4y
can be deduced from U,,; and T, to within unitary diagonal
and permutation matrices, by

T# Usol é Ex Axll2 Usol =AQ (8 Cm)va II (14)

where T corresponds to the pseudo-inverse of T. Each
column, b; (1< 1 < P), of T U,y corresponds to one of the
vectors L, |c," (a,8a,"), 1< ¢ < P, where , is a complex
scalar such that |pg| = 1. Thus, mapping the components of
each column b; of T U,y into a (N X N) matrix B; such that
Blli, j1=b4( I)N + ]) (1 <14, j < Ny consists to built the
matrices p, |cq| 4, aq (1< ¢ < P). In this context, the
source steering vector @, corresponds to the eigen-vector
of B, associated to the strongest eigen-value.

3.4 Implementation of the FOBIUM method

The different steps of the FOBIUM method are
summarized hereafter when L snapshots of the
observations, x(/) (1< / < L), are available.

Stepl: Estimation, éx, of the O, matrix from the L
snapshots x(/) using the empirical estimator of the FO
cumulants [9]. Note that the FOBIUM method can also be
applied for zero-mean cyclo-stationary sources provided
that the previous empirical estimator is replaced by the
unbiased FO statistics estimator proposed in [9].

Step2 Eigen Value Decomposition (EVD) of the matrix
Qx, estimation of the number of sources P and restnctlon
of this EVD to the P principal components : @ﬁE A, EX s
whereA is the diagonal matrix of the P eigen-values with
the strongest modulus and E is the matrix of the
associated eigen-vectors.

Ste 3;

T Ap(A,()
Step4: Selectlon of K sets of delays (1%7,",1;") where
[ s 0.

Step3: Estimation, @x(rlk,nk,u”), of Qx(rlk,mk,rg"), for the
K delay sets, using the empirical estimator of the FO
statistics [9] (or, for zero-mean cyclo-stationary sources,
the unbiased estimators similar to that presented in [9]).

A A
Step6: Computation of the matrices T Ouu 1,5 i
and estimation, Usaz, of the unitary matrix (]sol from the
joint diagonalization of the K matrices T Qx(rl AR ™

Computatlon of the pre-whitening matrix :

-172

Step7: Computation (&f T Us,,, and mapping each column b,
into a (N x N) mattix B,

Step8: Estimation, ﬁq (14<P), ?f the P source steering
vectors by EVD of the P matrices B,
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4. IDENTIFIABILITY

Following the development of the previous sections,
we deduce that the FOBIUM method is able to identify,
from an array of N sensors, the steering vectors of P (P <
N?) non Gaussian sources having different tri-spectrum
and kurtosis with the same sign provided that the Ay
matrix has full rank P, i.e that the virtual steering vectors
aq®aq* (1< ¢ < P) for the considered array of N sensors
remain linearly independent. Besides, it has been shown in
[5] that the vector a,®a, can also be considered as a frue
steering vector but for a virtual array of N, different
sensors, where N, is directly related to the geometry of the
true array of N sensors. This means in particular that N -
N, components of each vector aq®aq* are tedundant
components which bring no information. As a
consequence, M- N, rows of the 4, matrix bring no
information and are linear combinations of the others,
which means that the rank of 4, cannot be greater than N,
and is equal to Inf(A,, P) when the 4 matrix is full rank. In
these conditions, the 4, matrix is full rank if and only if
Inf(N,, P} = P, i.¢ if and only if P < N,. Thus the FOBIUM
method is able to process N, sources, where N, is the
number of sensors of the virtual array associated to the
chosen array of N sensors. For an Uniform linear array N,
= 2N + 1 whereas for most of other arrays N, = N-N+1

[5)
5. PERFORMANCE CRITERION

Most of the existing performance criterions used to
evaluate the quality of the BI process [6-7] [10] are global
criterions which evaluate a distance betweAen the true
mixing matrix 4 and its blind estimate 4. Although
practice, a global performance criterion necessarily
contains a part of arbitrary considerations in the manner of
combining all the distances between the vectors a, and 4,
Moreover, it is possible to find that an estimate ﬁ pofdis
better than an estimate A, with respect to the global
critetion, while some columns of A4, estimate the
associated true steering vectors in a better way than 4;.

For these reasons, we propose in this section a new
performance criterion for the evaluation of the BI process.
This new criterion is not global and allows both the
evaluation quality of the BI of each source and the
quantitative comparison of two methods for the BI of a
given source. It corresponds, for the BI problem, to the
one proposed in [4] for the extraction problem. It is
defined by the P-uplet

DU A L (o tyeivp) (15

where

A
ap glgl, [d(a,, 8)] (16)



and where d(w,v) is the pseudo-distance between the
vectors u and v, defined by

H 2
dwnd - Hu vH (17)
uuywyvyv
6. SIMULATIONS

To illustrate the previous results, we assume that P=6
statistically independent non filtered QPSK sources are
received by a circular array of N=3 sensors of radius »
such that #/2=0.55 (A: wavelength). The 6 sources,
assumed synchronized, have the same input SNR (Signal
to Noise Ratio) of 20 dB with a symbol period T = 47,
where 7, is the sample period.

The direction of arrival of the sources are such that
G=2.16°, 6=252° @&=50°, =272.16°, 6:=315.36°,
6=336.96° and the associated carrier frequencies verify
M T=0, M, T=102, AL T=103, Af T=1/5, Afs T=1/7 and
Afs T=1/11. We apply the JADE [3] , SOBI [1] and
FOBIUM methods, and the performance o, for ¢=1...6 is
computed and averaged over 1000 realizations. For the
FOBIUM method we choose K=4 sets of delays
(rlk, o, 13") where 7'=kT, and 7'= r3k=0.

Under the previous assumptions, the figure 1 shows the
variations of o, (source 2 performance) at the output of the
JADE, SOBI and FOBIUM separators as a function of the
number of snapshots L. We verify the difficulty of the
JADE and SOBI methods to well identify the steering
vector of the source 2 in an underdetermined context and
the very good performance of the FOBIUM method in the
same context. Note the complete convergence of the
FOBIUM method as soon as L is in the area of 2000.

0.6

0.5

1000 2000 3000 4000

O<>

Fig.1- O as a function of L, (a) (FOBIUM), (b) (JADE), (c)
(SOBI)

The Figure 2 shows, in the same context, the variations
of all the o, (1 < p < 6) at the output of the FOBIUM
method as a function of L. Note the decreasing values
toward zero of all the previous coefficients as L increases.

91
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Fig.2- O of FOBIUM as a function of L, (p) performance
criterion of the p® source
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ABSTRACT

Most of the Second order (SO) and Higher order (HO) blind source separation methods developed this
last decade aim at blindly separating statistically independent sources, assumed zero-mean, stationary and
ergodic. Nevertheless, in many situations of practical interest, such as in radiocommunications contexts, the
sources are non stationary and very often cyclostationary (digital modulations). The behavior of the current SO
and fourth-order (FO) cumulant-based blind source separation methods in the presence of cyclostationary
sources has been analysed, recently, in a previous paper [19], assuming zero-mean sources. However some
cyclostationary sources used in practical situations are not zero-mean but have a first order cyclostationarity
property, which is in particular the case for some AM signals and for some non linearly modulated digital
sources such as FSK or some CPFSK sources. For such sources, the results presented in [19] do no longer hold
and the purpose of this paper is to analyse the behavior and to propose adaptations of the current SO blind source
separation methods for sources which are both first order and SO cyclostationary and cyclo-ergodic.

Keywords : blind, second order, source separation, SOBI, first order cyclostationary, AM, FSK and CPFSK

sources
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List of Figures

Figure 1 — SINRM1 at the output of SOBI COR, SOBI ACOV and SOBI COV as a function
of K, N=15, P =2 2-CPFSK sources, 6; =50° 6, =91° SNR = 10 dB, hi/T) = hy/T, =
1/4T,, hy =2, hy=4, 1=4T,, Afi = Af= /2Ty, Sourcel : SOBL COV (a), SOBL ACOV (b),
SOBI_COR (c)

Figure 2 — SINRM? at the output of SOBI COR, SOBI ACOV and SOBI _COV as a function
of K, N=35, P =2 2-CPFSK sources, 6; =50° 6,=91° SNR = 10 dB, h/T) = hy/T) =
1/AT,, hy =2, hy=4, 1=4T,, Afi = Af, = l)/2T}, Sourcel : SOBL COV (a), SOBL ACOV (b),
SOBIL COR (c)

Figure 3 — SINRM1 at the output of SOBI COR as a function of K, N =5, P = 2 2-CPFSK
sources, 0;=50° 6,=91° SNR = 10dB, /Ty = hy/T> =1/4T,, hy =2, hy=4, 1=4T,, Af; =
hy1/2Ty, (Afy - Afy) xTe=0 (a), 0.005 (b), 0.01 (c)

Figure 4 — SINRM? at the output of SOBI COR as a function of K, N =5, P = 2 2-CPFSK
sources, 6;=50° 6,=91° SNR = 10dB, /Ty =hy/T, =1/4T,, hy =2, hy=4,1=4T,, Af; =
hy/2Ty, (Afy - Afy) xT.=0 (a), 0.005 (b), 0.01 (c)

Figure 5 — SINRMi (1 <i <4) at the output of SOBI COR as a function of K, N=5, P=4:
2 2-CPFSK sources and 2 sinusoids, 6; = 50° 0= -179° 6;=125° 6,= 93°, SNR = 10 dB,

Ty =hy/Ty =1/4T,, hy =2, hy=4, 1= 4T, Ay = Ay = h/2T1, Af3 = 113T,, Afa = 1/5T,

Figure 6 — SINRMi (1 <i <4) at the output of the SOBEFOCYS method as a function of K,
N =235, P=4:2 2-CPFSK sources and 2 sinusoids, 6; = 50° 6, =-179° 6; =125°, 6,

= 93% SNR = 10 dB, Iy/Ty = hy/Ty = 1/AT,, hy =2, hy =4, 1 = 4T, Afi = Afy = hy/2Ty, Ay =
13T, Afa = 1/5T,
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I. INTRODUCTION

For more than a decade, blind source separation methods exploiting either the SO [3] or
the HO [16] or both the SO and HO [5] [13] statistics of the data, have been strongly
developed, as depicted in the overview presented in [14]. These methods aim at blindly
separating several statistically independent sources, assumed zero-mean, stationary and
ergodic. Nevertheless, in many applications such as in the radiocommunications context, the
sources are non stationary and very often cyclostationary (digital modulations). In these
conditions, it becomes important to analyse the behavior of these current SO and HO blind
methods, developed for zero-mean stationary sources, in the presence of cyclostationary
sources whose cyclostationarity property appears explicitely at the processing level as soon as
the sources are oversampled. This is generally the case for numerous applications such as, for
example, the passive listening context where the different sources may have very different
baud rate or bandwidth [17].

The behavior of the current SO and FO cumulant-based blind source separation
methods in the presence of cyclostationary sources has been analysed in a recent paper [19],
assuming zero-mean sources. Under this last assumption, valid in particular for linearly
modulated digital sources, it has been shown in particular that under weak conditions of
cyclo-ergodicity [4], the current SO blind methods are not affected by the cyclostationarity of
the sources. On the contrary, the current FO cumulant-based blind methods, such as the JADE
method [5], have been shown to be strongly affected, in some cases, by the cyclostationarity
property of the sources and an adaptation of these FO methods, taking into account the SO
cyclic frequencies of the sources, has been proposed. A FO alternative approach aiming at
blindly separating statistically independent zero-mean cyclostationary sources without any
knowledge or estimation of the cyclic frequencies of the sources has been proposed recently
in [24]. Finally, other approaches of blind spatial filtering or blind source separation of zero-

mean cyclostationary sources, aiming, in this case, at recovering the sources signals directly
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from the cyclic statistics of the observations, have also been proposed in the literature at both
the SO [1-2] [25] and the HO [6] [18].

However, the cyclostationary sources used in practical applications are not necessarily
zero-mean but may be first order cyclostationary, which is in particular the case for some
Amplitude Modulated (AM) sources [21] and for some non linearly modulated digital sources
such as Frequency Shift Keying (FSK) sources [31] or some Continuous Phase Frequency
Shift Keying (CPFSK) sources, which belong to the more general family of the so-called
Continuous Phase Modulations (CPM) sources [23] [28] [31-32]. For such sources, the
analysis presented in [19] does no longer apply and for this reason, the purpose of this paper
is to analyse the behavior and to propose adaptations of the current SO blind source
separation methods in the presence of statistically independent sources which are both first
order and SO cyclostationary. The behavior analysis of the current HO blind methods in the
same context is partially presented in [20].

