Détection d'un signal déterministe dans un bruit.

Première partie (utilisation d'un filtre RC).

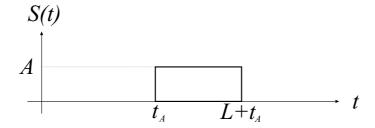
Tous les signaux temporels considères dans ce problème sont à valeurs réelles. Un observation est constitue comme suit :

 $H_0: \quad x(t) = B(t), \quad t \in R \quad \text{(Hypothèse bruit seul)}$

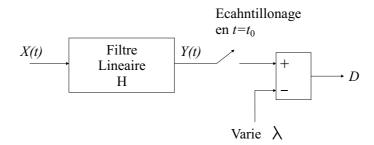
$$H_1: \quad x(t) = B(t) + S(t), \quad t \in R \quad \text{(Hypothèse signal + bruit)}$$

B est un bruit blanc gaussian centré de DSP égale à a

S est un signal déterministe ayant la forme suivante :



Pour decider de la presence (H_1) ou de l'absence (H_0) de S dans X on introduit le dispositif suivant



où D représente une décision obtenue comme suit :

$$D=\delta_0\quad {
m si}\quad y\leq \lambda \quad \ \ (\ {
m on\ accepte}\ H_0\)$$

$$D = \delta_1$$
 si $y > \lambda$ (on accepte H_1)

On notera Y_S et Y_B les réponses respectives à S seul et B seul.

On se propose d'étudier le cas où ${\cal H}$ corresponds à un filtre RC passe-bas, de réponse harmonique :

$$\widehat{H}_1(f) = \frac{1}{1 + 2\pi f \theta} \qquad \theta = RC$$

- 1. Sous l'hypothèse H_0 , quelle est la puissance statistique moyenne $E(Y^2(t)|H_0)$, de la sortie Y du filtre? Représenter graphiquement cette puissance en fonction de θ . Expliquer ce qu'on obtient pour les faibles valeurs de θ .
- 2. Calculer et représenter graphiquement $Y_S(t)$.

Donner l'expression du rapport signal sur bruit en $t = t_0$, en sortie du filtre défini

$$r = \left[\frac{S}{B}\right]_y = \frac{|Y_S(t_0)|^2}{E(Y_B^2(t))}$$

 $r = [\frac{S}{B}]_y = \frac{|Y_S(t_0)|^2}{E(Y_B^2(t))}$ pour $t_0 = L + t_A$ en fonction de A, L, θ , a. représenter graphiquement , à l'aide de Matlab $\theta \to [\frac{S}{B}]_Y$ pour A = 1, L = 1, a = 2; que constatez-vous?

- 3. Quelle sont les densités de probabilité de $y=y(t_0)$ sous, d'une part l'hypothèse H_0 et, d'autre part, l'hypothèse H_1 . Représenter graphiquement en Matlab les 2 densités de probabilité pour A=1, L=1, a=2. Pour des valeurs de θ égales à 0.0001, 0.001, 0.01.
- 4. On choisit une valeur de seuil λ comprise entre 0 et $A(1 e^{\frac{-L}{\theta}})$. Expliquer qualitativement comment varient P_{e_1} , P_{e_2} et P_d quand λ varie. On rappelle les définitions :
 - $-P_{e_1} = PFA$: probabilité d'erreur $P(D = \delta_1 | H_0)$
 - P_{e_2} : probabilité de non détection $P(D=\delta_0|H_1)$
 - $P_d = 1 P_{e_2}$: probabilité de détection vraie
- 5. On définit $v \to g(v) = \int_v^\infty \frac{1}{\sqrt{2\pi}} e^{\frac{-v^2}{2}} dv$

donner l'expression de P_{e_1} , P_{e_2} , P_d au moyen de g en fonction de λ , $\sigma_y = \sqrt{\frac{a}{2A}}$ et $\mu = A(1 - e^{\frac{-L}{\theta}})$