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Abstract

In this paper we propose the emerging technique of Independent Component
Analysis, also known as Blind Source Separation, as an interesting tool for
the extraction of the antepartum fetal electrocardiogram from multilead
cutaneous potential recordings. The technique is illustrated by means of a
real-life example.
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Abstract— In this paper we propose the emerging tech-
nique of Independent Component Analysis, also known as
Blind Source Separation, as an interesting tool for the ex-
traction of the antepartum fetal electrocardiogram from
multilead cutaneous potential recordings. The technique is
illustrated by means of a real-life example.

Keywords— Independent component analysis, blind source
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position.

I. INTRODUCTION

IKE for adults, it should be possible to visualize the

electrical activity of a fetal heart: the fetal electrocar-
diogram (FECG) contains important indications about the
health and condition of the fetus. In this respect, analysis
of the (instantaneous) fetal heart rate (FHR) has become a
routine procedure for the evaluation of the well-being of the
fetus. The cardiac waveform reveals important diagnostic
information as well, e.g. for the diagnosis of arrhytmia.

During delivery accurate recordings can be made by plac-
ing an electrode on the fetal scalp. However as long as
the membranes protecting the child have not been broken
(antepartum), one should look for non-invasive techniques.
Among the different approaches (measuring of the FHR
from a Doppler-shifted ultrasonic heart echo, processing of
the fetal magnetocardiogram, phonocardiography, .. .), ex-
amination of the FECG from ECG-recordings measured on
the mother’s skin (cutaneous recordings) plays an impor-
tant role.

The aim of this paper is to show that the emerging
technique of Independent Component Analysis (ICA), of-
ten called Blind Source Separation (BSS), is a promising
tool for the estimation of the FECG from recordings on
the mother’s skin. We introduced this idea in [9]; the
current paper is the first elaborated version of it. Due to
lack of space, not all the aspects can be covered in detail.
A more elaborated version of this text is available [12];
it contains links to medical applications, places the ECG-
approach against other methods for the determination of
the FHR, and gives a brief overview of existing signal pro-
cessing methodologies to examine ECG-recordings.

In Sect. IT we motivate that cutaneous recordings contain
instantaneous linear mixtures of MECG and FECG. The
ICA-method itself is further discussed at a conceptual level
in Sect. III, and in its relation to the FECG extraction
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problem in Sect. IV. Sect. V contains application examples.

II. DATA MODEL

Potential measurements on the mother’s skin contain
contributions from several bioelectric phenomena (mater-
nal and fetal heart activity, potential distributions gener-
ated by respiration and stomach activity, ...) and are af-
fected by various kinds of noise (thermal noise, noise from
electrode-skin contact, ...). Two aspects have to be dis-
cussed here: first, the nature of the occurring signals, and
secondly, the characteristics of the propagation from bio-
electric source to electrode.

In [18] it is shown that, at a considerable distance from
the mother heart, its activity as a bioelectric current source
can be represented in first order approximation by a three-
dimensional vector signal, that can be imagined as the ef-
fect of a rotating current dipole in the chest. The three-
dimensional vector space, described by the discrete-time
evolution of the maternal ECG (MECG) after sampling,
will be called the MECG-subspace. On the other hand [17]
states that the observed “dimension” of the fetal heart, i.e.
the number of independent signals describing its electri-
cal activity, is not necessarily equal to three, but subject
to changes during the period of pregnancy. In this paper
the term FECG-subspace will be used. In comparison with
the low-voltage range of the FECG, other electrical signals
can play an important role too: electromyographic activity
(electrical potentials generated by the muscles, the uterus,
etc.), 50 Hz net-interference, etc.

The transfer from bioelectric current source to body sur-
face electrode can be assumed linear and resistive [18]. On
the other hand the bioelectric source signals are relatively
narrow-band, such that the frequency at which the cuta-
neous potential distribution is sampled (typically 250-500
Hz) can be considered as low, taking into account the high
propagation velocity of the electrical signals. Hence, in
first approximation, cutaneous potential measurements can
be considered as instantaneous linear mixtures of poten-
tial signals generated by underlying bioelectric phenomena;
noise can be taken into account as an additive perturba-
tion.

