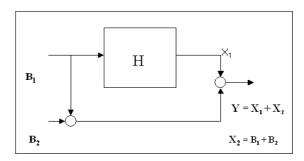
Magistère MIT

TD Traitement du Signal: filtrage linéaire de bruits en temps discret

Exercice 1. On présente sur l'entrée d'un filtre linéaire et homogène discret un bruit blanc discret centré B tel que $\Gamma_B[0] = \alpha$. En considérant que la fonction d'intercorrélation entre la sortie S du filtre et son entrée est $\Gamma_{S,B}[p] = Ka^p \cdot U[p], p \in Z$ où $a \in]0,1[$,calculer la DSP de S.


Exercice 2. Soit un filtre discret de réponse impulsionnelle :

$$H[n] = \delta_0[n] - 1/2 \cdot \delta_1[n] - 1/2 \cdot \delta_2[n], n \in \mathbb{Z}$$
 (où $\delta_k[n] = 1$ si $n = k$ et $= 0$ sinon).

Un bruit $B[n], n \in \mathbb{Z}$ correspondant à une suite de V.A. décorrélées 2 à 2 de même moyenne m_B et même variance σ_B^2 est présenté sur l'entrée de ce filtre. On obtient ainsi en sortie un SAD noté $X[n], n \in \mathbb{Z}$.

- 1) Donner la DSP (densité spectrale de puissance) et la fonction de corrélation de B.
- 2) Calculer la DSP et la fonction de corrélation de X. Que vaut la puissance statistique moyenne de X?
- 3) On ajoute au signal X de sortie un deuxième bruit $B_1[n], n \in \mathbb{Z}$ SSL (stationnaire au sens large) admettant pour fonction de corrélation $\Gamma_{B_1}[p] = \alpha^{|p|}, p \in \mathbb{Z}$ où α est un réel de valeur absolue inférieure à 1.Ce bruit est supposé indépendant du premier bruit B. Calculer la densité interspectrale de puissance $\gamma_{B,Y}^d(f)$ entre l'entrée du filtre et le signal $Y = X + B_1$. Donner l'expression de la densité interspectrale en Z, $\gamma_{B,Y}^Z(z)$, correspondante en précisant son domaine de convergence.

Exercice 3. On considère le système :

- B_1 et B_2 sont deux signaux aléatoires gaussiens indépendants, stationnaires au sens large et admettant les DSP (densité spectrale de puissance):
 - $\gamma_{B_1}^d(f) = b^2 + a^2 \delta_0(f), \ \gamma_{B_2}^d(f) = c^2 \text{ pour } f \in [-1/2, 1/2[.]]$
 - a, b et c sont des constantes réelles. Pour |p| grand les VA $B_1[n]$ et $B_2[n+|p|]$ sont considérées comme étant indépendantes.
- H est un filtre linéaire et homogène de réponse impulsionelle sur $Z: H[n] = \alpha^n U[n], \alpha \in]-1, 1[$.
- 1) Ouelle la réponse en fréquence de H?
- 2) Quelles sont les PSM (puissance statistique moyenne) de B_1 et de B_2 .
- 3) Calculer la fonction d'autocorrélation de X_1 et sa densité spectrale. Quelle est la variance de X_1 ?
- 4) Calculer l'intercorrélation entre X_1 et X_2 ?
- 5) Calculer la DSP $\gamma_y^d(f)$.
- 6) Donner la loi de probabilité de $X_1[n]$ et la variance de Y[n].