The current SO blind source separation problem for zero-mean stationary independent
narrow-band (NB) sources together with the SOBI (Second Order Blind Identification)
algorithm [3] and the empirical estimator of the SO statistics of the data are recalled in section
II. Then, the problem of SO blind separation of first and SO cyclostationary sources together
with examples of such sources (some AM, FSK and some CPFSK sources) are presented in
section III where it is pointed out in particular the limitations of the empirical estimator of the
SO statistics for non zero mean sources. The situations for which these limitations may have
bad consequences on the current SO Blind Source Separation (BSS) methods behavior, jointly
with the behavior description of the latter are presented in section IV where it is shown in
particular that the performance of the SOBI method may be strongly affected by the first order
cyclostationary properties of the sources. To overcome this problem, an adaptation of the
current SO blind methods taking into account the possible first order cyclostationarity of the
sources is proposed in section V. Unfortunately, this adaptation does not allow the processing
of deterministic sources and to overcome this drawback, an extension of this adaptation,
called SOBEFOCYS (Second Order Blind Extraction of First Order CYclostationary

Sources), is described in section VI. Most of the results presented in the paper are finally
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illustrated in section VII by computer simulations. Note that the results presented in the paper

have already been partially presented in [10] and [11].

II. SO BLIND SOURCE SEPARATION FOR ZERO MEAN STATIONARY
SOURCES

A. Problem formulation

In the classical SO blind source separation problem, a noisy mixture of P zero-mean,
stationary and Narrow-band (NB) independent sources is assumed to be received by an array
of N sensors. Under this assumption, the vector, x(f), of the complex envelopes of the signals

present at time ¢ at the output of the sensors can be written as

>

P
X)) = Y, ml) a + b

p=1

Am(i) + bt) (1)

where b(f) is the noise vector, assumed zero-mean, stationary, ergodic, circular and spatially
white, m,(f) and a, correspond to the complex envelope and the steering vector of the source
P, m(t) is the vector whose components are the signals m,,(¢) and 4 is the (N X P) matrix which
columns are the vectors a,,

Under these assumptions, the classical SO blind source separation problem consists to
find, from the SO statistics of the observations, the (N x P) Linear and Time Invariant source

separator ¥, whose (P x 1) output vector,
¥ & Whx(y ©)

corresponds, to within a diagonal matrix A and a permutation matrix [1, to the best estimate,
m(?), of the vector m(). Note that the symbol T means transpose and complex conjugate. The
separator W is defined to within a diagonal and a permutation matrix since neither the value
of each output power of the separator nor the order in which the outputs are arranged change

the estimation quality of the sources.
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B. SO Statistics of the data

Under the previous assumptions, the SO statistics of the data are characterized by the

correlation matrices R,(t), which also correspond to SO cumulant matrices, defined by
Re) & Elx() x(t- )] = AR@) AT+ @)1 & R(®)+ ()1 3)

where 12(7) is the SO correlation function of the noise on each sensor, I is the identity matrix,
R, (7) A E[m(t)m(t - ’C)T], diagonal under the previous hypotheses, is the correlation matrix of

the vector m(f) and Ry(7) A4 R,(7) A" is the correlation matrix of the mixed sources.

C. Philosophy of the SO BSS methods (SOBI)

Let us now briefly recall the philosophy of the SOBI [3] method, which can be
considered currently, for zero-mean stationary sources, as the most powerful SO blind source
separation method but which requires that the sources have different spectral densities. This
separator aims at separating the received sources from the blind identification of their steering
vectors. These identified steering vectors may then be used to build and to apply to the data,
for each source, a well suited spatial filter such as the Spatial Matched Filter or the Optimal
Interference Canceller [8-9]. This blind identification requires the prewhitening of the data, by
the pseudo-inverse, noted F, of a square root of the matrix Ry(0), noted R, in the following,
computed from the R, A R(0) matrix and the knowledge of the noise correlation matrix.
Usually, the matrix F'is chosen to be equal to the (P x N) matrix F'= As'l/ 2U,t, where the (Nx
P) matrix U; and the (P x P) diagonal matrix A; correspond to the matrices of the
orthonormalized eigenvectors and associated non zero eigenvalues of R, respectively. This
prewhitening operation aims at orthonormalizing the sources steering vectors so as to search
for the latter through a unitary matrix U, simpler to handle. If we note z(¢) Ap x(¢) the
whitened observation vector, the matrix U is chosen so as to optimize a SO criterion, function
of the elements of the correlation matrices, R,(t), of the vector z(f) for several non zero

values, 14, of 7. The matrix R(t) can be easily computed from (3) and is given by

R(7) 2 Blz(t) 2t - 1)1 = A'Ry(@) AT + my@ FF' & Ry(v) + @) FF' (4)
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where A4' is the (P x P) unitary matrix of the whitened sources steering vectors a;' A nil/ ’F a;
1<LisP),m A E[|m,-(t)|2] is the input power of the source i, R,(7) A E[m'(t) m'(t - T)T]
corresponds to the correlation matrix of m'(f), the normalized vector m(f) such that each
component has a unit power and R(t) A p R,(7) A" is the correlation matrix of the whitened
mixed sources.

Assuming that the sources have not the same spectral density and, for simplicity, that
the coefficients #;'(t) A E[m/(t) m;(t - T)*] (1 <i < P) are not zero for the considered value of
7, where * means complex conjugate and m;/(¢) is the normalized complex envelope m,(¢), the
SOBI method [3] is based on the fact that the P orthonormalized vectors a;' (1 <i < P) are
eigenvectors of the Ry(t) matrix associated to its P associated non zero eigenvalues 7;'(1),
which also correspond to the P eigenvalues of R (1) having the greatest absolute value. Then,
an arbitrary eigenvector, v, of R(7) associated to a non zero eigenvalue is necessarily a linear
combination of the P vectors a4;'. In these conditions, it is easy to verify [3] that the unitary
matrix 4' is, to within a permutation and a unitary diagonal matrix, the only one which jointly
diagonalizes the set of K matrices Ry(t,) (1 < ¢ < Q) provided that, for each couple (i, j) of
sources, there is at least a 1, such that 7/(t,) # #/(t,). In other words, the unitary matrix 4'
maximizes, with respect to the unitary matrix variable U A (u1,...., up), the following joint

diagonalization criterion [3]

0 P
cw) = D, D |uRem)? ©)

g=11=1

Nevertheless, as the matrix Ry(t,) is not observable, it must theoretically be estimated
from the observable matrix R.(7,). Under a temporally white noise assumption, which is done
in [3], the quantity 1,(t) is zero for 7 # 0 and the matrix R(t,) can be replaced by the matrix
R.(t,) in (5). However, in practical situations, the reception band is finite and the noise can
only be assumed temporally white within the reception band. In these conditions, if the

reception band is sufficiently high with respect to the bandwidth of the sources, it is possible
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to find 7, such that R¢(t,) # 0 and ny(t,) ~ 0 which still allows the use of Ry (t,) instead of

Ry(7,) in (5), which is done in the following.

D. Implementation of the SO BSS

In situations of practical interests, the SO statistics of the data are not known a priori
and have to be estimated from the data, by temporal averaging operations, using the SO
ergodicity property of the data. Noting 7, the sample period and x(k) the k-th sample of the
observation vector x(f), the empirical estimator ﬁx(qTe)(K) currently used to estimate the

matrix R,(1), for © = ¢gT,, from K independent data snapshots, is defined by

K
RegTok) & %Z x(h) x(k— q)f ©)
=1

It is well known that for a stationary and SO ergodic vector x(f), the empirical estimator

ﬁx(qTe)(K) generates, as K becomes infinite, an unbiased and consistent estimate of R,(g7e).

III. SO BLIND SOURCE SEPARATION FOR FIRST AND SECOND ORDER
CYCLOSTATIONARY SOURCES

A. Problem formulation

In many applications such as in radiocommunications or in passive listening contexts,
the received sources are very often cyclostationary (digital modulations) with a potential
carrier residu (passive listening). In these conditions, the observation model (1) currently used
in stationary contexts becomes too restrictive and we must adopt, for the complex observation
vector x(¢), the following model [19]

P
) = Y m@dFYETN o by A Am() + b0) )
p=1
where a noisy mixtures of P first and SO cyclostationary, cyclo-ergodic and NB independent
sources is assumed to be received by the array of N sensors. In (7), the vector b(¢) is the noise

vector, assumed zero-mean, stationary, circular and spatially white, m,(2), Af, ¢ and a,
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correspond to the complex envelope, NB, first and SO cyclostationary, the carrier residu, the
phase and the steering vector of the source p respectively, m.(f) is the vector whose
components are the signals m(f) 4 my(t) exp[j(2nafpt + ¢p)] and 4 is the (N X P) matrix
whose columns are the vectors a,. To simplify the developments, we limit the analysis to
instantaneous mixtures of sources, typical of some applications such as the spatial
telecommunications or some high data rate Line of Sight (LOS) contexts.

Under the previous assumptions, although in the presence of cyclostationary sources it
may be useful to use Polyperiodic (PP) [12] and, for non circular sources [29], Widely Linear
[7] [30] structures of separation, one may still prefer to try to recover the sources through a
Linear and Time Invariant structure of separation, easier to handle. In these conditions, the
problem is to find, from the SO statistics of the data, the (N x P) Linear and Time Invariant
source separator W, whose output vector (2) aims at corresponding, to within a diagonal

matrix A and a permutation matrix I, to the best estimate, I/I\lc(t), of the vector m (7).

B. First and SO Statistics of the data

B1. First order statistics

In the presence of first order cyclostationary sources, the first order statistic of the
vector x(f), given by (7), can be written as

P

P
e 2 Bl = Y oW 040 gt a0  ©®
p=1

p=1
where e,(1), e,({) and e,,(¢) are the expected values of m({), my(f) = m,(t) ™% %) ang

m(?) respectively. The vectors e,(f) and e,(f) have a Fourier serial expansion and we obtain

o) & Elmy@] = Y e 2 9)
pelp
epll) A E[m,()] = Z el oI 2Tl — Z et oI 27(A%+ 1)t t ] (10)

chefpc @Erp
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where L', = {y,} and L', = {ypc = vp + Afp} are the set of cyclic frequencies v, and v, of e,(?)
and e,(?) respectively and el and el}; are what we call the cyclic mean of m,(f) and m,,(?)

respectively for the cyclic frequencies y, and v, respectively, defined by

er = <ey) g 2m0l > (11)
e 4 <epd(?) g2t > = elpb oltr (12)

where the symbol < f{t) >, A A (1/T) J.;//Zz fH)dt corresponds to the continuous-time
temporal mean operation of f{f) over an infinite observation interval. Note that for a zero
mean source p, the quantities e} and e}}; are zero for all the cyclic frequencies v, and v,
respectively. Besides, for a stationary source p which is not zero mean, only the quantity eji
for ypc = 0 is not zero. A consequence of the previous results is that the vectors e, () and e,()

have also a Fourier serial expansion and using (10) into (8) we obtain

A o
endt) & ) e 7 (13)
yell
P
e,(?) 4 Z el ol2mt = Z Ae), el = Z Z e ol 2Tzt a, (14)
yel yell p=1 ypcelpe

where I' = Uy<,<p{I'pc} is the set of cyclic frequencies y of e,,(¢) and ex(?), e, and e; are the

cyclic mean of m(¢) and x(¢) respectively, defined by
e = <end(t) 2>, (15)
¢l = <eft)eIm>, (16)
Under these assumptions, the first and SO cyclostationary vector x(f) can be

decomposed as the sum of a deterministic (quasi)-periodic part e,(f) and a zero-mean (quasi)-

cyclostationary random part Ax(¢) such that
Ax(t) & x() - et) = 4Am () + b() 7

where Am (f) A m.(t) — e,,(¢) is the zero-mean vector of the source signals, with components

Ampel) 2 Amy(e) ST 00) where Amy(1) 2 my(1) - ey(t).
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B2. Second order statistics

Under the previous assumptions, using (7) and (17), the first correlation matrix, R.(%, 1)
A E[x(?) x(t - t)T], of the data, which is time dependent, can be written as

R(t,71) = ARyt D AT+ MM 1 = R, D+ et) et - 1) (18)
where 1,(7) is the SO correlation function of the noise on each sensor, I is the identity matrix,

