TD 8: Espaces euclidiens (2)

DEUG STPI, semestre 4, année 2003-2004

Exercice 1.

Soit V l'espace vectoriel des matrices $N \times N$ à coefficients réels. Quelle est la dimension de V? Si \boldsymbol{A} et \boldsymbol{B} sont deux matrices $N \times N$, on définit $\langle \boldsymbol{A}, \boldsymbol{B} \rangle$ par $\langle \boldsymbol{A}, \boldsymbol{B} \rangle = \operatorname{trace}(\boldsymbol{A}\boldsymbol{B}^{\mathsf{T}})$. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire. Soit W l'ensemble des matrices diagonales. Montrer que W est un sous-espace vectoriel de V, et mettre en évidence sa dimension. Caractériser le complément orthogonal de W. Si \boldsymbol{A} est une matrice quelconque, calculer la projection orthogonale de \boldsymbol{A} sur W.

Exercice 2.

On considère V_n l'ensemble des polynômes trigonométriques à coefficients réels du type:

$$f(t) = a_0/2 + \sum_{k=1}^{n} a_k \cos(kt) + b_k \sin(kt)$$
(1)

Montrer que V_n est un espace vectoriel, et calculer sa dimension. On définit (f,g) par:

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{2\pi}^{0} f(t)g(t)dt \tag{2}$$

Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire. Si $f(t) = a_0/2 + \sum_{k=1}^n a_k \cos(kt) + b_k \sin(kt)$, calculer $||f||^2$ en fonction des coefficients a_k et b_k . On considère la fonction $f_n(t) = \cos(nt) + 1$.

Soit $a(t) = 1 + \cos(t)$. On définit $\langle \cdot, \cdot \rangle_a$ par :

$$\langle f, g \rangle_a = \frac{1}{2\pi} \int_{2\pi}^0 f(t)g(t)a(t)dt \tag{3}$$

Montrer qu'il s'agit encore d'un produit scalaire. Si $f(t) = a_0/2 + \sum_{k=1}^n a_k \cos(kt) + b_k \sin(kt)$, calculer $||f||_a^2$ en fonction des coefficients a_k et b_k .