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A new phase unwrapping algorithm is proposed which
combines noise immunity with computational efficiency.
It is based on thé requirement that the unwrapped map
should be independent of the route by which unwrapping
takes place.

Automatic fringe analysis by digital computer has been the
subject of considerable research activity in recent years.
One of the most versatile techniques involves calculating the
fringe phase ®(m,n) at each pixel, either by shifting the
fringes through known phase increments,! or by Fourier
transformation of a single pattern containing carrier fringes.?
In either case, the calculated phase is the principal value,
lying in the range from —m to #. Phase unwrapping must
therefore be carried out to restore the unknown multiple of
27 to each pixel. This is normally achieved? by working
along eachrow in turn: when the phase difference between a
pixel and its predecessor is greater than =, 2x is either added
to or subtracted from the remaining pixels in the row. The
process is then repeated along the columns. This approach
is computationally efficient but has poor noise immunity.
More robust methods have recently been presented.? The
first of these, however, requires typically several hundred
iterations, with each iteration involving the whole image. In
the second method, the image is subdivided into regions
containing no phase ambiguities; these regions are then
phase shifted with respect to one another to minimize the
number of inconsistent boundaries. This Letter proposes a
new phase unwrapping algorithm, combining both noise im-
munity and computational efficiency, based on the simple
requirement that the unwrapped map should be indepen-
dent of the route by which unwrapping takes place. The
ideas presented have relevance to the related problem of
reconstructing phase maps from measured phase differences
(see, for example, Ref. 5).

The first two figures illustrate the problems that can arise
with the conventional technique. Figure 1 is a crossed moire
fringe pattern from a high speed sequence, recorded at 1 us
frame~! with a Hadland Imacon 790 image converter camera,
showing the impact of a steel ball on the edge of a plate of
polymethyl methacrylate.® The fringe visibility is quite low
in places, particularly at the center of the image where ion
damage to the photocathode has reduced the sensitivity of
the tube. The fringe pattern was digitized to a resolution of
256 X 256 pixels and analyzed by a 2-D Fourier transform
method similar to that proposed by Bone et al.” The hori-
zontal and vertical fringes occupy different regions of the 2-D

3268 APPLIED OPTICS / Vol. 28, No. 15 / 15 August 1989

s
e
W

¥

it

Fig. 1. Crossed moire fringe pattern from high speed photographic
sequence showing the impact of a steel ball on a plate of PMMA
(spatial frequency of specimen grating = 150 lines mm~!; interframe

time = 1 ps).
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Fig. 2. Phase map of the horizontal fringes from Fig. 1 after un-
wrapping by the conventional algorithm. Phase values have been
divided by 2; each contour represents one fringe.

Fourier transform plane, so that the phase distribution of the
two patterns can be separated.® Figure 2 shows the un-
wrapped phase map from the horizontal fringes. Unwrap-
ping was carried out row by row in the +x direction, and then
column by column in the +y direction. This method of
unwrapping has two undesirable consequences. First, a low
signal-to-noise ratio at a given point results in phase discon-
tinuities, and hence corrupted data in regions well away fror_n
this point. Second, the unwrapped map is not unique: if
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Fig. 3. (a) A and B are two alternative paths for unwrapping the

phase at data point (mq,m), given the phase at (mq,no) (data points

are represented by the symbol @). Path C is a closed loop consisting

of path B, and path A reversed. (b) Example of a cut made between

two discontinuity sources s = +1 at data point (mgng) ands = —1at

(ma,ng). The cutis represented by two arrays H and Vreferred to in
the text; nonzero values only are shown here.

the columns are unwrapped before the rows, the resulting
discontinuities are horizontal rather than vertical.

The basis for the improved algorithm is the requirement
that, given the phase at pixel (mo,nq), the phase at any other
point (my,ny) in the image should be defined uniquely, inde-
pendent of the path by which the phases are unwrapped.
This is achieved by placing cut lines in the phase map, which
act as barriers to unwrapping. Consider two paths A and B
in the example shown in Fig. 3(a). For simplicity of nota-
tion, the sequences of phase values along the two paths will
be relabeled ®a(i) (i = 0,1,...N4) and ®p()) (j =
0,1,...Np), respectively [Na=3and Ng=5 in Fig. 3(a)].
Unwrapping along A is achieved by calculating the number
of 27 discontinuities, d4(i) (i=1.2,..., Na), between adja-
cent pixels:

d i) = [(2400) = D40 — 1))/27], (1)

where [. . .] denotes rounding to the nearest integer. 2wd 4(i)
is then subtracted from the phase values along the rest of the
path (i.e., from ®4(i), i’ = i,i+1,...,N4). Thesequence
dp(j) required to unwrap ®p is defined in a similar way.
Uniqueness of the unwrapped phase at (m1,n1) requires the
total number of discontinuities along the two paths to be
equal; i.e., that the parameter S defined by

Ng Ny
S=" dglj) = z (i) @)

=1

is equal to zero. If path Ais reversed, the da(f) all change
sign, so that S is just the total number of 27 discontinuities
around the counter clockwise closed loop C. The problem,
therefore, is to construct the cutlines such that any permissi-
ble closed loop (i.e., one which does not cross a cut) has S = 0.

To proceed systematically, we consider a closed loop
around each of the smallest possible units of the phase map:
asquare of 4 pixels. The distribution of s (the discontinuity
source map) is calculated from &(m,n) as follows:

s(m,n) = [(®(m + 1,n) = ®(m,n))/27]
+[(®(m+1n+1)—2(m+ 1,n))/27]
+[(@(mn+1)—2(m+Ln +1))/2x]

+ [(®(m,n) — ®(m,n + 1)/2x]. (3)

The value of S for larger loops can be easily obtained from
s(m,n). For example, path CinFig. 3(a) has S = s(mo,ng) +
s{mo + 1,n0) + s(mo,no + 1) because the contributions from
the internal paths cancel. Ingeneral, S can be calculated for
any closed loop as

S= z s(m,n), (4)

where the sum is over all pixels enclosed by the leop.

