
CHAPTER 7
VIBRATION OF SYSTEMS

HAVING DISTRIBUTED MASS
AND ELASTICITY

William F. Stokey

INTRODUCTION

Preceding chapters consider the vibration of lumped parameter systems; i.e., systems
that are idealized as rigid masses joined by massless springs and dampers. Many
engineering problems are solved by analyses based on ideal models of an actual sys-
tem, giving answers that are useful though approximate. In general, more accurate
results are obtained by increasing the number of masses, springs, and dampers; i.e.,
by increasing the number of degrees-of-freedom. As the number of degrees-of-
freedom is increased without limit, the concept of the system with distributed mass
and elasticity is formed. This chapter discusses the free and forced vibration of such
systems. Types of systems include rods vibrating in torsional modes and in tension-
compression modes, and beams and plates vibrating in flexural modes. Particular
attention is given to the calculation of the natural frequencies of such systems for
further use in other analyses. Numerous charts and tables are included to define in
readily available form the natural frequencies of systems commonly encountered in
engineering practice.

FREE VIBRATION

Degrees-of-Freedom. Systems for which the mass and elastic parts are lumped
are characterized by a finite number of degrees-of-freedom. In physical systems, all
elastic members have mass, and all masses have some elasticity; thus, all real systems
have distributed parameters. In making an analysis, it is often assumed that real sys-
tems have their parameters lumped. For example, in the analysis of a system consist-
ing of a mass and a spring, it is commonly assumed that the mass of the spring is
negligible so that its only effect is to exert a force between the mass and the support
to which the spring is attached, and that the mass is perfectly rigid so that it does not

7.1

8434_Harris_07_b.qxd  09/20/2001  11:24 AM  Page 7.1



deform and exert any elastic force.The effect of the mass of the spring on the motion
of the system may be considered in an approximate way, while still maintaining the
assumption of one degree-of-freedom, by assuming that the spring moves so that the
deflection of each of its elements can be described by a single parameter. A com-
monly used assumption is that the deflection of each section of the spring is propor-
tional to its distance from the support, so that if the deflection of the mass is given,
the deflection of any part of the spring is defined. For the exact solution of the prob-
lem, even though the mass is considered to be perfectly rigid, it is necessary to con-
sider that the deformation of the spring can occur in any manner consistent with the
requirements of physical continuity.

Systems with distributed parameters are characterized by having an infinite num-
ber of degrees-of-freedom. For example, if an initially straight beam deflects later-
ally, it may be necessary to give the deflection of each section along the beam in
order to define completely the configuration. For vibrating systems, the coordinates
usually are defined in such a way that the deflections of the various parts of the sys-
tem from the equilibrium position are given.

Natural Frequencies and Normal Modes of Vibration. The number of natural
frequencies of vibration of any system is equal to the number of degrees-of-
freedom; thus, any system having distributed parameters has an infinite number of
natural frequencies. At a given time, such a system usually vibrates with appreciable
amplitude at only a limited number of frequencies, often at only one. With each nat-
ural frequency is associated a shape, called the normal or natural mode, which is
assumed by the system during free vibration at the frequency. For example, when a
uniform beam with simply supported or hinged ends vibrates laterally at its lowest
or fundamental natural frequency, it assumes the shape of a half sine wave; this is a
normal mode of vibration.When vibrating in this manner, the beam behaves as a sys-
tem with a single degree-of-freedom, since its configuration at any time can be
defined by giving the deflection of the center of the beam. When any linear system,
i.e., one in which the elastic restoring force is proportional to the deflection, executes
free vibration in a single natural mode, each element of the system except those at
the supports and nodes executes simple harmonic motion about its equilibrium posi-
tion.All possible free vibration of any linear system is made up of superposed vibra-
tions in the normal modes at the corresponding natural frequencies. The total
motion at any point of the system is the sum of the motions resulting from the vibra-
tion in the respective modes.