III. INDEPENDENT COMPONENT ANALYSIS

Assume the following basic linear statistical model:
Y=MX+N (1)

in which Y € R is referred to as the observation vector,
X € RY is called the source vector and N € R represents
additive noise. M € R'*T i the mizing matriz.
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The goal of ICA now consists of the estimation of the
transfer matrix M and/or the corresponding realizations of
the source vector X, given only realizations of the output
vector Y, under the following assumptions:

« the columns of M are linearly independent,

o the components of X are mutually statistically indepen-
dent, as well as statistically independent from the noise
components.

Most of the current ICA-algorithms rely on the first as-
sumption for identifiability. The second assumption is the
actual key ingredient for ICA. It is a very strong hypothe-
sis, but also quite natural in lots of applications.

It is impossible to determine the norm of columns of M in
Eq. 1, since a rescaling of these vectors can be compensated
by the inverse scaling of the source signal values. Similarly
the ordering of the source signals, having no physical mean-
ing, cannot be identified. For non-Gaussian sources, these
indeterminacies are the only way in which an ICA-solution
is not unique [8], [20].

The ICA-assumptions do not allow to distinguish be-
tween the signal and the noise term in Eq. 1. Hence the
source signals will be estimated as X', by a simple matrix
multiplication:

X =wTy (2)

As an example, WT can take the form of the pseudo-inverse
l\A/IJf, with M an estimate of the mixing matrix. More gen-
erally, various beamforming strategies [22] can be applied.

Exploitation of the fact that the source signals are uncor-
related leads to a classical Principal Component Analysis
(PCA), which only allows to estimate the sources as well
as the mixing matrix up to an orthogonal transformation.
To illustrate this, let us assume that the sources have unit
variance. Then we have (we omit the noise term at this
point, for clarity):

Cy = MM, (3)

in which Cy is the covariance matrix of Y. Substitution
of the Singular Value Decomposition (SVD) of the mixing
matrix M = USV” shows that the Eigenvalue Decompo-
sition (EVD) of the observed covariance allows to estimate
the column space of M while the factor V remains un-
known:

Cy = US?UT = (Uus)(us)?. (4)

As is well-known, U and S might be found directly, in a nu-
merically more reliable way, from the SVD of the observed
dataset [13].

The solution to the ICA-problem lies in the fact that the
assumption of statistical independence is stronger than the
notion of uncorrelated signals. Statistical independence is
not only a claim on the second-order statistics of the sig-
nals, but also on their Higher-Order Statistics (HOS) [16].
More precisely, it is not sufficient that the source covariance
Cyx is a diagonal matrix — in addition, the higher-order
cumulants of the source vector should be diagonal higher-
order tensors. (A higher-order tensor can intuitively be
imagined as a multi-way matrix, of which the entries are

characterized by more than two indices; its diagonal is de-
fined as the entries for which all the indices are equal.)

If we focus at the fourth-order level (third-order cumu-
lants vanish for even probability density functions), then

we have the following. The fourth-order cumulant c;i“ of
a real zero-mean stochastic vector X is defined by:

def
(ng))i1i2i3i4 = E{Xi1Xi2Xi3Xi4} - E{XilXi2}E{Xi3Xi4}

_E{XilXig}E{Xi2Xi4} - E{XilXi4}E{Xi2Xi3}= (5)

for all index values; E denotes the expectation. For every
component X; of X that has a non-zero mean, X; has to
be replaced by X; — E{X;}. It can be proven that the link
between the cumulant of the observations and the cumulant
of the sources is a straight generalization of its second-order
counterpart, Eq. 3:

(C}(}) ) i1ini3ia =

ST (M), (Mo (M) g4y (M), (€)1 njosar (6)

J1J2J37a

for all index values, in which Cg?) is diagonal. A nice prop-
erty is that higher-order cumulants are insensitive to addi-
tive Gaussian noise. Eq. 6 means that the unknown mixing
matrix M is not only a diagonalizer of the covariance ma-
trix Cy, but also of the cumulant tensor c§ﬁ‘), which leads
to a sufficient amount of constraints to solve the problem.
From an algebraic point of view, this means that the ICA-
solution can be obtained by means of multilinear general-
izations of the EVD (see e.g. [6], [8], [10]). Actually, since
the first paper on the subject [14], ICA has become a hot
topic in the signal processing world. Apart from multi-
linear algebra, solutions have been based on principles of
neural networks, information theory, etc. Instead of dis-
cussing one particular algorithm, we refer the reader to [7]
[15] and the references therein.

