TD : Séries de Fourier - Convolution

Mathématiques Licence STS Mention Electronique, année 2004-2005

Laboratoire LTSI - Université de Rennes1

Exercice 1.

Soit la fonction f périodique de période T définie par $f(x) = 1 - \frac{2x}{T}$ pour $0 \le x < T$.

- 1. Exprimer f en fonction de sa série de Fourier (à termes complexes) notée SF(f);
- 2. Que valent les fonctions f et SF(f) aux points de discontinuité x=0 et x=k pour $k \in \mathbb{Z}$?
- 3. En considérant à présent SF(f) aux points où f est continue, et plus particulièrement en un point x_0 que l'on précisera, calculer la valeur de la série numérique $\sum_{p\geq 0} \frac{(-1)^p}{2p+1}$;
- 4. En utilisant le théorème de Parseval, calculer $\sum_{n\geq 1} \frac{1}{n^2}$.

Exercice 2.

Soit la fonction f périodique de période T définie par $f(x) = \frac{2|x|}{T}$ pour $|x| \leq \frac{T}{2}$.

- 1. Exprimer f en fonction de sa série de Fourier (à termes complexes) notée SF(f);
- 2. En déduire la série de Fourier à termes réels (on redémontrera les formules de passage entre les coefficients complexes et réels);
- 3. En considérant SF(f) aux points où f est continue, et plus particulièrement en un point x_0 que l'on précisera, calculer la valeur de la série numérique $\sum_{n\geq 1}\frac{1}{(2n-1)^2}$;
- 4. En utilisant le théorème de Parseval, calculer $\sum_{n\geq 1} \frac{1}{(2n-1)^4}$.

Exercice 3.

Soit H la fonction porte définie par $H(x) = \begin{cases} 1 \text{ si } |x| \leq \frac{1}{2} \\ 0 \text{ si } |x| > \frac{1}{2} \end{cases}$.

- 1. Calculer la convolution suivante : H(x) * H(x);
- 2. Calculer la dérivée de cette convolution, i.e. (H(x) * H(x))'.

Exercice 4.

- 1. Calculer la convolution suivante : $T(x) = [U(x)\cos(x)] * [\delta'(x) + U(x)];$
- 2. En déduire la solution $X(x) \in D'_+$ de l'équation suivante : $U(x) \int_0^x X(t) \cos(x-t) dt = U(x) B(x)$.