There are always nodal points, lines, or surfaces, i.e., points which do not move, in
each of the normal modes of vibration of any system. For the fundamental mode,
which corresponds to the lowest natural frequency, the supported or fixed points of
the system usually are the only nodal points; for other modes, there are additional
nodes. In the modes of vibration corresponding to the higher natural frequencies of
some systems, the nodes often assume complicated patterns. In certain problems
involving forced vibrations, it may be necessary to know what the nodal patterns are,
since a particular mode usually will not be excited by a force acting at a nodal point.
Nodal lines are shown in some of the tables.

Methods of Solution. The complete solution of the problem of free vibration of
any system would require the determination of all the natural frequencies and of the
mode shape associated with each. In practice, it often is necessary to know only a few
of the natural frequencies, and sometimes only one. Usually the lowest frequencies
are the most important. The exact mode shape is of secondary importance in many
problems. This is fortunate, since some procedures for finding natural frequencies
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involve assuming a mode shape from which an approximation to the natural fre-
quency can be found.

Classical Method. The fundamental method of solving any vibration problem
is to set up one or more equations of motion by the application of Newton’s second
law of motion. For a system having a finite number of degrees-of-freedom, this pro-
cedure gives one or more ordinary differential equations. For systems having dis-
tributed parameters partial differential equations are obtained. Exact solutions of
the equations are possible for only a relatively few configurations. For most prob-
lems other means of solution must be employed.

Rayleigh’s and Ritz’s Methods. For many elastic bodies, Rayleigh’s method is
useful in finding an approximation to the fundamental natural frequency. While it is
possible to use the method to estimate some of the higher natural frequencies, the
accuracy often is poor; thus, the method is most useful for finding the fundamental
frequency. When any elastic system without damping vibrates in its fundamental
normal mode, each part of the system executes simple harmonic motion about its
equilibrium position. For example, in lateral vibration of a beam the motion can be
expressed as y = X(x) sin ωnt where X is a function only of the distance along the
length of the beam. For lateral vibration of a plate, the motion can be expressed as w
= W(x,y) sin ωnt where x and y are the coordinates in the plane of the plate. The
equations show that when the deflection from equilibrium is a maximum, all parts of
the body are motionless. At that time all the energy associated with the vibration is
in the form of elastic strain energy.When the body is passing through its equilibrium
position, none of the vibrational energy is in the form of strain energy so that all of
it is in the form of kinetic energy. For conservation of energy, the strain energy in the
position of maximum deflection must equal the kinetic energy when passing through
the equilibrium position. Rayleigh’s method of finding the natural frequency is to
compute these maximum energies, equate them, and solve for the frequency. When
the kinetic-energy term is evaluated, the frequency always appears as a factor. For-
mulas for finding the strain and kinetic energies of rods, beams, and plates are given
in Table 7.1.

If the deflection of the body during vibration is known exactly, Rayleigh’s
method gives the true natural frequency. Usually the exact deflection is not known,
since its determination involves the solution of the vibration problem by the classi-
cal method. If the classical solution is available, the natural frequency is included in
it, and nothing is gained by applying Rayleigh’s method. In many problems for which
the classical solution is not available, a good approximation to the deflection can be
assumed on the basis of physical reasoning. If the strain and kinetic energies are
computed using such an assumed shape, an approximate value for the natural fre-
quency is found.The correctness of the approximate frequency depends on how well
the assumed shape approximates the true shape.

In selecting a function to represent the shape of a beam or a plate, it is desirable
to satisfy as many of the boundary conditions as possible. For a beam or plate sup-
ported at a boundary, the assumed function must be zero at that boundary; if the
boundary is built in, the first derivative of the function must be zero. For a free
boundary, if the conditions associated with bending moment and shear can be sat-
isfied, better accuracy usually results. It can be shown2 that the frequency that is
found by using any shape except the correct shape always is higher than the actual
frequency. Therefore, if more than one calculation is made, using different
assumed shapes, the lowest computed frequency is closest to the actual frequency
of the system.