R,.(t,T) A E[m.(t) m (¢ - 7)] is the first correlation matrix of the vector m_(f) and Ra,(t, 7) is

a cumulant matrix corresponding to the covariance matrix of x(¢), defined by

Rualt,©) & E[AX() Ax(t - D] = A Rame(t, D) AT+ 1p(1) I (19)
where RanAt, 1) A E[Am(f) Am(t - T)T] is the covariance matrix of m(f). Using (8) and
(19) into (18), we finally obtain

Ri(t,7) = A [Ramelt, ) + €nelt) enelt -0 14T+ mp(1) T (20)

The SO cyclostationary property of the sources implies that the matrices R,,.(¢, ) and
Ramc(t, ©) and thus, the matrices R, (¢, t) and Ra(#, 7), have Fourier serial expansions
introducing the SO cyclic frequencies and statistics of m.(f), Am.(f), x(f) and Ax(¢)
respectively. In particular, the first cyclic correlation matrix of x(f) for the zero cyclic

frequency corresponds to the temporal mean of R, (¢, T), which can be written, from (18), as

Ry1) 8 <Rt 7) > = ARpe() 4T+ (@)1 & R(D)+ my(@) I 1)
where R,(t) 2 4 R,,(t) AT and where, from (20), R,,((t) 2 < R,.(t, ) >, is given by

Rine(7) A < Rue(t, 1) >c = Ramc(r) + < em(t) emc(t - T).r >¢ =Ram(t) + Em(7)  (22)
where Rupnc(t) & < Ramelt, 1) >c and Et) & < epelt) emelt - 1)1 >

For observations, x(nT,), sampled at the sample period 7., the matrices R,(¢, T) and
R, () are defined only for the time instant ¢ = nT, and 1t = kT, multiple of this sample period.
In these conditions, it is possible to show [19] [27] that, for band-limited sources, the matrice

R,(kT,), defined by (21) for © = kT,, can be computed only from the sampled matrices R (nT,

kT,) instead of R,(t, T) provided that the data are sufficiently oversampled. In other words, for
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sufficiently oversampled data, it is possible to replace, in (21), the continuous-time temporal

mean operation < f{f) >. by a discrete one over an infinite number of samples < f(nT,) >; A

Jn(UK) & 08

C. Two examples of first order cyclostationary sources : The AM and FSK sources
C1 : The AM sources

The AM sources [21] are amplitude modulated analog sources used in particular in old
radiocommunications systems. If the source p is an AM source, its complex envelope can be

written as
my(t) = PBp (1+p,010) (23)

where 3, is a scalar, p, (0 < p, < 1) is the modulation indice and /,(#), such that 0 < [[,(#)| < 1,
is, in the general case, a non zero mean non stationary random signal. Defining el (%) A

E[,(#)], the statistical mean of m,(f) is then given by
ep(t) = Bp a+ Wp elp(t)) (24)

which is, in the general case, a non zero time dependent function. The signal m,(f) becomes
first order cyclostationary for the particular case of first order cyclostationary signals /,(¢). In
this latter case, e,(#) has a Fourier serial expansion (9) and we can easily verify that the cyclic
mean e} is given by

& = Bp (5 + 1 elh) (25)

where 8(.) is the kronecker symbol and where e} A« el,(1) g i2mt >.. Thus, the first order
cyclic frequencies of an AM source p correspond to the zero cyclic frequency and to the first

order cyclic frequencies of [,().
C2 : The FSK sources
The FSK sources [31] are non linearly modulated digital sources used in particular for

low data rate radiocommunications in the HF band. If the source p is a FSK source, its

complex envelope can be written as
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mt) = 1" D exp{ilBpm+ 21 fy b (t—nTp)]} Recty(t—nT)) (26)

n

where T, A< E[|mp(t)|2] >, is the input power of the source p, T), is the symbol duration, the
d, are the transmitted M,-ary symbols, assumed i.i.d and taking their values in the alphabet +
1, £ 3,..., £ (M, — 1), where M, is generally a power of two, f3, is the peak frequency
deviation, Rect,(#) is the rectangular pulse of amplitude 1 and of duration T, and 6, is the
phase of the symbol n. Note that for M,-ary symbols, the associated FSK source p is qualified
of M,-FSK source p.

When the signal m(f) is built from only one local oscillator which is hopping, from a
frequency to another, at every symbol period T, the phases 6,, may be considered as i.i.d
random variables which are statistically independent of the symbols &, and uniformly
distributed between 0 and 27. In this case it is easy to verify that m,(f) is zero-mean.
However, when the signal m,(#) is built from M, local oscillators, one oscillator per symbol
value, among which one oscillator is switched at every symbol period T, the phase 0,, of the
symbol 7 corresponds to the phase of the switched oscillator for this symbol # and becomes a
function 6,,(d) of the symbol 7 value, taking its values in the alphabet {0_,sp-1),..., Op1,
Op1, 0p3,. ..., Opasp-1)} - In this case, the statistical mean of m,(¢) is given by

(My-2) 12
ety = m,'"? L Z i (exp{i[Opam+1) + 27 fpRmH1)(t — nT,)]} +

My

n m=0

exp{j[0pem+1) — 27 fgp(2m+1)(t —nTp)1} ) Rect,(t—nTp)  (27)

which corresponds to a periodic function of # with a period 7},.. In other words, the associated
M,-FSK source p is a first order cyclostationary source p with first order cyclic frequencies
Yp's multiple of 1/7,,. In these conditions, e,(¢) has a Fourier serial expansion (9) and the cyclic

mean e}, is shown in Appendix A to be given by

¢ = Y e sy-i/Ty) (28)
i

where e'%', the cyclic mean for the cyclic frequency y,; =i /T, is given by
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| 06D
e =12 i J:) (exp{i[Opam+1) + 21 w( fgpTp Qm+1) — i)1}

+ exp{[0pem+1) — 2 w( fapTp 2m+1) + )]} ) dw (29)

In particular, we deduce from (29) that a M,-FSK source such that the product fz,7, is
an integer has exactly M, equal power first order cyclic frequencies y, =+ 2k + 1) fz,, 0 <k <

(M, - 2)/2, such that

My-2) 2
elY) = 7tpl/Z F i [eXp{jep(zm+1)} 6(y - (2m + l)f;jp) +
14

m=0

exp{jO_pam+1)} 8y + 2m+ 1)) | (30)

D. A third example of first order cyclostationary sources : Some CPFSK sources

DI : The CPFSK sources as a particular case of CPM sources

The CPM sources [28] [31] are non linearly modulated digital sources used in many
applications of practical interest such as the mobile cellular radiocommunications (GSM) or
the spatial telecommunications. One characteristic of CPM sources is that their spectral
efficiency is much better than that of non linear modulations without a Continuous Phase.
Another property is that their complex envelope has a constant amplitude, which allows the
use of cheap amplifiers working at a saturation level without any distorsion on the transmitted

information. If the source p is a CPM source, its complex envelope can be written as
I V) .
my(t) = m, " exp {j2n | Z @ Ky vp(t —nTp)1} (31)
n

where 7, A< E[|mp(t)|2] > is the input power of the source p, T}, is the symbol duration, the
d, are the transmitted M),-ary symbols, assumed i.i.d and taking their values in the alphabet +
1,£3,..., £ (M, - 1), where M, is generally a power of two, {4} is a sequence of modulation
indices and v,(?) is the waveform shape, represented as the integral of a pulse g,(#), non zero

and bounded on the interval [0, L,T,], where L, is a non zero integer, and such that
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172 (¢ ZLPTP)}
(32)

) = | gw)du = {
0 (t<0)

When #, = h,, for all n the modulation is said to be mono-indice, otherwise the modulation is
qualified of multi-indices. When L, = 1, the CPM source p is called full response CPM,
otherwise it is called partial response CPM. To each choice of the pulse function g,(7), it
corresponds a family of CPM source p. The GMSK modulation, which is the modulation of
the GSM standard and for which the pulse function g,(f) has only an approximated finite
duration, belongs to one of these families.

The CPFSK source p is a particular case of the mono-indice full response CPM source p
for which the pulse g,(¢) is a rectangular pulse of amplitude 1/27, and of duration 7),. For
such sources p, it is possible to show, after easy computations, that m,(f) can be written as
(26), where fg, A h,/2T, is the peak frequency deviation and 6,,, which represents the
accumulation (memory) of all symbols up to (n — 1)7}, is defined by

n-1
O & 2mfpT, Y o (33)

k=-o
For M,-ary symbols, the associated CPFSK source p is qualified of M,-CPFSK source
p- Note that a binary CPFSK source p (M, = 2) with a modulation index &, = 1/2 is called a

MSK (Minimum Shift Keying) source p.
D2 : First order statistics of CPFSK sources

It is shown in Appendix B that, under the previous assumptions, the statistical mean of

my(1) is, for a M,-CPFSK source p, given by

e(t) = " Mi K, D (pp) wlt-nTy) (34)
p n

where the quantities K, p, (0 < p, < 1) and u,(¢) are defined by

Kp a ll—h)noo (pp)l (35)
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(My-2) 12

p & W 2 cos[(2m + 1)nh,] (36)
(Mp-2) 12

uw(®) A i cos[(2m + 1)(nhy/T,) t ] Recty(t) (37)
m=10

From the previous expressions, two cases have to be considered depending on the value

of hy,. These cases correspond to the cases where 4, is an integer or not respectively.
a) hy is not an integer

If , is not an integer, it is obvious that |p,| < 1, which implies the nullity of both K}, and
e,(?). In other words, a M,-CPFSK source p whose modulation indice is not an integer is a

ZEro-mean source p.

b) hy is an integer

If h, is an integer, it is obvious that p, = 1 if &, is even and p, = -1 if &, is odd, which
implies that K, = 1 in the first case and that expression (35) has no limit (K, = + 1),while |K}|
= 1, in the second case. In this latter case, note that if we assume that the number of past
symbols is finite, then K, =+ 1. A consequence of the previous results is that e,(f) reduces to

e(t) = m," Mi K, Y ()" uy(t-nT) (38)
p n

which corresponds to a periodic function of ¢ with a period T}, if &, is even and with a period
2T, if hy is odd. In other words, the associated M,-CPFSK source p is a first order
cyclostationary source p with first order cyclic frequencies v,'s multiple of 1/7;, in the first
case and multiple of 1/27), in the second case. In these conditions, e,(¢) has a Fourier serial

expansion (9) and the cyclic mean e} is shown in Appendix B to be given by

(My2) 12
1
g= " LK S - Gm+ 1) + 8+ @t 1Y) (39)
p m=0

where 3(.) is the kronecker symbol. Thus, a M,-CPFSK source p whose modulation indice is

an integer has exactly M), equal power first order cyclic frequencies y, such that
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1
e = npvap for v e [p={yp=2Qk+1)fs, 0<k<(M,—2)2} (40)
P

Note that in this case < e,(#) >, = 0 despite of the fact that e,(¢) = 0.

E. Problem addressed in this paper

For first and SO cyclostationary and band-limited vectors x(#) having a SO cyclo-
ergodicity property [4] and for sufficiently oversampled data, the empirical estimator
ﬁx(lTe)(K), defined by (6), gives an asymptotically unbiased and consistent estimate of
R,(IT,), defined by (21) with 1 = IT,, by definition of the cyclo-ergodicity property. In other
words, in cyclostationary contexts, the SO BSS methods such as the SOBI method exploit,
asymptotically or in the steady state, the information contained in several time averaged
correlation matrices Ry(t,) (1 < g < @), defined by (21).

However, while these matrices correspond to cumulant matrices for zero-mean
stationary sources and to time averaged cumulant matrices for zero-mean cyclostationary
sources [19], it is no longer the case for first and SO cyclostationary sources for which, e, ()
# 0, Ry(T) # Ramc(7) and Ry(t) # Rax(7) as shown by (8), (18) and (22). As a consequence,
while, for zero-mean statistically independent sources, R,,/(t) and R,,.(1), appearing in (22),
coincide and are diagonal, only the Rx,,.(t) matrix keeps in all cases a diagonal structure for
non zero mean sources by definition of the statistical independence of the sources, whereas
the matrix R,,.(t) may loose its diagonal character. In this latter case, if the element [i, j],
Ryc(D)[i, j], of the matrix R, (1), with i # j, is not zero, we will said that the first order
cyclostationarity of the statistically independent sources i and j creates an apparent SO
correlation of the sources in the R, (1) and R,(t) matrices. This apparent SO correlation is
directly related to the so-called impure SO cycle frequencies of the SO statistics of the sources
discussed in [22].

