TD de TRF - Liste 9

I. On rappelle que la distribution $vp \ 1/x$ se définit par :

$$\langle vp \ 1/x, \varphi \rangle = \lim_{\substack{\varepsilon \to 0 \\ \varepsilon > 0}} \int_{\substack{|x| \ge \varepsilon}} \frac{\varphi(x)}{x} dx = \int_{0}^{\infty} \frac{\varphi(x) - \varphi(-x)}{x} dx , \quad \varphi \in S.$$

La fonction $\log |x|$ définit une distribution tempérée puisqu'elle est localement sommable et qu'elle ne croît pas plus vite qu'une puissance à l'infini.

Question : calculer la dérivée au sens des distributions de $\log |x|$.

II.

Notations

- $\mathbb{I}_{[-1/2,1/2]}(t)$ désigne la fonction indicatrice de l'intervalle [-1/2,1/2];
- $P_T(t) = \sum_n \delta(t nT)$ désigne le peigne de Dirac de période T. On rappelle que $P_T(t) \Longrightarrow \frac{1}{T} \ P_{1/T}(v)$.
- **1.** Soit *a* un nombre > 0. Dessiner la fonction $\mathbb{1}_{[-1/2,1/2]}(t/a)$ et calculer sa TF.
- 2. Si $x(t) \rightleftharpoons X(v)$, exprimer les coefficients de Fourier de la périodisée $x_p(t) = \sum_n x(t nT)$ en fonction de X(v).

Application. On suppose dans toute la suite T > a. Dessiner la fonction $q(t) = \frac{1}{a} \sum_{n} \text{rect} \left(\frac{t - nT}{a} \right)$ et calculer ses coefficients de Fourier. Quelle est la limite de q(t) si $a \to 0$?

3. Soit *B* un nombre satisfaisant $0 < B < \frac{1}{2T}$ et x(t) un signal dont la TF X(v) est nulle pour |v| > B. On forme

$$y(t) = (1 + mx(t)) q(t)$$

où m est une constante non nulle. Calculer la TF Y(v) de y(t).

4. Soit $f_o = M/T$ un multiple entier de 1/T (où pratiquement M est >> 1) et I_o et J_o les deux intervalles $I_o = [f_o - B, f_o + B]$, $J_o = [-f_o - B, -f_o + B]$. Le signal y(t) traverse un filtre linéaire passe-bande parfait dont le gain complexe vaut 1 dans $I_o \cup J_o$ et 0 en dehors. Calculer les composantes fréquentielles de l'entrée dans ces deux intervalles. En déduire que la sortie du filtre vaut

$$z(t) = A(1 + mx(t)) \cos 2\pi f_0 t$$

où A est une constante que l'on calculera.

III. Théorème d'échantillonnage pour les signaux sur porteuse

Soit z(t) un signal dont la TF $Z(\nu)$ est nulle hors de $I_o \cup J_o$ où $I_o = [f_o - B, f_o + B]$, $J_o = [-f_o - B, -f_o + B]$ et $f_o \ge B$. On l'échantillonne à la période θ , ce qui produit :

$$z_d(t) = \sum_n z(n\theta) \delta(t - n\theta).$$

1. Calculer $Z_d(\nu)$ en fonction de $Z(\nu)$. Soit M la partie entière de $(f_o - B)/2B$ et T le nombre défini par $(M+1/2)/T = f_o$. Vérifier que 2B est $\leq 1/T$.

Montrer que si $\theta = T/2$, on a $-f_o + B + \frac{M}{\theta} \le f_o - B$ et $-f_o - B + \frac{M+1}{\theta} \le f_o + B$, de sorte que Z(v) et $Z_d(v)$ sont égales à un facteur près dans $I_o \cup J_o$. En déduire le théorème d'échantillonnage pour les signaux sur porteuse : $z(t) = \sum_{n} z(n\theta) \ g(t-n\theta)$, $g(t) = 2\theta \frac{\sin 2\pi Bt}{\pi t} \cos 2\pi f_o t$.

2. On suppose dans cette question que $T = \frac{1}{2B}$ et donc $\theta = \frac{1}{4B}$.

Montrer que dans ce cas les fonctions $g_n(t) = g(t - n\theta)$ sont orthogonales, et en déduire la relation $\int_{\mathbb{R}} |z(t)|^2 dt = \theta \sum_n |z(n\theta)|^2.$