In many problems for which a classical solution would be possible, the work
involved is excessive. Often a satisfactory answer to such a problem can be obtained
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by the application of Rayleigh’s method. In this chapter several examples are worked
using both the classical method and Rayleigh’s method. In all, Rayleigh’s method gives
a good approximation to the correct result with relatively little work. Many other
examples of solutions to problems by Rayleigh’s method are in the literature.3–5

Ritz’s method is a refinement of Rayleigh’s method. A better approximation of
the fundamental natural frequency can be obtained by its use, and approximations
of higher natural frequencies can be found. In using Ritz’s method, the deflections
which are assumed in computing the energies are expressed as functions with one or
more undetermined parameters; these parameters are adjusted to make the com-
puted frequency a minimum. Ritz’s method has been used extensively for the deter-
mination of the natural frequencies of plates of various shapes and is discussed in
the section on the lateral vibrations of plates.

Lumped Parameters. A procedure that is useful in many problems for finding
approximations to both the natural frequencies and the mode shapes is to reduce the
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TABLE 7.1 Strain and Kinetic Energies of Uniform Rods, Beams, and Plates

Kinetic energy T

Member Strain energy V General Maximum*

Rod in tension
or compression

�l

0 � �
2

dx �l

0 � �
2

dx �l

0
V 2 dx

Rod in torsion �l

0 � �
2

dx �l

0 � �
2

dx �l

0
Φ2 dx

Beam in bending �l

0 � �
2

dx �l

0 � �
2

dx �l

0
Y 2 dx

�
S
� �� + �

2

Rectangular plate − 2(1 − µ) � �
S
� � �

2

dx dy �
S
�W 2 dx dyin bending1

− � �
2

�� dx dy

Circular plate
(deflection 

πD �a

0 �� + �
2

�a

0 � �
2

r dr �a

0
W 2r drsymmetrical 

− 2(1 − µ) � r drabout center)1

u = longitudinal deflection of cross section of rod S = area of cross section
φ = angle of twist of cross section of rod Ip = polar moment of inertia
y = lateral deflection of beam I = moment of inertia of beam
w = lateral deflection of plate γ = weight density

Capitals denote values at extreme deflection E = modulus of elasticity
for simple harmonic motion. G = modulus of rigidity

l = length of rod or beam µ = Poisson’s ratio
a = radius of circular plate D = Eh3/12(1 − µ2)
h = thickness of beam or plate

* This is the maximum kinetic energy in simple harmonic motion.
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system with distributed parameters to one having a finite number of degrees-of-
freedom. This is done by lumping the parameters for each small region into an
equivalent mass and elastic element. Several formalized procedures for doing this
and for analyzing the resulting systems are described in Chap. 28. If a system consists
of a rigid mass supported by a single flexible member whose mass is not negligible,
the elastic part of the system sometimes can be treated as an equivalent spring; i.e.,
some of its mass is lumped with the rigid mass. Formulas for several systems of this
kind are given in Table 7.2.

Orthogonality. It is shown in Chap. 2 that the normal modes of vibration of a sys-
tem having a finite number of degrees-of-freedom are orthogonal to each other. For
a system of masses and springs having n degrees-of-freedom, if the coordinate sys-
tem is selected in such a way that X1 represents the amplitude of motion of the first
mass, X2 that of the second mass, etc., the orthogonality relations are expressed by 
(n − 1) equations as follows:

m1X1
aX1

b + m2X2
aX2

b + ⋅⋅⋅ =  	
n

i = 1
miXi

aXi
b = 0 [a ≠ b]
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where X1
a represents the amplitude of the first mass when vibrating only in the ath

mode, X1
b the amplitude of the first mass when vibrating only in the bth mode, etc.

For a body such as a uniform beam whose parameters are distributed only length-
wise, i.e., in the X direction, the orthogonality between two normal modes is
expressed by

�l

0
ρφa(x)φb(x) dx = 0 [a ≠ b] (7.1)

where φa(x) represents the deflection in the ath normal mode, φb(x) the deflection in
the bth normal mode, and ρ the density.

For a system, such as a uniform plate, in which the parameters are distributed in
two dimensions, the orthogonality condition is

�
A
� ρφa(x,y)φb(x,y) dx dy = 0 [a ≠ b] (7.2)

LONGITUDINAL AND TORSIONAL VIBRATIONS 

OF UNIFORM CIRCULAR RODS

Equations of Motion. A circular rod having a uniform cross section can exe-
cute longitudinal, torsional, or lateral vibrations, either individually or in any combi-
nation.The equations of motion for longitudinal and torsional vibrations are similar
in form, and the solutions are discussed together. The lateral vibration of a beam
having a uniform cross section is considered separately.