Combining the requirement that S = 0 with Eq. (4) shows
that any point (m,n) having nonzero s (i.e., a discontinuity
source) is only allowed within a closed loop when accompa-
nied by another source of opposite sign. In terms of cut
lines, this means that each source must be at one end of a cut,
with the other end attached to a source of opposite sign, or to
the boundary of the phase map. The discontinuity sources
tend to occur naturally in pairs of opposite sign, although
isolated sources can occur near the boundary. The criterion
used when deciding how to pair the sources is one of minimiz-
ing the length of cut. A cut is constructed between the two
sources (or source and boundary) separated by the shortest
distance; these are then removed from the list of sources, and
the process repeated until the list is empty. When con-
structing the cut, several different routes will generally give
the same minimum cut length. The choice of route will
affect the unwrapped phase only in the region between the
two sources; since this is the region containing the corrupted
phase information, the precise route chosen for the cut is not
important. :

In the computer, cuts are represented by two arrays of
flags, H(m,n) and V(m,n). These can be two bits of a single
byte array if the available memory isrestricted. Hand V are
initially set to zero. A cut between the two points (mg,ns)
and (ma,ns) is denoted by setting Vimgn) = 1 (n = na +
1,...,nzifne<nyzn=na+1l...., neif ng <ng) and H(m,n3)
== 1(m= m2+1, Sina mgifm2<m3;m= m3+ ]_, Sigray mgifmd
< ms). A simple example is shown in Fig. 3(b).

Once the cut arrays have been set up, the phase map is
unique and phase unwrapping can be carried out in any
order. Suppose the phase at point (m,n) has been un-
wrapped, but that at (m + 1,n) has not. A valid path is first
established between the two points. Normally this would
have a single link: the number of discontinuities would be
calculated asd = [(®(m +1,n) — ®(m,n))/2r],and 27d would
be subtracted from ®(m + 1,n). However, if V(im,n) =1,
indicating a vertical cut between the two data points, the
search direction is rotated through 90° counter clockwise, to
the point (m,n + 1). This is the next valid point in the path,
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Fig. 4. Phase map of the horizontal fringes from Fig. 1 after un-
wrapping by the new algorithm. Phase values have been divided by
2r; each contour represents one fringe.

provided H(m,n) = 0. Each successive link is established by
rotating the search direction through 90° clockwise com-
pared with the previous link. If this is unsuccessful (i.e.,
flags are set in H or V when moving in a vertical or horizontal
direction, respectively), the search direction is rotated
through successive 90° counter clockwise increments until
the link can be made. In this way, cuts are circumnavigated
in a clockwise direction. Any other path (e.g., counter clock-
wise circumnavigation) is of course also valid. The number
of 2r phase discontinuities between successive elements
along the path d(i) is calculated according to Eq. (1), and
2w Zd(i) is subtracted from ®(m + 1,n).

Figure 4 shows the phase map from the fringes in Fig. 1
after unwrapping with the new algorithm. The discontinui-
ties produced by the old method (Fig. 2) no longer occur.
The ability to deal with regions of an image that contain no
fringe information is one of the main advantages of this
technique. The computation time varies according to the
signal-to-noise ratio, and on low noise phase maps is compa-
rable to that required by the old algorithm. The time in-
creases in line with the number of cuts, but even in the case of
moderately noisy phase maps is usually less than that taken
by other stages of the fringe analysis procedure, such as the
forward and inverse 2-D Fourier transforms.

The author is grateful to J. E. Field for his encouragement
with the project and to the Science and Engineering Re-
search Council and Gonville and Caius College, Cambridge,
for support in the form of Research Fellowships.
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A reconstruction setup for the shearographic camera is
discussed that is simpler than a Fourier processor and gives
bright reconstructions with white light.

Shearograms! are generally evaluated with an optical cor-
relator. The standard setup is a Fourier processor using
coherent light for filtering the spatial frequency spectrum of
the speckle patterns stored on the shearograms. In the case
of multiaperture speckle interferometers®® the spectrum
consists of an array of separate spots and is easy to filter.
These modern interferometers, however, have the disadvan-
tage of long exposure times. The multiaperture mask blocks
most of the light available at the recording lens.

We have found an alternative reconstruction setup for the
original shearographic camera.! It is simpler than a Fourier
processor. Bright reconstructions with high contrast fringes
are visible not only with laser illumination but also with
white light.

The setup (Fig. 1) consists of a collimated light source and
a camera with a macrolens. The shearogram is obliquely
illuminated. The finite aperture D of the reconstruction
lens has the effect of a circular spatial filter centered at (k
sinvy,0) in the FT plane of a Fourier processor (Fig. 2).

The intensity distribution inside the diffraction halo be-
hind the shearogram is proportional to the power spectral
density G of the amplitude transmittance field of the film.
For a subjective speckle pattern recorded linearly, G can be
shown to be proportional to the autocorrelation of the aper-
ture function of the recording lens.*5

The bright and dark fringes on a reconstructed double
exposure shearogram correspond to regions where the ampli-
tude fields from both semicircular apertures are stored like
coherent and incoherent fields, respectively.® The coherent
addition leads to the power spectral density shown in Fig.
3(a). It is derived from the autocorrelation of the aperture
function for the full circular aperture A.:

Ak k) =1 K2+ RE< k34,

=0 elsewhere,