Although generally PCA does not allow to identify the
mixing matrix nor the source signals, there are some cases
in which it does lead to a reasonably good source separa-
tion. A straightforward example consists of the situation in
which the mixing matrix has mutually orthogonal columns
(having mutually distinct norms, if we assume that the
sources have unit variance), as is clear from Eq. 4. A sec-
ond example is the situation in which the source variances
are very different (assuming that the norms of the corre-
sponding columns of M have a comparable magnitude).
Next, consider a set-up with e.g. two sources, of which the
variances are given by o? and o3, with o7 > o2. [21] proved
that in this case PCA yields, for both source estimates, an
Interference-to-Signal Ratio of the order of o3 /0%. This
corresponds to the fact that the dominant eigenvector of
Cy turns out to be an accurate estimate of the first col-
umn of M in this scenario; the second eigenvector however,
is not necessarily a good estimate of the second column of
M but it is approximately orthogonal to the first one. In
the context of research on ICA, similar results have inde-
pendently been obtained in [11] and [19].

Y
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IV. EXTRACTION OF THE FECG BY MEANS OF BSSS

As explained in Sect. IT, the propagation of ¢ bioelectric
sources to an array of p body surface electrodes (p > q),
can be formulated as:

Y () = MLX(£) + N(1) (7)

where Y (t) = (yi(t)... yp(t))T contains the potential
recordings, X (t) = (x1(t)... a:q(t))T contains the signal
values of the bioelectric sources, and the noise on each
channel is represented by N(t) = (n1(t).. .np(t))T. The
matrix M describes the propagation from source to elec-
trode, i.e. its entry with row number ¢ and column number
j gives the gain of the jth bioelectric source signal w.r.t.
the ith channel data (1 < i < p;1 < 7 < ¢). It is natu-
ral to assume that the different bioelectric sources — since
they originate at different locations, correspond to differ-
ent, mechanisms, etc. — can be approximately modelled
as statistically independent. The noise components n;(t)
(1 € i < p) are assumed to be Gaussian, with variance
o3, mutually independent as well as independent from the
source signals.

As a conclusion, the derivation of the antepartum FECG
from multilead cutaneous recordings can be considered as
an example of BSS, as discussed in Sect. III, in which how-
ever the sources are of a multidimensional nature; we will
use the term Blind Source Subspace Separation (BSSS).
The fact that only the different source subspaces have to
be separated, instead of all the source components allows
to reduce the computational cost, in comparison to conven-
tional ICA, without loss of medical information. E.g. in
the Jacobi-type algebraic algorithms of [6], [8], [10] the mul-
tidimensional character of the sources limits the number of
Jacobi-rotation angles that have to be identified, since ro-
tations of the basis vectors within one and the same source
subspace are irrelevant.

Since there is a large gap between the amplitudes of
the MECG and the FECG, a good separation can already
be expected from merely PCA, as explained in Sect. III.
This is the philosophy behind the important class of SVD-
techniques for the extraction of the FECG [3], [4], [5]. To
enhance the performance, one often tries to choose the elec-
trode positions in a way that is more or less likely to cor-
respond to an orthogonal transfer (see also Sect. III), but
this is still a matter of heuristic rules and trial-and-error.

Conceptually the higher-order processing step in ICA
may add the following advantages to the second-order ap-
proach:

o It is possible to enhance the quality of separation:
whereas the PCA-error only decreases proportionally to the
ratio of the power of the weak source vs the power of the
strong source, ICA directly aims at a correct reconstruc-
tion of the mixing matrix. Sect. V contains an illustration.
In case the higher-order ICA-step would fail, one can still
resort to the results of the PCA, which forms the first step
in many ICA-algorithms.