In analyzing the longitudinal vibration of a rod, only the motion of the rod in the
longitudinal direction is considered.There is some lateral motion because longitudi-
nal stresses induce lateral strains; however, if the rod is fairly long compared to its
diameter, this motion has a minor effect.

Consider a uniform circular rod, Fig. 7.1A. The element of length dx, which is
formed by passing two parallel planes A–A and B–B normal to the axis of the rod, is
shown in Fig. 7.1B. When the rod executes only longitudinal vibration, the force act-
ing on the face A–A is F, and that on face B–B is F + (∂F/∂x) dx. The net force acting
to the right must equal the product of the mass of the element (γ/g)S dx and its accel-
eration ∂2u/∂t2, where γ is the weight density, S the area of the cross section, and u the
longitudinal displacement of the element during the vibration:

�F + dx� − F = dx = � � S dx or = (7.3)
∂2u
�
∂t 2

γS
�
g

∂F
�
∂x

∂2u
�
∂t 2

γ
�
g

∂F
�
∂x

∂F
�
∂x
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FIGURE 7.1 (A) Rod executing longitudinal or torsional vibration. (B) Forces acting on ele-
ment during longitudinal vibration. (C) Moments acting on element during torsional vibration.
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This equation is solved by expressing the force F in terms of the displacement. The
elastic strain at any section is ∂u/∂x, and the stress is E∂u/∂x. The force F is the prod-
uct of the stress and the area, or F = ES ∂u/∂x, and ∂F/∂x = ES ∂2u/∂x2. Equation (7.3)
becomes Eu″ = γ/gü, where u″ = ∂2u/∂x2 and ü = ∂2u/∂t2. Substituting a2 = Eg/γ,

a2u″ = ü (7.4)

The equation governing the torsional vibration of the circular rod is derived by
equating the net torque acting on the element, Fig. 7.1C, to the product of the
moment of inertia J and the angular acceleration φ̈, φ being the angular displacement
of the section. The torque on the section A–A is M and that on section B–B is 
M + (∂M/∂x) dx. By an analysis similar to that for the longitudinal vibration, letting
b2 = Gg/γ,

b2φ″ = φ̈ (7.5)

Solution of Equations of Motion. Since Eqs. (7.4) and (7.5) are of the same form,
the solutions are the same except for the meaning of a and b. The solution of Eq. (7.5)
is of the form φ = X(x)T(t) in which X is a function of x only and T is a function of t
only. Substituting this in Eq. (7.5) gives b2X″T = XT̈. By separating the variables,6

T = A cos (ωnt + θ)

X = C sin + D cos 
(7.6)

The natural frequency ωn can have infinitely many values, so that the complete solu-
tion of Eq. (7.5) is, combining the constants,

φ = 	
n = ∞

n = 1
�Cn sin + Dn cos � cos (ωnt + θn) (7.7)

The constants Cn and Dn are determined by the end conditions of the rod and by the
initial conditions of the vibration. For a built-in or clamped end of a rod in torsion,
φ = 0 and X = 0 because the angular deflection must be zero. The torque at any sec-
tion of the shaft is given by M = (GIp)φ′, where GIp is the torsional rigidity of the
shaft; thus, for a free end, φ′ = 0 and X′ = 0. For the longitudinal vibration of a rod,
the boundary conditions are essentially the same; i.e., for a built-in end the displace-
ment is zero (u = 0) and for a free end the stress is zero (u′ = 0).

EXAMPLE 7.1. The natural frequencies of the torsional vibration of a circular
steel rod of 2-in. diameter and 24-in. length, having the left end built in and the right
end free, are to be determined.

