TD: Espaces de fonctions - Polynômes orthogonaux

Mathématiques Licence STS Mention Electronique, année 2004-2005

Laboratoire LTSI - Université de Rennes1

Exercice 1.

Etudier en terme de convergence simple et uniforme les suites de fonctions définies par :

- 1. $f_n(x) = x^n$ pour tout $x \in [0, 1]$;
- 2. $g_n(x) = \frac{1}{1+n^2x^2}$ pour tout $x \in \mathbb{R}$;
- 3. $h_n(x) = \frac{x}{1+n^2x^2}$ pour tout $x \in \mathbb{R}$;
- 4. $i_n(x) = n^3 x e^{-n^2 x^2}$ pour tout $x \in \mathbb{R}$;
- 5. $j_n(x) = \sin\left(x + \frac{1}{n}\right)$ pour tout $x \in \left[0, \frac{\pi}{2}\right]$;

Exercice 2.

Soit $C^1([0,1])$ l'espace des fonctions continues et dérivables à dérivées continues sur [0,1]. Soient f et g deux fonctions de $C^1([0,1])$, on pose $\varphi = \int_0^1 f'(x) g'(x) dx + f(0) g(0)$.

- 1. Montrer que φ définit un produit scalaire sur $C^1([0,1])$;
- 2. Déterminer trois polynômes P_n de degré n (n = 0,1,2) formant une famille orthonormée pour le produit scalaire ci-dessus. Cette famille est-elle orthonormée pour le produit scalaire usuel de $L^2([0,1])$.

Exercice 3.

Soit $x \in [-1, 1]$ et $\theta = Arcos(x)$. On pose :

$$T_n(x) = \cos(n\theta)$$
 et $U_n(x) = \sin((n+1)\theta) / \sin(\theta)$

- 1. Calculer T_n et U_n pour n = 0, 1 et 2;
- 2. Montrer que

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 et $U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)$

En déduire que T_n et U_n sont des polynômes de degré n et de même parité que n. Ils sont appelés respectivement polynômes de Tchebycheff de première et de seconde espèces.

3. Vérifier que (T_n) (respectivement (U_n)) est une suite de polynômes orthogonaux dans l'espace de Hilbert $L^2([-1,1],(1-x^2)^{-1/2})$ (respectivement dans l'espace de Hilbert $L^2([-1,1],(1-x^2)^{1/2})$).