« The propagation of the electrical signals can be charac-
terized in an essentially unique way. We mention three

important implications:

- The transfer vectors indicate how strongly the different
electrodes capture each source signal; from this informa-
tion, better measurement positions might be deduced. We
mention that the positioning of the electrodes is still the
most crucial factor for the success of the PCA-method [5].

- An important aspect in the evaluation of the fetal well-
being is the quantification of fetal movements [4]. At this
moment the required information can only be obtained by
echography or, simply, by asking the mother. The number
of significant changes in the FECG-subspace, which could
be obtained from an on-line adaptive ICA-implementation,
could be very useful information here.

- The properties of the human body as a conducting
medium are, in their own, subject of medical research [18].
The study of the propagation of the fetal heart signal to the
mother’s skin is an important subaspect [17]. The transfer
matrix can provide more understanding with respect to the
propagation of electrical signals through the body.
¢ The physician can resort to a more intuitive interpreta-
tion of the results: the separation of the measured signals
into statistically independent source signals with a physi-
cal meaning, is easier to interpret than a decomposition in
time-orthogonal principal components.

We stress the fact that the FECG-extraction is formu-
lated as a blind identification problem, since it is less mean-
ingful in practice to resort to a more parametric approach:
e The transfer coefficients are subject to a large uncer-
tainty: the development of propagation models is still in
its infancy. Moreover it is clear that length, weight, con-
tour, etc. are significantly different from patient to patient.
o The geometrical and resistivity parameters of the body
of a single patient are not constant in time. Fetal growth,
a different position of the fetus in the uterus, the variation
in the characteristics of the amniotic fluid and the placenta
during pregnancy, the changing geometry, ...imply impor-
tant changes of the transfer matrix.

« For the application in medical diagnosis and treatment it
is crucial that unexpected ECG-patterns can be detected
and examined. E.g. the parametric formulation of the
quasi-periodicity of a regular heart rate pattern would ham-
per the detection of extrasystoles (extra heart beats be-
tween the regular beat-to-beat pattern).

o Potentially interesting is also the application of BSSS to
cardiac electrical imaging, a recent generalization of the
ECG, in which more information is acquired by using a
larger array of (e.g. 200) electrodes to record a sequence
of “electrical images” of the body [2]. This technique can
be seen as an emerging modality for medical imaging, com-
plementary to e.g. Computed Tomography and Magnetic
Resonance Imaging; it is worth mentioning that in Japan
the technique is already common practice.

We may conclude that conceptually BSSS is a very
promising technique to tackle the problem of FECG-
extraction. Sect. V contains a real-life example. At this
moment, however, our database is too limited to assess to
which extent the assumptions, underlying the ICA-model,
are valid in medical practice. With this respect, hard con-
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clusions on the merits and drawbacks of the method can
only be drawn after intensive medical testing.

V. EXAMPLES
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8-channel set of cutaneous data recordings.

Fig. 1 shows the first 5 seconds of a set of potential sig-
nals measured in a one-minute 8-channel experiment. The
horizontal axis displays the time in seconds; with respect
to the vertical axes only the relative values are important.
The sampling frequency was 500 Hz. For details about
the data acquisition we refer to [5]. Channels 1 to 5 show
abdominal signals; for channels 6 to 8 the electrodes have
been placed further away from the fetus, e.g. on the thorax.
Channels 1 and 3 clearly contain weak fetal contributions.
Due to the large amplitudes of the MECG in the thoracic
signals, the FECG is less visible.

The source estimates after PCA are displayed in Fig. 2.
Two MECG-free FECG-components were obtained as resp.
the 6th and the 7th right singular vector of the data-matrix.
The signals 1 and 2 partially describe the MECG-subspace;
the MECG also appears in signals 3 and 5. Channels 4 and
8 mainly show noise contributions.