SOLUTION. The built-in end at the left gives the condition X = 0 at x = 0 so that
D = 0 in Eq. (7.6).The free end at the right gives the condition X′ = 0 at x = l. For each
mode of vibration, Eq. (7.6) is cos ωnl/b = 0 from which ωnl/b = π/2, 3π/2, 5π/2,
. . . . Since b2 = Gg/γ, the natural frequencies for the torsional vibration are

ωn = 
� , 
� , 
� , . . . rad/sec

For steel, G = 11.5 × 106 lb/in.2 and γ = 0.28 lb/in.3 The fundamental natural fre-
quency is

ωn = 
� = 8240 rad/sec = 1311 Hz(11.5 × 106)(386)
��

0.28
π

�
2(24)

Gg
�

γ
5π
�
2l

Gg
�

γ
3π
�
2l

Gg
�

γ
π
�
2l

ωnx�
b

ωnx�
b

ωnx�
b

ωnx�
b
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The remaining frequencies are 3, 5, 7, etc., times ωn.
Since Eq. (7.4), which governs longitudinal vibration of the bar, is of the same

form as Eq. (7.5), which governs torsional vibration, the solution for longitudinal
vibration is the same as Eq. (7.7) with u substituted for φ and a = �Eg/γ substituted
for b. The natural frequencies of a uniform rod having one end built in and one end
free are obtained by substituting a for b in the frequency equations found above in
Example 7.1:

ωn = 
�, 
�, 
�, ⋅⋅⋅

The frequencies of the longitudinal vibration are independent of the lateral dimen-
sions of the bar, so that these results apply to uniform noncircular bars. Equation
(7.5) for torsional vibration is valid only for circular cross sections.

Torsional Vibrations of Circular Rods with Discs Attached. An important
type of system is that in which a rod which may twist has mounted on it one or more
rigid discs or members that can be considered as the equivalents of discs. Many sys-
tems can be approximated by such configurations. If the moment of inertia of the
rod is small compared to the moments of inertia of the discs, the mass of the rod may
be neglected and the system considered to have a finite number of degrees-of-
freedom. Then the methods described in Chaps. 2 and 38 are applicable. Even if the
moment of inertia of the rod is not negligible, it usually may be lumped with the
moment of inertia of the disc. For a shaft having a single disc attached, the formula
in Table 7.2 gives a close approximation to the true frequency.

The exact solution of the problem requires that the effect of the distributed mass
of the rod be considered. Usually it can be assumed that the discs are rigid enough
that their elasticity can be neglected; only such systems are considered. Equation
(7.5) and its solution, Eq. (7.7), apply to the shaft where the constants are deter-
mined by the end conditions. If there are more than two discs, the section of shaft
between each pair of discs must be considered separately; there are two constants
for each section. The constants are determined from the following conditions:

1. For a disc at an end of the shaft, the torque of the shaft at the disc is equal to the
product of the moment of inertia of the disc and its angular acceleration.

2. Where a disc is between two sections of shaft, the angular deflection at the end of
each section adjoining the disc is the same; the difference between the torques in
the two sections is equal to the product of the moment of inertia of the disc and
its angular acceleration.

EXAMPLE 7.2. The fundamental fre-
quency of vibration of the system shown
in Fig. 7.2 is to be calculated and the
result compared with the frequency
obtained by considering that each half
of the system is a simple shaft-disc sys-
tem with the end of the shaft fixed. The
system consists of a steel shaft 24 in. long
and 4 in. in diameter having attached to
it at each end a rigid steel disc 12 in. in
diameter and 2 in. thick. For the approx-
imation, add one-third of the moment of

Eg
�

γ
5π
�
2l

Eg
�

γ
3π
�
2l

Eg
�

γ
π
�
2l
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FIGURE 7.2 Rod with disc attached at each
end.
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inertia of half the shaft to that of the disc (Table 7.2). (Because of symmetry, the cen-
ter of the shaft is a nodal point; i.e., it does not move. Thus, each half of the system
can be considered as a rod-disc system.)

EXACT SOLUTION. The boundary conditions are: at x = 0, M = GIpφ′ = I1φ̈ ; at x = l,
M = GIφ′ = − I2φ̈, where I1 and I2 are the moments of inertia of the discs.The signs are
opposite for the two boundary conditions because, if the shaft is twisted in a certain
direction, it will tend to accelerate the disc at the left end in one direction and the
disc at the right end in the other. In the present example, I1 = I2; however, the solu-
tion is carried out in general terms.