In this context, in a first time, we must identify the conditions that two statistically
independent first and SO cyclostationary sources have to verify to create an apparent SO

correlation in the R,(t) matrices. Then, we must analyse the consequences of such an apparent
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SO correlation between two sources on the output performances of the current SO BSS

methods such as the SOBI one. These two questions are adressed in section IV.

IV. BEHAVIOR ANALYSIS OF CURRENT SO BSS METHODS FOR FIRST AND
SECOND ORDER CYCLOSTATIONARY SOURCES

A. Structure analysis of the E,, (1) matrix

The matrix R,,.(t) is not diagonal if and only if the matrix E,,.(t) introduced in (22) is
not diagonal. Thus, two sources i and j become apparently SO correlated in the R,(t) matrix if
and only if the element [, f], E,,.(7)[i, ], of the matrix E,,(t) is not zero, situation which is

analysed in this section.

Al. General case

Using (13) and (22), the E,,,(t) matrix can be written as

End®) & <endendt-01> = D Y e et 210 <205 4
yell oel’

and using the fact that < ol 210t > — 8(cx), we obtain

Ep(r) = Z €nic eanT e]27I’Cy (42)
yell

The element [i, j] of the matrix E,,.() is thus given by

EnOlij] = ), il e &2 @3)
njelj

where 1';; A e M T is the set of cyclic frequencies v;; belonging to both I';, and [, defined
in (10) and e/, and e/, are defined by (12) with y instead of v,,. The expression (43) shows
that E,,(7)[i, j] is generally not zero, i.e. the two sources i and j become apparently SO
correlated in the matrice R,(7), if the condition (C1) is verified where (C1) is defined by

(C1) : The two sources i and j share at least one first order cyclic frequency, i.e ej.(1)

and ejc(t) share at least one cyclic frequency.
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A2. Application to FSK sources

In the particular case of a M;-FSK source i and a M-FSK source j, built from M; and M;
oscillators respectively, such that f;T; and f;T; are integer and such that 0,041 = O.i0m+1) =
0; (0 <m < (M; - 2)/2) and Ojm+1) = O jom+1) = 0j (0 < m < (M; - 2)/2), the expression (43)

becomes

. (b—0- 1 i : .
Eneli] = S0 11251 expf@i-6) ), S (44)

') }/,jeF if
which is not zero if I'; is not empty, which is the case if it exists at least one value of m (0 <

m < (M; - 2)/2) and one value of n (0 < n < (M; - 2)/2) such that

Afy £ @mAl)fy = Af; +Qatl)f (45)

A3. Application to CPFSK sources

In the particular case of a M;-CPFSK source i and a M;-CPFSK source j, using the
results of section III, a necessary condition to obtain E,,.(t)[i, j] # 0 is that the two sources
have integer modulation indices 4; and 4; respectively. In these conditions, using (40) and

(12), the expression (43) becomes

Emc(T)[i,j] — e]((l),—(bj) 7t1.1/27.[1.1/2 Mlj‘[ I<l K] Z ej2TET"{ij (46)

which is not zero if I';; is not empty, which is the case if it exists at least one value of m (0 <
m < (M; — 2)/2) and one value of n (0 < n < (M; - 2)/2) such that (45) is verifyed.

In other words for a M;-CPFSK source i and a M;-CPFSK source j, the condition (C1)
becomes (C1°) defined by

(CI’) : a) The two sources i and j have an integer modulation indice

b} It exists at least one m (0 <m <(M; —2)/2) and one n (0 <n < (M; —2)/2) such

that Af; + Cm+1)fg; = A + (2n+1)fy
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We must now wonder how the presence of apparently SO correlated sources in the

matrices R{t) may modify the behavior of the current SO BSS method and the SOBI method

in particular. These questions are addressed in sections B to D.
B. Prewhitening of the data

We evaluate, in this section, the consequences of an apparent SO correlation of the

sources on the prewhitening operation of the observations.
B1. Apparent SO correlation coefficient of two sources

To characterize the degree of apparent SO correlation of two sources i and j in the
matrix R, A R,(0), we introduce the apparent SO correlation coefficient of these sources, p;

(0 <|py] <1), defined by
P52 pi0) A Ry O)iv 71/ R O)li, 1] RO /1) (47)

where R, (0)[i, j] A< E[m;(¢) mjc(t)*] >.. In particular, from (46) and using the fact that
R0, j1 = Enc(0)i, f] for i # j, the apparent SO correlation coefficient of a M;-CPFSK
source i and a M;-CPFSK source j, with integer modulation indices, is given by
(0—0) 1
py = O ____ KK cadly) ,  i%j (48)
260
where card(I';) is the number of elements of I';;. This expression shows in particular that, for
given values of M; and M;, |p;] increases with the number of couple (m, n) verifying (45). For

example, if M;= M; = M, Af;= Af; and fg; = f; we obtain |p;| = 1/M.
B2. Eigenstructure of R,(0)

To simplify the developments, we limit, in the following, the analysis to the two first
order cyclostationary sources case and we assume that the source matrix R, defined from (21)
for 1= 0, is not rank deficient, i.e. that the sources are not apparently SO coherent (|p;5| # 1).
As the eigenstructure of R, is directly deduced from that of R, (same eigenvectors and
eigenvalues obtained by the addition of 1), to the eigenvalues of R,), we limit the analysis to

the eigendecomposition of R,. Under these assumptions, it is possible to show, after easy but
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tedious algebraic manipulations that the two non zero eigenvalues of R;, Ay and A, are

given by
het = (1/2) [ B4 £ (B4 -4 Bs)"] (49)
where B, and Bs are scalar quantities defined by

By & mafa; + maytay + 2[n 7 (a1 @) (@2 7@2)] Re(p1z 1) (50)

(=2

Bs & mm(ar'ar) @'ar) (1 - Ip1af) (1 - Jousaf) (51)
where m; A< E[|m,~c(t)|2] > (1<i<2)and ayy = oc21* (0 <|ougp| £1) is the spatial correlation
coefficient of the sources 1 and 2, defined by

an & alay /(@ a) @t a))? (52)

The associated orthonormalized eigenvectors . and u_ are defined by

us 8 exp(ios) (1/]|Bear — Crar ) [Boas — Craz] (53)

where ¢. is an arbitrary phase value, Bg and C. are scalar quantities defined by
Bs & ml@lay@la) oy + (1) (@) pr2 (54)

C. & nmyayta+ [ 7 (@1 ay) (@2 @n)]? p1a ctay — A (55)

B3. Whitened observations

From the previous expressions, it is possible to built the (2 x N) whitening matrix
F A As'l/zUsT, where A, A Diag(As+, As—) and Uy A [ws+, u;_]. The whitened observation
vector z(7) A F x(t) is then given by

P
W) 8 Fx) = D m@) a) + Fb) & A'mt) + Fb(r) (56)
p=1
where m/(¢) is the (2 x 1) vector of the normalized complex envelopes m,, () of my(f) (0 <p

<2), such that < E[|m,,c'(t)|2] >.=1, A'is the (2 x 2) matrix of the whitened source steering

vectors a,' (0 < p <2), such that the whitened steering vector a,,' is defined by

-1/2
7\‘S+ usjap

ar A

12 _ _n
p, = T Fa, = m,

(7)

22w t a,
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While, for apparently SO uncorrelated sources (|p12| = 0), which is in particular the case
for zero-mean sources, the whitened source steering vectors a4, (0 < p < 2), are
orthonormalized vectors and the matrix 4 ' is an unitary matrix, it is no longer the case for
apparently SO correlated sources (|p12| # 0), for which the vectors a,, (0 < p <2), are neither

normalized nor orthogonal.

Proof: To show the previous result let us firstly assume that the matrix A' is
orthogonal. Under this assumption, as the matrix R’ 44 Re' AT corresponds to the identity
matrix, the matrix ARy A' = A4’ is diagonal and equal to AA’ Ry,.' A" A", implying that
the matrix R,,.' is diagonal, which is not the case for apparently SO correlated sources.

Let us now assume that the columns of A' are normalized. In this case, as A 'TRS'A !
=AT4"= 44 'RmC'A'TA', we obtain that RmC'A'fA' =4 ’7A’Rmc' = I, which means that R,
is the inverse of A" A", which is the case for (jp12/ = 0) since the two matrices are the identity
matrix but which is generally not the case for (jp12/ # 0) since Ry,' not diagonal does not

depend on the spatial properties of the sources.

To illustrate the previous result, assume to simplify the computations that the sensors
are omnidirectional (alTal = aZTaz = N) and that the two sources 1 and 2 are orthogonal (o5 =

0). In these conditions, it is possible to show, after tedious computations that
aa) = aTay = 1/(1-|pppf) (58)

—p12/ (1= p12P) (59)

a1|Ta2|

which shows that the modulus of the spatial correlation coefficient, ay', of the whitened
sources 1 and 2, defined by the normalized inner product of a,' and a5, is equal to |a12'| = |p12]

and increases with |p13|.

C. Blind Identification from matrices R,(7) by the SOBI method
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After the whitening operation of the observations, the temporal mean, R,(t), of the

correlation matrix of the whitened observation vector z(f), is given by
R(D) & <Rt 9)> = A Ryo(@) AT + mo@) FF' & Ry(m)+ ma(@) FFT (60)

where R, (1) A< E[m/(¢) m.(t - ©)1] >; and m (@) is the normalized vector m.(f) with
components m,'(f) (1 < p <2). Choosing Q parameters 7, (1 < g < @), such that nx(y) = 0,
the process of joint diagonalization of the Q matrices R,(t,), gives a (2 x 2) unitary matrix U
maximizing the criterion (5) with P = 2. While for apparently SO uncorrelated sources (|p12| =
0), 4' is an unitary matrix which jointly diagonalizes the set of Q matrices R (1), it is no
longer the case for apparently SO correlated sources (|p12| # 0) since A' is neither an unitary
matrix nor an orthogonal matrix. In these conditions, even for sources with different
spectrum, the two orthonormalized vectors #; and #,, corresponding to the two columns of U,
become necessarily linear combinations of the whitened steering vectors @' and a,', given by

up = o; a' + B @ , i=1,2 (61)
where the coefficients o; and B; (= 1, 2) are dependent on the SO properties of the sources
and are such that

i arar + 1B artay + 2Re[a B @Tar] = 1, i= 1,2 (62)

a'op aa’ + B1'By ey + o' Praray + Brlwsaar = 0 (63)

Consequently, the blind identification stage of the SOBI method is perturbed by the apparent
SO correlation of the sources and the behavior of the SOBI method is modified in the steady
state. This non ideal behavior of the blind identification of the whitened source steering vector

generates a degradation of the source separation process as it is shown in section D.

D. Blind source separation by the SOBI method
D1. Performance criterion and spatial filter choice
Following the description of the SOBI method in section II.C, from the blindly

identified vectors u; and u», considered as estimates of a;' and a,', it is possible to obtain, to

within a scalar factor, an estimate of the true steering vectors of the sources, defined by @; =
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F* u;(i= 1, 2), where # is the pseudo-inverse operation. Using (61) and the fact that g A
ni” ’F a; (1 <i<2),the vectors a; can be written as
a = o;Vma + B; \may i= 1,2 (64)

In these conditions, both the optimal linear and time invariant (TI) spatial filter associated to
the vectors a; (1 < i < 2) and the performance of the associated source separator can be
computed.

For statistically independent zero-mean sources, the concepts of both source separator
performance and optimal linear and TI source separator have been clearly defined in [8]. In
particular, an estimate of the latter consists to implement, for each source i, the estimated
Spatial Matched Filter, Wiy, defined by Wi 4 Rx_1 a; [8]. However, for statistically
independent sources which are first order cyclostationary, due to the potential apparent SO
correlation of the latter, the concepts of source separator performance together with that of
optimal source separator have to be redefined. Indeed, the power of the output, y(f) = wa(t),

of a linear and TI spatial filter w, whose input vector is given by (7) with P = 2 apparently SO

correlated statistically independent first order cyclostationary sources, is given by

n & <E@l1> = wikow

=m |wTa1 |2 + Ty |wTa2 |2 + 2Re[(7r1n2)1/2 (wTal) (wTaz)*plz] + 12 wiw (65)

Then, for each source i (i = 1, 2), do we have to consider the term 2Re[(7t17t2)1/2 (wTal)
(wTaz)*plz] as a useful term for the source i ? as an interference term for the source i ? or as a
term which is a combination of a useful and an interference part for the source i ? These
questions have no easy answers and their analyse is out of the scope of the paper.
Nevertheless they have to be clarified to introduce the concepts of both source separator
performance and optimal linear and TI source separator in the presence of first order
cyclostationary sources apparently SO correlated.