The result after BSSS is shown in Fig. 3 (we used
the algorithm proposed in [8], which is an approximate
maximum-likelihood solver; e.g. the methods reported in
[6], [10] yield comparable results). The result is an ex-
cellent source separation. We remark that, just like in
the PCA-approach [3], [4], [5], the statistics of the non-
stationary signals have been estimated “roughly” by sim-
ple time-averaging. Whereas the PCA-method obtained
only two clear MECG-components (the 3rd signal is heav-
ily perturbated by noise and the fifth principal component
contains important FECG-contributions), BSSS accurately
reconstructed the full three-dimensional MECG-subspace
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Fig. 2. Source estimates obtained by means of PCA.

(signals 1 to 3 in Fig. 3). As far as the FECG is concerned,
the quality of the 7th principal component and the 8th
BSSS-signal are comparable, but in the 6th BSSS-signal
the Signal-to-Noise Ratio is somewhat better than in the
6th PCA-estimate. The off-set in the 6th PCA-signal is
found back as an extra source signal (the 7th signal in
Fig. 3; this sequence continues as a low-periodic signal and
deserves further medical interpretation — it might e.g. be
due to respiration). The 5th BSSS-signal mainly shows
noise contributions.

Figs. 4 and 5 visualize some information extracted from
the 6th ICA-component. Fig. 4 plots the evolution of the
instantaneous beat-to-beat FHR. Fig. 5 shows the average
FECG waveform. In short, we first determined the position
of the fetal heartbeats by developing a high-precision ro-
bust fetal QRS-complex detector (the QRS-complex is the
central part of the cardiac waveform, with high potential
values); both an expert-system and a pattern classification
approach were followed. In a second step, the instanta-
neous FHR and the average waveform were calculated as
accurately as possible by maximizing the correlation be-
tween consecutive pulses. For details about the procedure
we refer to [1].

Fig. 6 illustrates what happens in the case of an atyp-
ical FHR and shows the importance of a blind approach,
as already motivated in Sect. IV. The input for the ICA
algorithm was constructed as follows. A small piece of data
around ¢t = 0.75s in Fig. 1 was copied to t = 3.5s, to simu-
late an extrasystolic fetal heartbeat. In addition, the fetal
heartbeat around ¢ = 2s was skipped by setting the five
abdominal signals to zero. Nevertheless, Fig. 6 still shows
an excellent BSSS.

Figs. 7 and 8 show an artificially constructed situation
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of fetal twins. The data of Fig. 7 were obtained as follows.
First, the two fetal ICA-components of Fig. 3 were shifted
over approximately ¢ = —0.25s to artificially generate an
independent heartbeat, to be attributed to a second fe-
tus. These signals were added to the original dataset after
multiplication by mixing vectors, obtained by independent
random permutations of the abdominal and the thoracic
entries of the original mixing vectors; the permutations are
meant to ensure that the dimensionality of the intersec-
tion of both FECG-subspaces is zero. Fig. 8 shows that
8-channel data were sufficient for the extraction of a two-
dimensional FECG-subspace (channels 6 and 8; first fetus)
and an additional FECG signal (channel 7; second fetus).

VI. CONCLUSION

In this paper we have proposed BSSS as an innovating
way to solve a classical problem in biomedical engineering,
namely the extraction of the FECG from multilead poten-
tial recordings on the mother’s skin. In comparison to the
important class of SVD-based methods, proposed earlier,
the higher-order ICA-step additionally requires the estima-
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Fig. 5. Average waveform of the fetal heartbeat in the 6th ICA
component (Fig. 3).
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Fig. 6. Source estimates obtained by means of BSSS from data,
containing an extrasystole around ¢t = 3.5s and missing a fetal
heartbeat around ¢ = 2s.

tion and the (partial) diagonalization of the fourth-order
cumulant tensor of the data. From a conceptual point of
view, ICA is a very ambitious approach: it aims at the
direct reconstruction of the different statistically indepen-
dent bioelectric source signals, as well as the characteristics
of their propagation to the electrodes, each revealing im-
portant medical information. It is non-parametric and is
not based on pattern averaging, which could hamper the
detection and analysis of atypical fetal heartbeats.
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Fig. 7. 8-channel set of observations containing heartbeats of fetal
twins.
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