Using Eq. (7.7), the following is obtained for each value of n:

φ′ = �C cos − D sin � cos (ωnt + θ)

φ̈ = ωn
2 �C sin + D cos � [− cos (ωnt + θ)]

The boundary conditions give the following:

GIp C = −ωn
2DI1 or C = − D

GIp �C cos − D sin � = ωn
2I2 �C sin + D cos �

These two equations can be combined to give

− GIp � cos + sin � = ωn
2I2 �− sin + cos �

The preceding equation can be reduced to

tan αn = (7.8)

where αn = (ωnl)/b, c = I1/Is, d = I2/Is, and Is is the polar moment of inertia of the shaft
as a rigid body. There is a value for X in Eq. (7.6) corresponding to each root of Eq.
(7.8) so that Eq. (7.7) becomes

θ = 	
n = ∞

n = 1
An �cos − cαn sin � cos (ωnt + θn)

For a circular disc or shaft, I = 1⁄2mr 2 where m is the total mass; thus c = d = (D4/d4)(h/l)
= 6.75. Equation (7.8) becomes (45.56αn

2 − 1) tan αn = 13.5αn, the lowest root of which
is αn = 0.538. The natural frequency is ωn = 0.538 
�Gg/γ l2 rad/sec.

APPROXIMATE SOLUTION. From Table 7.2, the approximate formula is

ωn = � �1/2
where kr =

For the present problem where the center of the shaft is a node, the values of
moment of inertia Is and torsional spring constant for half the shaft must be used:

1⁄2 Is = and kr = 2 � �G
�
l

πd4

�
32

l
�
2

γ
�
g

πd4

�
32

G
�
l

πd4

�
32

kr�
I + Is/3

ωnx
�

b
ωnx
�

b

(c + d)αn��
cdαn

2 − 1

ωnl�
b

ωnl�
b

bωnI1�
GIp

ωnl�
b

ωnl�
b

bωnI1�
GIp

ωn�
b

ωnl�
b

ωnl�
b

ωnl�
b

ωnl�
b

ωn�
b

bωnI1�
GIp

ωn�
b

ωnx
�

b
ωnx
�

b

ωnx
�

b
ωnx
�

b
ωn�
b
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From the previous solution:

I1 = 6.75Is I1 + � � = [2(6.75) + 0.333]

Substituting these values into the frequency equation and simplifying gives

ωn = 0.538 
�
In this example, the approximate solution is correct to at least three significant

figures. For larger values of Is/I, poorer accuracy can be expected.
For steel, G = 11.5 × 106 lb/in.2 and γ = 0.28 lb/in.3; thus

ωn = 0.538 
� = 0.538 × 5245 = 2822 rad/sec = 449 Hz

Longitudinal Vibration of a Rod with Mass Attached. The natural frequencies
of the longitudinal vibration of a uniform rod having rigid masses attached to it can
be solved in a manner similar to that used for a rod in torsion with discs attached.
Equation (7.4) applies to this system; its solution is the same as Eq. (7.7) with a sub-
stituted for b. For each value of n,

u = �Cn sin + Dn cos � cos (ωnt + θ)

In Fig. 7.3, the rod of length l is fixed at x = 0 and has a mass m2 attached at x = l. The
boundary conditions are: at x = 0, u = 0 and at x = l, SEu′ = − m2ü. The latter expresses
the condition that the force in the bar equals the product of the mass and its accel-
eration at the end with the mass attached. The sign is negative because the force is
tensile or positive when the acceleration of the mass is negative. From the first
boundary condition, Dn = 0. The second boundary condition gives

Cn cos = m2ωn
2Cn sin 

from which

= tan 

Since a2 = Eg/γ, this can be written

= tan 

where m1 is the mass of the rod. This
equation can be applied to a simple
mass-spring system by using the relation
that the constant k of a spring is equiva-
lent to SE/l for the rod, so that l/a =
(m1/k)1/2, where m1 is the mass of the
spring:

= ωn 
� tan ωn 
� (7.9)
m1�
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a
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FIGURE 7.3 Rod, with mass attached to end,
executing longitudinal vibration.
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Rayleigh’s Method. An accurate approximation to the fundamental natural
frequency of this system can be found by using Rayleigh’s method. The motion of
the mass can be expressed as um = u0 sin ωt. If it is assumed that the deflection u at
each section of the rod is proportional to its distance from the fixed end, u = u0(x/l)
sin ωnt. Using this relation in the appropriate equation from Table 7.1, the strain
energy V of the rod at maximum deflection is

V = �l

0
� �2

dx = �l

0
� �2

dx =

The maximum kinetic energy T of the rod is

T = �l

0
Vmax

2 dx = �l

0
�ωnu0 �2

dx = ωn
2u0

2

The maximum kinetic energy of the mass is Tm = m2ωn
2u0

2/2. Equating the total max-
imum kinetic energy T + Tm to the maximum strain energy V gives

ωn = � �1/2

where m1 = Sγ l/g is the mass of the rod. Letting SE/l = k,

ωn = 
� (7.10)

This formula is included in Table 7.2. The other formulas in that table are also based
on analyses by the Rayleigh method.

EXAMPLE 7.3. The natural frequency of a simple mass-spring system for which
the weight of the spring is equal to the weight of the mass is to be calculated and
compared to the result obtained by using Eq. (7.10).

SOLUTION. For m1/m2 = l, the lowest root of Eq. (7.9) is ωn �m/k = 0.860. When
m2 = m1,

ωn = 0.860 
�
Using the approximate equation,

ωn = 
� = 0.866 
�
LATERAL VIBRATION OF STRAIGHT BEAMS

Natural Frequencies from Nomograph. For many practical purposes the natu-
ral frequencies of uniform beams of steel, aluminum, and magnesium can be deter-
mined with sufficient accuracy by the use of the nomograph, Fig. 7.4. This
nomograph applies to many conditions of support and several types of load. Figure
7.4A indicates the procedure for using the nomograph.

Classical Solution. In the derivation of the necessary equation, use is made of
the relation

EI = M (7.11)
d 2y
�
dx2

k
�
m2

k
��
m2(1 + 1⁄3)

k
�
m2

k
�
M + m/3

SE
��
l(m2 + m1/3)

l
�
3

Sγ
�
2g

x
�
l
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SE
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FIGURE 7.4 Nomograph for determining fundamental natural frequencies of beams. From the
point on the starting line which corresponds to the loading and support conditions for the beam, a
straight line is drawn to the proper point on the length line. (If the length appears on the left side of
this line, subsequent readings on all lines are made to the left; and if the length appears to the right,
subsequent readings are made to the right.) From the intersection of this line with pivot line A, a
straight line is drawn to the moment of inertia line; from the intersection of this line with pivot line B,
a straight line is drawn to the weight line. (For concentrated loads, the weight is that of the load; for uni-
formly distributed loads, the weight is the total load on the beam, including the weight of the beam.)
The natural frequency is read where the last line crosses the natural frequency line. (J. J. Kerley.7)
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This equation relates the curvature of the beam to the bending moment at each sec-
tion of the beam. This equation is based upon the assumptions that the material is
homogeneous, isotropic, and obeys Hooke’s law and that the beam is straight and of
uniform cross section.The equation is valid for small deflections only and for beams
that are long compared to cross-sectional dimensions since the effects of shear
deflection are neglected.The effects of shear deflection and rotation of the cross sec-
tions are considered later.