In the following, to simplify the problem, we still use the concept of source separator
performances introduced in [8]. In other words, for each source £ (k = 1, 2), the Signal to

Interference plus Noise Ratio for the source & at the output of a spatial filter w; is defined by



118 APPENDIX G. THE SOBEFOCYS APPROACH

2
|wiTak |

SINRKw,] & (66)

Wi Ry wi
where Ry is the total noise correlation matrix for the source k, corresponding to the R, matrix
in the absence of the source k. For example Ry, 4 ) @y agT + 1oL. In these conditions, the
restitution’s quality of the source £ at the output of the separator W, whose columns are the w;,
can be evaluated by the maximum value of SINRA{w;] when i varies from 1 to 2, noted
SINRM.[ W]. It is well known that for the previous performance criterion, the optimal source
separator is the one which implements, for each source i, the Spatial Matched Filter, w;,
defined, to within a scalar, by w; 4 Rb,-_lai, which requires the knowledge of the non
observable matrix Rp;. However, while the filter w; is colinear to the filter w;, 4 R, a; for
Zero mean sources, it is no longer the case for first order cyclostationary sources apparently
SO correlated. For this reason, for each source i, we prefer to implement, in the following, an
estimate of the optimal interference canceller (OIC) for the source i, whose performance are
very close to that of the optimal filter in most cases [8]. The OIC for the source i is defined
[8] by

wiore & Pya;=[1- (a'a) " aaf1a , ij= 1,2, j=i (67)
where |1 is a scalar and Py, is the operator of orthogonal projection on the space orthogonal to
the steering vectors of the interference for the source i. Then an estimate of the filter (67), W
i.olc, can be obtained by replacing in (67) the true steering vectors a; and a, by their blind
estimates, @; and @, generated by the SOBI method, which gives finally

wmoc & - @lay 'Gat1a,, ij= 12, j=i (68)
Considering v/t\:i,OIC as the column i of the (N x 2) matrix I//\VOIC, the associated source
separator can be written as [8]

Woie = At 41! (69)
where 44 [31, 32].

D2. Performance computation



119

To simplify the performance computation, we assume in this section that the sources are
orthogonal (i.e. afay = 0), strong (g; 4 ajTaj m;/ M2 >> 1, j =1, 2) and that the sensors are
omnidirectional (aﬁai =N, i =1, 2). Under these assumptions, for each source k (k =1, 2), the
SINRMt* at the output of the source separator f/\VOIC, deduced from the SOBI method, can be

computed using (64) and after tedious elementaries algebraic manipulations we obtain (in the

steady state)
A eV
SINRMK Wpc] ~ € [1 - — 2% (70)
1+¢€,v
where the quantities Vi (k= 1, 2) are defined by
I 21 e =18,
Vi = Min[— ,— ] = Min| s 16171 (71)
Bal”  IBal 1€ = P12l
A wpor B Il o G-pf 1
Va2 = Min[ , 1 = Min[—; ; ] (72)
o oo pC—17 "GP

where £ = {(p12) 4 ay/Py and where the o; and B; (i = 1, 2) verify expressions (62) and (63)
with the properties (58) and (59) valid for orthogonal sources.

The expression (70) shows that SINRMZ. does not depend on the input Signal to Noise
Ratio (SNR) of the source different of the source £ and is a decreasing function of v;. The
performance of the SOBI method are optimal and the SINRM£ is maximum and equal to g
for the two sources when Vv, = 0 for the latter, i.e. when the blind identification of the two
source whitened steering vectors is perfect. This situation always occurs for zero-mean
sources having different spectrum but has no reason to occur for first order cyclostationary
sources which are apparently SO correlated, as shown in the previous sections. In the latter
case, the expressions (70) to (72) show that the performance at the output of the SOBI method
degrade. In this case, the quantities v and V,, and thus the SINRM1 and the SINRM2, are
related to each other and become a function of both £ and the apparent SO correlation
coefficient of the two sources, p1p, which are themselves directly related to the SO statistics
of the first order cyclostationary sources. In particular, while for two equal power sources,
SINRM1 corresponds to SINRM2 when p12 = 0, it is no longer the case when pjy # 0, as

shown by (71) and (72), which shows that the apparent SO correlation of the sources
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introduces a difference in the restitution’s quality of the sources. Some situations for which
one of the parameters v; and Vv, is sufficiently high to generate strong performance
degradation of the SOBI method are described in section VIL

These results show that to prevent strong performance degradation or, in the worst case,
a very poor source separation at the output of the SOBI method and, more generally, at the
output of the current SO cumulant-based blind source separation methods in first order
(quasi)-cyclostationary contexts, the SO statistics of the data from which the blind
identification of the source steering vectors is performed have to correspond to time averaged
SO cumulants of the data and have to take into account the potential first order
cyclostationarity of the sources. Such an estimator of the SO statistics of the observations is

presented in section V.

V. ADAPTED SO BLIND SOURCE SEPARATION FOR FIRST AND SECOND
ORDER CYCLOSTATIONARY SOURCES : COVARIANCE METHODS

A. Adapted SO BSS philesophy for first order cyclostationary sources : Covariance
philosophy

It has been shown in the previous sections that the potential performance degradation of
the current SO BSS method in the presence of first order cyclostationary sources is directly
related to the potential non diagonal character of the source correlation matrix temporal mean
R,,.(7) defined by (22), which appears in the expression of the observation correlation matrix
temporal mean R,(1) A< R.(¢, T) >, given by (21). Moreover, the potential non diagonal
character of R,,[(7) is directly related to the potential non diagonal character of E,,(t), while
the matrix source covariance matrix temporal mean, R,,.(7), is always diagonal whatever the
first order characteristic of the sources, by definition of the statistical independence of the
latter. Consequently, to prevent poor performance of SO BSS methods for first order
cyclostationary sources, it is necessary to exploit the information contained in the Rp,,(T)
matrix instead of R,,.(t). This can be done by exploiting the information contained in the

temporal mean of the observation cumulant matrix Rx,(t) given, using (18) and (19), by
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Ru(®) = ARamd®) AT+ @1 = Ry(1) - E() (73)

where, using (14), E,(t) is given by

E@ A <eei-of> = ) el 2™ (74)
yel

and where it is recalled that I" is the set of the first order cyclic frequencies vy of x(f) and e}, is
the cyclic mean of x(¢) for the cyclic frequency v, defined by (16). Note from (73) and (74)
that, in the general case of first order cyclostationary sources and contrary to the stationary

sources case, the Ru,(7) matrix cannot be obtained by substracting to the R,(t) matrix only the
part of E,(7) associated to the zero cyclic frequency and given by el et A <e(H)> <ex(t)>cT
but has to take into account all the first order cyclic frequencies of the observation vector x(7),
which then requires a preliminary step of first order cyclic frequencies estimation of the data.

Such a SO philosophy, called Covariance philosophy, prevents from generating
apparently SO correlated first order cyclostationary sources when the latter are statistically
independent and thus allows good source steering vector blind identification performances
and then good separation performances, to within the spatial filtering process limits, whatever
the first order characteristic of the sources, provided they have not the same spectrum.
Moreover, for zero-mean cyclostationary sources (containing in particular the zero mean
stationary ones), this philosophy corresponds, in the steady state, to the classical one. For this
reason, the proposed philosophy can be considered as an extension of the classical one
allowing also the processing of first order cyclostationary sources (containing also the non
Zero-mean stationary sources).

Nevertheless, the new proposed philosophy of SO BSS is unable to process first order
cyclostationary deterministic sources, such as sinusoid sources or more generally periodic
sources, whose contribution in the R,,(t) matrix disappears. For this reason, an extension of
the Covariance method, allowing the processing of first order cyclostationary sources jointly

with deterministic sources is presented in section VL.

B. Covariance philosophy implementation
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In situations of practical interest, the cyclic frequencies and the statistics of the
observations are unknown a priori and have to be estimated from the data, by temporal
averaging operations, using the first and SO cyclo-ergodicity property of the data [26].

For this purpose, if K data snapshots of the observation vector x(f) are available and

A,
provided that the data are sufficiently oversampled, we introduce the estimates, ei(K) and

%x(K), of e} and m, A <E[x(t)Tx(t)]>C respectively, defined by

K
1 .
e A — ) xmeimne (75)
K m=1
A 1 K
) A — D xem)xim) (76)
m=1

In these conditions, a first order cyclic frequency detector of the observations can be
implemented by selecting the cyclic frequencies ¥ which makes the criterion V(y)(K) greater
than a threshold, whose value has to be chosen to maximise the detection probability of high

power cyclic frequency v for a given false alarm rate, where V(y)(K) is defined by

FK) & el Tel(k) 1K) (77

Once the active first order cyclic frequencies of the observations have been detected, the
Ray(7) matrix for 1 = gT, defined by (73), can be estimated, from the K data snapshots, by the
quantity Ra(gT,)(K) defined by

RulgTHE®) = RGTIE®) - D e ejot S2mele (78)

yel
where R,(qT,)(K) is defined by (6).
Under the assumption of first and second order (quasi)-cyclostationary and cyclo-
ergodic band-limited observations, and for sufficiently oversampled data, the estimator (78) is
asymptotically unbiased and consistent, which means that it generates, in the steady state, the

true matrix Ra,(qT,), provided that the cyclic frequencies y are exactly known [15]. Finally

the current SO BSS methods, qualified of Correlation Methods, can be implemented from the
R adgT.)(K) matrix instead of ﬁx(qTe)(K), giving birth to Covariance Methods.
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VI. SO BLIND EXTRACTION OF STOCHASTIC AND DETERMINISTIC FIRST
AND SECOND ORDER CYCLOSTATIONARY SOURCES : THE SOBEFOCYS
METHOD

A. General philosophy

The so called Correlation SOBI method [3], which exploits the information contained in
the R,(t) matrices, allows the processing of zero-mean statistically independent
cyclostationary sources jointly with deterministic sources, provided the latter do not generate
non diagonal terms in the E,, (1) matrix. This requires that the spectrum of the deterministic
sources have no common frequencies, i.e. that these sources are spectrally separable, which
can be considered as the definition of independent deterministic sources. Otherwise the
deterministic sources become correlated, generate non zero non-diagonal terms in the E,, (1)
matrix and the Correlation SOBI method is no longer adapted for this problem. In a same
way, first order cyclostationary sources sharing at least one first order cyclic frequency still
generate non zero non-diagonal terms in the E,,(t) matrix and become no longer separable by
the Correlation SOBI method.

On the contrary, the so-called Covariance SOBI method (Section V), which exploits the
information contained in the Ra,(t) matrices, allows the processing of both zero-mean and
first order cyclostationary statistically independent sources but are unable to process
deterministic sources since their contribution disappears from the R,(t) matrices.

In this context, the purpose of this section is to propose a SO BSS scheme which allows
the joint processing of both zero-mean and first order cyclostationary statistically independent
sources, either stochastic or deterministic. This scheme, called SOBEFOCYS, implements a
first step allowing the processing and the extraction of stochastic sources, zero-mean or not,
from the Covariance Method proposed in section V, and a second step allowing the
processing and the extraction of deterministic sources from the results of the first step. Note
that other schemes may be proposed but their analysis is beyond the scope of the paper.

B. The SOBEFOCYS method

B1. Observation model
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In the presence of P; stochastic and P, deterministic statistically independent sources

such that P, + P, = P, the observation model (7) can be written as
x(f) = Aim ) + Aymp(t) + b)) (79)

where 41 and 4, are the (N x P;) and (N x P;) matrices of the steering vectors of the
stochastic and deterministic sources respectively, m () and m;(¢) are the (P x 1) and (P, x
1) vectors of the complex envelope (with potential carrier residues) of the stochastic and
deterministic sources respectively. Note that the stochastic sources are assumed to be first
order cyclostationary and may share some first order cyclic frequencies whereas the
deterministic sources are assumed to be polyperiodic. The statistical independence of the
stochastic sources means that the components of m(f) are statistically independent. The
statistical independence of the deterministic sources means that the spectrum of latter share no
frequencies. Finally the statistical independence of stochastic and deterministic sources means
in this paper that the vectors m;.(f) and m,.(t — 1) are not correlated whatever the value of ,

i.e that < E[m ) moo(t =)' 1>:.=0 VY (¢, 7).

