Liste d'exercices de Mathématiques (limites, continuité et dérivabilité)

Licence 2 d'ingénierie nutraceutique

Exercice 1

Montrer, sans calcul de dérivée (utiliser les identités remarquables), que pour tout $x \in [-1/3, 1/3]$ on a :

$$1 + \frac{x}{2} - \frac{x^2}{6} \ge 0$$
 et $\frac{x}{2} - \frac{x^2}{6} \le \sqrt{1+x} - 1 \le \frac{x}{2}$

Puis, calculer la limite de $\frac{\sqrt{1+x}-1}{x}$ quand x tend vers zéro.

Exercice 2

Montrer que:

$$\sin(p) - \sin(q) = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$

Exercice 3

Démontrer que la dérivée de $x \mapsto \sin(x)$ est $x \mapsto \cos(x)$ en utilisant $\lim_{t\to 0} \frac{\sin(t)}{t} = 1$ est le fait que la fonction $x \mapsto \cos(x)$ est continue sur \mathbb{R} .

Exercice 4

Etudier la dérivabilité sur \mathbb{R} de la fonction f définie par $f: x \mapsto \sqrt{x^2 + 1}$ de deux manières différentes : tout d'abord en exprimant f sur \mathbb{R} comme la composée de fonctions dérivables, puis en étudiant la limite du taux d'accroissement de f en tout point de \mathbb{R} . Si f est dérivable sur \mathbb{R} , on donnera alors la valeur de sa dérivée en tout point de \mathbb{R} .

Exercice 5

Déterminer en fonction de la variable réelle β une primitive de la fonction g définie sur \mathbb{R} tel que :

$$g: x \mapsto (3x^3 + 2x^2 + 4x - 1)e^{\beta x}$$