B2. First and SO statistics of the data

Under the previous assumptions, the first order statistics of the vector x(¢f) can be

written as
ex(t) = 4 elc(t) + A4 eZc(t) (80)

where e(f) A E[m ()] and e(?) A E[m;.(f)] bave a Fourier serial expansion. The
deterministic character of my.(f) implies that the latter vector disappears from the temporal

mean, Ru,(1), of the covariance matrix Rx,(¢, 1), given by
Ra(t) = A1 Ramc@ 4" + mp(1) 1 (81)

where Ruy1o(t) 2 < E[Amy(f) Amy (¢t - 1)1] >, is a diagonal matrix and Am; () 2 my (f)
— e1.(f). Finally, under the assumptions of section B1, the temporal mean, R(t), of the

correlation matrix R, (¢, 1), is given by
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R(t) = A1 Rpn(®) 41T + Ay Rype(n) 47 + ma(m) 1 (82)

where R,;(T) A E[m;(t) m;(t - r)T] >, 1 <i<2,such that R,».(7) is a diagonal matrix.

B3. Detection of deterministic sources from P1 and P2 estimation

The presence of deterministic sources can be detected from the estimation of the

number of sources, P; and P, contained in the matrices (81) and (82) for t = 0 respectively.

The different steps of this process are presented hereafter :

Estimation, f\tx(K), of R, from K data snapshots x(k), using the empirical estimator
(6) withg=0.

Estimation, 1/‘\’, of P from the eigendecomposition of ﬁx(K), using a classical
eigenvalue test

Estimation of the first order cyclic frequencies y of the observations using (75), (76)
and (77)

Estimation, ﬁM(K), of Ry, from IAZx(K) and the estimated cyclic frequencies y using
(78) forg=0

Estimation, ﬁl, of Py from the eigendecomposition of ﬁ am(K), using a classical
eigenvalue test

Estimation, l/f\’z, of P, by 1/’\’2 oy 1%1

A
Deterministic sources are detected if P, # 0

B4. First step of the SOBEFOCYS method : Extraction of the stochastic sources

A
The blind estimation, 4;, of the mixing matrix 4; can be obtained, to within a (1/‘\’1 X 1/751)

permutation matrix [1; and a (j\’l X j\’l) diagonal matrix A, by implementing the so-called

Covariance SOBI method, from f’l, I/%M(K) and several covariance matrices f\tm(qTe)(K) with

g # 0, computed from (78), (6) and the cyclic frequencies y. Then from the obtained :11 A 21

A
Aq T1) matrix, a (N x P)) stochastic sources separator /) has to be built to allow the

A
extraction of the stochastic sources, i.e. the estimation, m (), of the stochastic sources vector

m(¢), to within a permutation and a diagonal matrix, by
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n® = mtx@ (83)

In the absence of deterministic sources (j\-’g = (), as suggested in section IV. D1, the
separator W) is chosen so as to implement the OIC for each stochastic source, which is
equivalent, for a spatially white noise, to implement the Least Square separator [8], defined by

~ ~ ~ -1 A A A -1 _

o= 4 LATAT = 44T AT (84)
and which gives

n® = AT AT T At = It AT mig0) (85)

In the presence of deterministic sources (1/‘\’2 # 0), the column i, wy;, of the separator #;
is chosen so as to minimize the output power w; ,-T f{x(K) wy; under a first constraint, wlﬁ ;1 i
= 1, of zero distorsion in the direction of the source associated to the column i, ;1,~, of 7{1, and
under a second constraint of nulling all the other stochastic sources, i.e. w ;1 j=0forj=i Tt

is easy to verify that W, be written as

=/\ _1"‘ NTA _1"‘ _1=/\ _1/\ /\_’_/\ _1/\ -1 __’_ 3
Wi= Ry(K) " A1 [ 41T R(K) " 41 ] H(K) Ay [T R(K) 411 AT 1L (86)
and which gives

1A w A 1A 1A LA _ -1 A
»n® = MIAT AT RET 4 T AT RE 2 = AT m) 87
Note that in the absence of deterministic sources, the separator (86) asymptotically (i.e. when
K becomes infinite) corresponds to (84).
BS. Second step of the SOBEFOCYS method : Extraction of the deterministic sources

Once the stochastic sources have been extracted, the deterministic sources can be

A
processed if Py # 0. To this aim, we firstly remove the stochastic sources from the observation
vector x(f) by building the projection, v(¢), of the observation vector x(f) on the subspace

orthogonal to the column of Zl, defined by

wi) A Fy x() (88)

where F, A I- 4 1l ;llT ;11 ]"1 217. Note that for a perfect blind identification of the matrix

Ay, we obtain 21 = A and the vector v(¢) takes the form
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W) = Frdymy(f) + Frb() (89)

The blind estimation, ﬁFz A F, 22, of the projected mixing matrix F; 4; can be obtained,
to within a (ﬁ’z X 1/'\’2) permutation matrix [1; and a (1/‘\’2 X 1/‘\’2) diagonal matrix A, by
implementing the so-called Correlation SOBI method [3], from 1/7\’2, ﬁv(K) and several
correlation matrices f\iv(qTe)(K) with g # 0, computed from (6) with the indice x replaced by v.
Then from the obtained ZFz A Fq Zz A xl‘in Aj Iy matrix, a (N X f’z) deterministic source
separator W, has to be built to allow the extraction of the deterministic sources, i.e. the
estimation, I/I\lzc(t), of the deterministic source vector my(¢), to within a permutation and a

diagonal matrix, by
n) = Wi xw (9)

The separator W, is chosen so as to implement the Least Square separator for the
deterministic sources, once the stochastic sources have been removed from the observation
vector. It is then defined by

=F, A [ AerT den ! = Fy A (4T Fr dr T AT

Wy =F1dp [4Apl An ] = F) [T Fi 4] AT I 91)

and which gives

ya®) = Tt A7 AT Fy 4y 17V AT By xt) = LT A7 () (92)
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VII. SIMULATIONS

The results presented in the sections I to V are illustrated in figures 1 to 4, where two
statistically independent binary CPFSK sources are assumed to be received by a circular array

of 5 uniformly spaced sensors with a radius » = 0.55 & (A is the wavelenght). The two sources

are assumed to be orthogonal to each other (alTaz = 0) which is in particular the case when
their angle of arrival is such that 8; =50° and 6, =91°. They have the same input SNR
(Signal to Noise Ratio) of 10 dB and are synchronized. Their symbol durations 7; and their
modulation indices A; (i = 1, 2) are such that 4y/T| = hy/T, = 1/4T, for hy =2 and h, = 4.
Besides, the considered SOBI method aims at diagonalizing an estimation of only one
correlation or one covariance matrix temporal mean of the whitened observation matrix for t
= 4T,. In the first case, the SOBI method (which is the current one) is called SOBI COR
whereas in the second case the SOBI method (which is the new one) is called either
SOBI_COV when all the first order cyclic frequencies belonging to 1" are taken into account
in (78) or SOBI_ACOV (for Approximated Covariance) when only the zero cyclic frequency
is taken into account in (78). Finally, the SINRMk (k = 1, 2) at the output of the SOBI
methods, computed in these figures, are averaged over 200 realisations.

Under the previous assumptions and assuming that the two sources have a carrier residu
such that Af; = Af, = h1/2T, the figures 1 and 2 show the variations of the SINRMI1 and the
SINRM2 respectively at the output of the SOBI COR, the SOBI_ ACOV and the SOBI COV
separators, as a function of K. As the two sources share the first order cyclic frequencies y =0
and vy = h/Ty, they become apparently SO correlated in the ﬁx(qTe)(K) matrix, with a
coefficient p;, equal to 0.5. In this case, it can be shown that £ =2/(2 + \/3)1/2 or {=—2/(2
—~V3)'2, vy =2/(2 + V3) and v, =(2 — V3)/2 , which explains the high performance
degradation (the SINRM1 and the SINRM2 converge toward 2.5 dB and 8 dB respectively
instead of 17 dB) and the poor separation of the sources at the output of the current SOBI
(SOBI_COR) method. On the contrary, the implementation of the SOBI method from the
ﬁM(qTe)(K) matrix, given by (78) where the two cyclic frequencies Y= 0 and y = h,/T; have

been used (SOBI_COV), shows performances approaching the optimality as the number of
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snapshots increases. Nevertheless, the use in (78) of only one (v = 0) of the two common first
order cyclic frequencies of the sources (SOBI_ACOV) is not sufficient to obtain optimal
performances.

The figures 3 and 4 show, for several values of Af;, the variations of the SINRM1 and
the SINRM2 respectively at the output of the SOBI COR separator, as a function of the
number of snapshots K, for several values, 0, 0.005 and 0.01, of the differential carrier residu
(A1 - Af) xT,. Note the poor separation of the two sources when Af) = Afy, even in the
steady-state (SINRM1 = 2.7 dB, SINRM2 = 8 dB), and the decreasing convergence speed of
the SOBI_COR separator as (Af; - Af2) decreases. In this latter case, the steady-state output
performance are not affected by the use of the empirical SO statistics estimator since the
source correlation matrix is diagonal due to the fact that the sources do not share any first
order cyclic frequencies. Nevertheless, when the first order cyclic frequencies of the sources
are close to each other, the output performance degradation obtained from a short time
observation is a decreasing function of the difference between the first order cyclic
frequencies of the sources.

The results presented in section VI are illustrated in figures 5 and 6, where the context
is the same as the one depicted for figures 1 to 4, to within the DOA of the source 2 which is
equal to 6, =—-179° , but where 2 independent deterministic sources, corresponding to two
sinusoids, have been added in the observation vector. These deterministic sources have a SNR
of 10 dB, come from the directions 63 = 125° and 64 = 93° respectively and are such that Af3
=1/3T,, Afa=1/5T,. In this context, the figures 5 and 6 show the variations of the SINRM;i (1
< i <4) at the output of the SOBI COR and the SOBEFOCYS method respectively, as a
function of K. Note that the SOBI COR method separates the deterministic sources but has
some difficulties to separate the first order cyclostationary stochastic sources as the latter
share the first order cyclic frequencies y= 0 and ¥ = hy/T;. In the same context, the
SOBEFOCYS method allows the good separation of all the sources, deterministic or not,
despite of the first order cyclostationarity of the latter and the fact that the sources 1 and 2

share some first order cyclic frequencies.
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VII. CONCLUSION

In this paper, the behavior of the current SO cumulant-based blind source separation
methods, such as the SOBI method, initially developed for zero mean, stationary and ergodic
sources, has been analysed for cyclostationary and cyclo-ergodic sources assumed first order
cyclostationary. Examples of such sources correspond to CPFSK sources having an integer
modulation indice, FSK or some AM sources.

It has been shown in the paper that when two sources share at least one first order cyclic
frequency, they become apparently SO correlated in the temporal mean of the data correlation
matrix and the performance of the current SO BSS methods may be strongly affected by such
sources despite of the fact that they are statistically independent.

To solve this problem, it has been proposed in the paper to implement the current SO
BSS method from the temporal mean of the data covariance matrix instead of the correlation
matrix, which generates Covariance Method instead of Correlation ones. For this purpose, an
asymptotically unbiased and consistent estimator of the data covariance matrix temporal mean
has been proposed for first and second order cyclostationary and cyclo-ergodic sources.
However, the use of this estimator requires the knowledge or the a priori estimation of all the
first order cyclic frequencies of the observations.

The so-called Covariance BSS philosophy proposed in this paper allows to separate
both stationary and cyclostationary statistically independent sources, either zero mean or not
(first order cyclostationary), provided they have not the same spectrum. In that sense, it
extends the applicability of the current Correlation BSS methods [3], developed for stationary
sources, to first and SO cyclostationary sources.

However, the main limitation of the proposed Covariance philosophy is that it is unable
to separate first order cyclostationary deterministic sources such as sinusoids or polyperiodic
sources. For this reason, a SO BSS scheme, called SOBEFOCYS method, allowing the joint
processing of arbitrary modulated (stochastic or deterministic, zero-mean or not) statistically
independent cyclostationary sources has finally been proposed in the paper. After the

estimation of the number of deterministic sources, this scheme implements the proposed



131

Covariance method in a first step, allowing the processing and the extraction of stochastic
sources, and then implements a second step allowing the processing and the extraction of
deterministic sources from the results of the first step. Note that to our knowledge, the
SOBEFOCYS scheme is the first one which allows the joint SO BSS of arbitrarily modulated

(stochastic or deterministic, zero-mean or not) cyclostationary sources.
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APPENDIX A

In this Appendix, we compute the first order cyclic statistics of a M,-FSK source p built
from M, local oscillators.

The cyclic mean e} has to be computed for cyclic frequencies vy, multiple of (1/7},). For
the cyclic frequency y,; = i /T, using the fact that the function e,(#) exp[—j2ny,] is periodic
with a period equal to T),, we deduce from (27) that the cyclic mean e'?’, defined by (11) with
Yp = Ypi» 1S given by

My,-2) 12
eri—g2 11 JT;" > | i) (exp{iBpam+1) + 27 fp2m+1)t —nT )]} +

My, Tp

n m=0
exp{j[0.pom+1) — 27 f3p2m+1)(t — nT,)1} ) Rect,(t — nT,) exp[—j2ny,if] df (A1)

Using the fact that Rect,(?) is zero outside the interval [0, 7,,] and making in (A1) the change
of variables v = ¢ - nT,, w = v/ T,, we obtain, after some elementaries manipulations the

expression (29).

APPENDIX B
In this Appendix, we compute the first order statistics of a M,-CPFSK source p.

B1. Computation of ¢,(?)

From the expressions (26) and (33), using the statistical independance of the symbols o,

we obtain

n-1
e)(t) =1, Z Hm, T Efexplinhyafl} E{explin @ (hy/Tp)(¢ - nT,)]} Rect,(t - nT,) (B1)
n k=-1

On the other hand, for equiprobable symbols af;,, with probability (1/M,), it is easy to verify

that, for an arbitrary real value [3, we obtain

’ Mpy-2) 12
E{exp[j p afl} = A S cos[(2m + 1)B] (B2)
P m=10

Applying (B2) into (B1), the expressions (34) to (37) follow immediately.
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B2. Computation of e} for p, =1

When p, = 1, the cyclic mean e} has to be computed for cyclic frequencies v, multiple
of (1/T,). For the cyclic frequency v,; = i /T, using the fact that the function ey(r)
exp[—j2mypit] is periodic with a period equal to T, we deduce from (38) that the cyclic mean

e, defined by (11) with y, =, is given by

. 2 1 rp .
o't S o 2wt el a (B3)

n
Using the fact that u,(f) is zero outside the interval [0, T,], making in (B3) the change of
variables v =¢ - nT,, w=v/ T, and using (37) in (B3) with , = 2q, where q is an integer, we

obtain, after some elementaries manipulations that

(My-2) 12
el = 7,2 - S J:) cos[(2m + 1)2qnw] exp[—j2n iw] dw (B4)
P om=0

which, after elementaries trigonometric manipulations, can also be written as

{ (My2) 12
el =, T i J:) {cos[2mw((2m+1)g + §)] + cos[2nw((2m+1)g — D)]}dw (B5)

L4 m=0

For each value of m, 0 <m < (M,, -2)/2, if i # £ (2m + 1)q, it is easy to verify that the
expression (B5) gives e’} = 0. However, if i = £ (2m + 1)g, we deduce from (BS) that e}’ =
npl/ 2/Mp. Recalling that g = h,/2 = f, T,,, we deduce that e}’ is not zero for cyclic frequencies
Bpi=i/Ty =1 (2m~+ 1)q /T, =+ (2m+ 1) f3, and the associated cyclic mean is npl/ Z/Mp, result

which is expressed by the expression (39).

B3. Computation of e} for p, = -1

When p,, = -1, the cyclic mean e has to be computed for cyclic frequencies v, multiple

of (1/2T,). For the cyclic frequency y,; = i/2T,, using the fact that the function e,(?)
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exp[—j2ny,] is periodic with a period equal to 27, we deduce from (38) that the cyclic mean
e, defined by (11) with 7, =7, is given by
17 pr
1pi —
ep =", K, V? Z )" uy(t-nT,) exp[-j2nyyf] dt (B6)
Using the fact that uy(f) is zero outside the interval [0, T,], making in (B6) the change of

variables v = ¢ - nTy, w = v/ T, and using (37) in (B6) with &, = (2¢+ 1), where g is an

integer, we obtain, after some elementaries manipulations that

(My2) 12
i 1 i .
el =7Ip1/2 K, —(1-¢77) S J:) cos[(2m+1)(2q+ Dynw] exp[—jn iw] dw (BT)
M,
m=0
If i is even, e¥" = 1 and e’ = (. However, if i is odd, ie. if i = (2s+1) where s in an

integer, it is easy to verify, after some elementaries trigonometric manipulations that

, My2) 12
i _ 12
el =m K, I S

P m=0

{J:) {cos[mw((2m+1)2g+1)+ (2s+1))] + cos[nw((2m+1)(2g+1) - (2s+1))]}dw (BS)

For each value of m, 0 <m < (M, -2)/2, if i = 2s+1) # £ 2m+1)(2¢+1), it is easy to verify
that the expression (B8) gives 7' = 0. However, if i = (2s5+1) = + (2m+1)(2¢+1), we deduce
from (BS) that ¢’ =, K,, /M, Recalling that , = (2g+ 1) = 2f;, T,, we deduce that €2 is
not zero for cyclic frequencies y,; =i 2T, = + (2m + 1)(2¢+ 1)12T, = £ (2m + 1) f;, and the

associated cyclic mean is npl/ 2 K}, /My, result which is expressed by the expression (39).
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Figure 1 — SINRM1 at the output of SOBI_COR, SOBI ACOV and SOBI _COV as a function
of K, N =35, P =2 2-CPFSK sources, 0; = 50° 6,=91°, SNR =10dB, /Ty =h/T, =
1/4T,, hy =2, hy=4, 1=4T,, Af; = Af = l1/2T}, Sourcel : SOBL COV (a), SOBI_ACOV (b),
SOBI_COR (c)
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Figure 2 — SINRM?2 at the output of SOBI_COR, SOBI _ACOV and SOBI COV as a function
of K, N =15, P =2 2-CPFSK sources, 0;=50° 6,=91° SNR=10dB, h/T, =h/T, =
1/4T,, hy =2, hy=4, 1= 4T,, A = Af = h/2T}, Sourcel : SOBL_COV (a), SOBI_ACOV (b),
SOBI_COR (c)
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Figure 3 — SINRM1 at the output of SOBI COR as a function of K, N =5, P =2 2-CPFSK
sources, 0;=50° 6,=91°, SNR = 10dB, h\/Ty =hy/T) =1/4T,, hy =2, hy=4,1=4T,, Af; =
h1/2Ty, (Af] - Afy) xT =0 (a), 0.005 (b), 0.01 (c)
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Figure 4 — SINRM? at the output of SOBI COR as a function of K, N =5, P =2 2-CPFSK
sources, 0;=50° 6,=91°, SNR = 10dB, /Ty =hy/Ty =1/4T,, hy =2, hy=4,1=4T,, Af; =
h1/2Ty, (Af] - Afy) xTe =0 (a), 0.005 (b), 0.01 (c)
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Figure 5 — SINRMi (1 <i <4) at the output of SOBI COR as a function of K, N=5,P =4 :
2 2-CPFSK sources and 2 sinusoids, 6; = 50°, 6,=-179° 6;=125° 6;=93° SNR = 10 dB,
/Ty =hy/Ty = 1/4T,, h1 =2, hy =4, 1 =4T,, Afi = Afa = /2Ty, Af3=1/3T,, Af4=1/5T,
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Figure 6 — SINRMi (1 <i <4) at the output of the SOBEFOCYS method as a function of K,
N=35,P=4:22-CPFSK sources and 2 sinusoids, 6; = 50°, 6, = —179°, 6;=125°, 6,
=93° SNR = 10dB, h)//T\ = hy/T, =1/4T,, h1 =2, hy=4,1=4T,, Afi = A, =h/2T, Af3=
1/3T,, Af4=1/5T,
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ABSTRACT

Most of the current Second Order (SO) and Higher Order (HO)
blind source separation (BSS) methods aim at blindly separating
statistically independent sources, assumed zero-mean, stationary
and ergodic. However in practical situations, such as in
radiocommunications contexts, the sources are non stationary
and very often cyclostationary. In a previous paper [3] the
cumulant-based BSS problem for cyclostationary sources has
been analysed assuming zero-mean sources (linear modulations).
Then we have considered in [4] the non zero-mean
cyclostationary case for current SO BSS methods such as the
SOBI method. The purpose of this paper is to analyse the
behavior and to propose adaptations of the current HO BSS
methods for cyclostationary sources assumed cyclo-ergodic and
110N ZEFO-Mean SOurces.

1 INTRODUCTION

For more than a decade, SO and HO [1] [2] blind methods
have been developed to separate several statistically
independent sources, assumed zero-mean, stationary and
ergodic. However, in many applications such as in
radiocommunications contexts, the sources are non
stationary and very often cyclostationary (digital
modulations). It then becomes important to analyse the
behavior of the current SO and HO BSS methods in
cyclostationary contexts.

In a previous paper [3], the behavior of the current SO
and Fourth-order (FO) cumulant-based BSS methods has
been analysed for cyclostationary sources assumed zero-
mean sources. It has been shown in particular that the
current SO blind methods are not affected by the
cyclostationarity of the sources whereas the current FO
blind methods may be strongly affected by this property.

Nevertheless, some cyclostationary sources used in
practice are not zero-mean but are first order
cyclostationary, which is in particular the case for some non
linearly modulated digital sources. For this reason, in a
recent paper [4], we have analysed the behavior and
proposed adaptations of the current SO BSS methods in the
presence of statistically independent sources which are both
first order and SO cyclostationary.

Thus extending the analysis to the blind separators
exploiting both the SO and the FO cumulants of the data
such as the JADE separator, our goal in this paper is
precisely to bring some answers to the important HO BSS
problem in the presence of non zero-mean cyclostationary
sources.

2 PROBLEM FORMULATION

A noisy mixture of P narrow-band (NB) statistically
independent sources is assumed to be received by an array
of N sensors. The vector, x(f), of the complex envelopes of
the signals at the output of the sensors is thus given by

P
0= mdda,+b0) LAm@+50 (1)

p=1

where m,(f) = mp(t)elz‘mf”” b is the p-th component of the
vector m (1), my(f), Af;, ¢, and 4, correspond to the complex
envelope, the carrier residu, the phase and the steering
vector of the source p respectively, 4 is the (NxP) matrix
whose columns are the vectors a,. The b(r) noise vector,
assumed zero-mean, is normally distributed, spatially white
and independent from the sources in the reception band.

The classical HO blind source separation problem
consists to find, from the HO statistics of the observations,
the (NxP) Linear and Time Invariant source separator W,
whose (Px1) output vector y(f) = W x(f) corresponds, to
within a diagonal matrix A and a permutation matrix IT, to
the best estimate, t?:c(t), of the vector m(%).

3 HO BLIND SOURCE SEPARATION FOR ZERO
MEAN STATIONARY SOURCES

3.1 Statistics of the data

Let MX[v,](¢) and Cum™”[v,](i) be the moments and
cumulants of order n of x(?), given by

M0 2 B0 550... 0] @)
" W,
a0 2 S-S Tr sz, o
g=1 w=l r=1

where (v,) = (g1, &,..., &,) With g; € {-1, 1}, such that
X, () = x,(f) and x)(7) = x{2), where v, = (iy, iy,..., i,) with



1<i<N, and 8f,, U..U Sg,, is the w™ partition of the set v,.
Moments and cumulants of order » may be seen as tensors
of order n, however, it is interesting to put them into
matrices. In this way, let d = Int(n/2) where the function
Int()) rounds to the nearest lower integer. Let M*() and
Cum*(t) be the (NXN"™) matrices whose [(N(NG; 1) +
=1 +i..) i (N(N(ld+1 =D 4ipg =) +igs.) i)
element is equal to M[iy, b,..., is..., i]() and
Cum™™[iy, iy,...., ip..., i,)({) respectively. Using (1) into (2)
and (3) we obtain

Cum™ (1) = (A"®...9A™) Cum¥(1) (A™'®..®A™)" +
Cum™()) (&)

where Cums(“”)(t) is the cumulant matrix of m (f), ® is the
Kronecker product and where , = (i1, i,..., i,) wWith 1<i<P.
We obtain the same equatron for the moment matrlces
replacing Cum( (t) by M (t) Note that for a normally
distributed noise, Curmj" (t) is zero as soon as we have
r>2. Under the assumptron of stationarity, the statistics Ma
[i1,..., ,0(0), Cum() [i1,..., i,)(?) and the associated matnces
Mi() (), Cum A (¢) aren’t Time Dependent (TD) So they can
be named M5 [iy,..., iy, Cum() AR Mi) and Cum()
respectively.

3.2 Philosophy of the JADE method

Under the previous assumptions, assuming no Gaussian
sources for simplicity, the current JADE method [1] aims at
separating the sources from both the SO and the FO blind
identification of the 4 matrix. This requires the
prewhitening of the data glanks to the knowledge of the
correlation matrix R M‘1 1, which for zero mean
stationary sources, is equal to the covariance matrix R(

Cum (1 D This prewhitening orthonormalizes the sources
steerrng vectors so as to search for the latter through an
unitary (PxP) matrix U simpler to handle. Let Q. be the
apparent quadricovariance matrix of x(¢), defined by

Ok & MYk
3
- Z{ R [i[w), W] R [i3[w), ig[w]] } &)
w=1
Wheretl Uk LT, 6=, 0,4, k)", 6=k, j,j, 0", s =11, ],
k" s Emgr.s = gzqgw] zr[vK], ,zsgw]) withe(i, j, k, ) =(1,-
1, -1, 1) and R%4)q, r] & M**)[q, +]. Note that for zero
mean stationary sources, (. is equal to the Q.
quadricovariance matrix, given by QJ[i, j, k, [] = Cum 1 A-Lh
[i j, k, I). If we note z(¢) the whitened observation vector,
the matrix U is chosen so as to jointly diagonalize the P
eigenmatrices V, constructed from the orthonormalized
eigenvectors associated to the P signal eigenvalues of the
Q,, apparent quadricovariance matrix.

Q.= (ABA) Oy, (404! ©)
where A’ is the (PxP) unitary matrix of the whitened

sources steering vectors, (., corresponds to the apparent
quadricovariance of m_(f), the normalized vector m (¢) such
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that each component has a unit power. Under these
conditions, it is easy to verify [1] that the unitary matrix 4’
is, to within a permutation and an unitary diagonal matrix,
the only one which jointly diagonalizes the P matrices V.

3.3 Implementation of the JADE method

In practical situations, the SO and FO statistics of the data
have to be estimated, by temporal averaging operations,
using the ergodicity property of the data. Under these
assumptions, noting T, the sample period and x(z) the k-th
sample of the observation vector x(f), the empirical
estimator M [y, ] of MX™)[v,], from K independent data
snapshots, is defined by

tetr 1A 1% :,
AR CEACRECING)
k=

So we deduce the ernplrlcal estnnator R 1)[z, Jjl 4

M<I [z J] of the correlatlonR I)[z = M( f3[1 Jj]. In the
same way, the empirical estimator Q,[i, j, k, /] of the
apparent quadricovariance Q,[i, j, k, ] is given estimating
in (5) the different moments by (7). It is well known that for
stationary /gnd ergodic observations, the empirical
estimators Rf" and Q,, are, as K becomes infinite,

unbiased and consistent.
4 HO BSS FOR NON ZERO-MEAN
CYCLOSTATIONARY SOURCES

4.1 Statistics of the data

We now assume that the sources are cyclostationary, which
means that their statistics are &quas1) -periodic functions of
the time. Thus, the statistics M2 [v,,](t), Cum™[v,](t) and
the associated matrices M), Cum™”\(#) become TD and
have a Fourier serial expansion. Moreover we define the
set of the moment cyclic frequencies, 'z rad Uun{l"a(””)}

and the set of the cumulant cyclic frequencres (IJE V"

=Uig< _P{(Dmc(p)} of order n of x(¢), from

T8 b/ 1<p<P, Wt P p) MEE [V, 120} (8)
09 2 {0/ 1=, p,..., p) and CumEv, ) 0)}0}  (9)

uhers an(c“")[u,g(t) Y < Ml >, and

[vn]((p) < Cum [vn](t) e¥™ > are called the
cychc moment and the cychc cumulant of order »n of m (%),
noting that <>, is the continuous-time temporal mean
operation. We can adopt the following notations

&9l 2 ML) s KXl 1) 2 Mg, i) (10)

R9q, 7i(0) & Cum’® g, rl(9) = RXg, )(0)
-3 gl &) p-a) (1)

aely

Note that the cyclic moments and cyclic cumulants for the
zero cyclic frequency correspond to the temporal mean,
MEV")[VJ 8 o A, ) > and Cum™™[v,] 8

< Cum’ V”)[v,,](t) >o. of M[y,1) and Cum™[y,]()
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respectively. Let put the components My, ] and Cum™
[v,] into the matrices M** and Cum™" respectively. Using
(4), we can link on the one hand M; £ and M on the
other hand Cum®™™ and Cum®".

4.2 Behavior analysis of the statistics empirical
estimators

For cyclostationary sources, HO BSS methods such as the

JADE method have to exploit the information contained in

the time-averaged statistics R( 1 and 0, estimated from

(7). For band-limited, cyclo-ergodic and sufﬁmentl?f

oversampled observations, the empirical estimators, R(1

and Q,,, of R(1 D and 0., respectively, are asymptotically
unbiased and consistent.

However, while for zero-mean stationary independent
sources, the correlation matrix R(l"1 = D and the
apparent quadricovariance matrix Q, ., defined from (5),
are diagonal and equal to Cumfic 1), Cum (1
respectively, it is not necessary the case for non zero-mean
cyclostationary independent sources for which only the
covariance  matrix R(Amcl = Cum cl) and the
quadricovariance matrix Q,,, = Cum(1 il 15” are diagonal. As
a consequence, as the current HO BSS methods are affected
by the cyclostationarity of zero-mean sources, they may also
be affected for non zero-mean cyclostationary sources for
which, an apparent statistic dependence of the sources may

. (1) .
appear in both the R, and (., matrices.

4.3 Skew using statistic empirical estimators

skew,

AcAcor(}ullg to [4], the non dlagonlal A J] component R,,%c A
D= R i)~ Rt i f1 = < endl] €[] >, with ¢lg]
= Mf,,g [q], of the Rf,,c ) matrix are non zero as soon as the
two sources m;(?) and m;, (7) share at least one first order
cyclic moment frequency.

In the same way, Athe non diagonal py = (i, j, k, )
component ch [P—4] ch[UA] cha[u4] cha[u4] of
the Q,,., matrix, is given by

: Sl
- Z z €mc

O, b 1] =
w=1 y;_r

1,234

[ W11Y) Moe™ [ilw], [w], ig[w]](-y) + Z{ R [y
w=1

(W], ialw]]  Ryse™ [ia[w), ia[w]]

Y R [alw), ilwlln) R [l il wI)(-)

yeliha

2 Y Rl el @R, lwl)eo) }
0e® 34

(12)
where j Kl’ by, B3, iy and ewqr s are defined in (5). Moreover,
Iipe =T, el y peteled B i o the set of the common
moment cycllc frequenmes of the processes m;,pidf) ang
(mvz[[W]JC(t) m);[w]c(? qui wd?)). In the same way, [f334 =
elelalv) o T 6D 56 the set of the common moment

cyclic frequencies of the processes (m;[wi(f), Mmifwi(f)) and
Xn,z[w]cﬁt) mhgw 1c(®)). To have done with the notations, (Dlz 34

SUlaD  @EHEDLUD 5o the set of the common
cumulant cyclic frequencies of the processes (miwic(?),
mifd)) and  (mipt), migwc(f)). Whereas the non
diagonal components Qﬁew[\q] of the Q,,,, matrix are zero
for zero-mean stationary independent sources, it is not
necessary the case for non zero-mean cyclostationary
independent sources, in particular when at least one of the
sets [ 234 I 1234 OF CDu 44 180°t em ]S)ty For instance, noting
that for independent sources, R - 19, ¥](¢) is non zero if
and only if g = 7, the set @12’34 is non empty as soon as the
two sources mw(f) and mip(¢) share at least one second
order cumulant cyclic frequency.

4.4 Behavior of the JADE method

While, for apparently SO uncorrelated sources, which is in
particular the case for zero-mean sources, the whitened
mixed matrix 4’ is an unitary matrix, it is no longer the case
for apparently SO correlated sources, for which the vectors
a,’ are neither normalized nor orthogonal, as it is shown in
[4].

Moreover, while, for apparently FO uncorrelated
sources, which is in particular the case for zero-mean
stationary sources, the P eigenmatrices V, of the O,
apparent quadricovariance matrix may be written as ¥, = 4’
D, A" where D, are diagonal matrices, it is no longer the
case for apparently FO correlated sources.

A consequence of these results is that the matrix 4’
does not jointly diagonalizes the set of P eigenmatrices V,.
In other words, the blindly identified source steering vectors
are only a linear combination of the source steering vectors,
which shows that the JADE method as well as the HO BSS
methods are affected by the presence of apparently SO and
FO correlated sources.

4,5 Adaptation : exhaustive estimators

Since the matrices R( ) and O e, may be non diagonal in
the presence of non zero-mean cyclostationary independent
sources, we have to exploit the information contained in the
matrices RA,,,L) = Cum,,’ D and O = Cum(1 LD which are
always diagonal for statistically mdependent sources, zero-
mean or not. In other words, we have to implement the HO
BSS methods from the matrix R(\x and Q, defined by

DB om0y, and 0, 2 <Cum® Vs, (13)
So, for cyclostationary and band-limited vectors x(f) having
a cyclo-ergodicity property and for sufficiently oversampled
data, after a preliminary step of first and second order cyclic
frequencies estimation [4] [5], we define the asymptotic
unbiased and consistent estlmators R(Ax Y and @ of R(1 D
and Q, respectively. Whereas R( is given in [4], we have

Oli.j k1] = B8 ik, 1

Ry,



4 A A
- Z z ex™ [ [wll(r) My [ig[w], ilwlig[wll()  +

w=lyel (s

Z >R (WA R I Luwlie)

w=l™ yelfh gy

-2 Z BT Wbl ) R Tl wl)(-)
9=0lh34
(14
where i1, b, l3, iy and Eugr. s ATe deﬁned in (5), where

“olql) 2 Mg, B g) 2 Mg, ) are
glven by

K
AL %z ). X2 T(15)

k=

—_

and, according to (12),

R0, @) 2
B0~ Y elg e e-0)  (16)

ael"q’ P

To simplify the implementation of the e&(haustlve estimator
gx’ we may take [y, = [0 L, 2 pebdalD g

pEGUDy () (PO gy [y Y, = e ot
[34= l"s("[WD where

&(r) A A

@ @04 = s(g)oc-+ 6(IP / 0 eTs® and peI™}(17)

5 SIMULATIONS

To illustrate the previous results, we assume that two
statistically independent NB and orthogonal (4"4 = N'T) 2-
CPFSK sources are received by an array of N=5 sensors.
These two sources have the same input SNR (Signal Noise
Ratio) of 10 dB and are synchronized. Their symbol
durations and their modulation indices are such that
hl/Tl=h2/T2=(4T,)‘1 for =2 and h,=4. Thus, we apply the
JADE method and average the SINRMk (Maximal Signal to
Interference plus Noise Ratio of the ™ source, defined in
[4], at the output of the JADE separator for k=1,2, over 200
realizations.

Under the previous assumptions, the figure 1 shows the
variations of the SINRM1 of the first source at the output of
the JADE separator, implemented from four groups of
estimators associating SO and FO, empirical or exhaustive,
statistic estimators, as a function of the number of snapshots
K. Taking zero carrier freq1uen01es A=A 2—0 we obtain F
= {(-h)2T,, 2T}, l“(1 = {0} and F = {0, +h/2T}}
such that the two sources are apparently SO and FO
correlated. As planned, the figure 1 shows the poor
separation of the sources when the JADE method uses the
empirical estimators. On the contrary, the exhaustive
estimators using the cyclic frequencies allows the separation
of the two 2-CPFSK sources. Moreover, we can note the
non zero performances of the separator using both the SO
exhaustive and FO empirical estimators.
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6 CONCLUSION

In this paper, we showed that the current HO BSS methods,
such as the JADE method, may be affected by the presence
of statistically independent NB sources which are non zero-
mean cyclostationary. This problem is directly related to the
fact that the current HO BSS methods aim at exploiting the
information contained in the temporal mean of the
correlation and apparent quadricovariance matrices instead
of the covariance and quadricovariance matrices.

To solve this problem, we must exploit the information
contained in the temporal mean of the covariance and
quadricovariance matrices of the observations. Thus, we
have introduced an unbiased and consistent estimator of
these matrices for non zero-mean cyclostationary
observations, assuming the first and second order cyclic
frequencies have been estimated previously.

20
15
~~
g bw
N’
s
210
wn
5
@
% 500 1000 1500

F
Fig.1 - SINRMI as a function of F, (a) empirical
estimators, (b) exhaustive estimators, (¢) SO exhaustive
and FO empirical estimators, (d) SO empirical and FO
exhaustive estimators.
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