The equation of motion for lateral vibration of the beam shown in Fig. 7.5A is
found by considering the forces acting on the element, Fig. 7.5B, which is formed by
passing two parallel planes A–A and B–B through the beam normal to the longitu-
dinal axis.The vertical elastic shear force acting on section A–A is V, and that on sec-
tion B–B is V + (∂V/∂x) dx. Shear forces acting as shown are considered to be
positive. The total vertical elastic shear force at each section of the beam is com-
posed of two parts: that caused by the static load including the weight of the beam

VIBRATION OF SYSTEMS HAVING DISTRIBUTED MASS AND ELASTICITY 7.13

FIGURE 7.4A Example of use of Fig. 7.4. The natural frequency of the steel
beam is 105 Hz and that of the aluminum beam is 280 Hz. (J. J. Kerley.7)

FIGURE 7.5 (A) Beam executing lateral vibration. (B) Ele-
ment of beam showing shear forces and bending moments.
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and that caused by the vibration.The part of the shear force caused by the static load
exactly balances the load, so that these forces need not be considered in deriving the
equation for the vibration if all deflections are measured from the position of equi-
librium of the beam under the static load. The sum of the remaining vertical forces
acting on the element must equal the product of the mass of the element Sγ/g dx and
the acceleration ∂2y/∂t2 in the lateral direction: V + (∂V/∂x) dx − V = (∂V/∂x) dx =
− (Sγ/g)(∂2y/∂t2) dx, or

= − (7.12)

If moments are taken about point 0 of the element in Fig. 7.5B, V dx = (∂M/∂x) dx
and V = ∂M/∂x. Other terms contain differentials of higher order and can be neg-
lected. Substituting this in Eq. (7.12) gives −∂2M/∂x2 = (Sγ/g)(∂2y/∂t2). Substituting
Eq. (7.11) gives

− �EI � = (7.13)

Equation (7.13) is the basic equation for the lateral vibration of beams.The solution
of this equation, if EI is constant, is of the form y = X(x) [cos(ωnt + θ)], in which X is
a function of x only. Substituting

κ 4 = (7.14)

and dividing Eq. (7.13) by cos (ωnt + θ):

= κ 4X (7.15)

where X is any function whose fourth derivative is equal to a constant multiplied by
the function itself.The following functions satisfy the required conditions and repre-
sent the solution of the equation:

X = A1 sin κx + A2 cos κx + A3 sinh κx + A4 cosh κx

The solution can also be expressed in terms of exponential functions, but the
trigonometric and hyperbolic functions usually are more convenient to use.

For beams having various support conditions, the constants A1, A2, A3, and A4 are
found from the end conditions. In finding the solutions, it is convenient to write the
equation in the following form in which two of the constants are zero for each of the
usual boundary conditions:

X = A (cos κx + cosh κx) + B(cos κx − cosh κx)

+ C(sin κx + sinh κx) + D(sin κx − sinh κx) (7.16)

In applying the end conditions, the following relations are used where primes indi-
cate successive derivatives with respect to x:

The deflection is proportional to X and is zero at any rigid support.
The slope is proportional to X′ and is zero at any built-in end.
The moment is proportional to X″ and is zero at any free or hinged end.
The shear is proportional to X′′′ and is zero at any free end.

d4X
�
dx4

ωn
2γS

�
EIg

∂2y
�
∂t2

γS
�
g

∂2y
�
∂x2

∂2

�
∂x2

∂2y
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γS
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g

∂V
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The required derivatives are:

X′ = κ[A(− sin κx + sinh κx) + B(− sin κx − sinh κx)

+ C(cos κx + cosh κx) + D(cos κx − cosh κx)]

X″ = κ2[A(− cos κx + cosh κx) + B(− cos κx − cosh κx)

+ C(− sin κx + sinh κx) + D(− sin κx − sinh κx)]

X″′ = κ3[A(sin κx + sinh κx) + B(sin κx − sinh κx)

+ C(− cos κx + cosh κx) + D(− cos κx − cosh κx)]

For the usual end conditions, two of the constants are zero, and there remain two equa-
tions containing two constants.These can be combined to give an equation which con-
tains only the frequency as an unknown. Using the frequency, one of the unknown
constants can be found in terms of the other. There always is one undetermined con-
stant, which can be evaluated only if the amplitude of the vibration is known.

EXAMPLE 7.4. The natural frequen-
cies and modes of vibration of the rect-
angular steel beam shown in Fig. 7.6 are
to be determined and the fundamental
frequency compared with that obtained
from Fig. 7.4. The beam is 24 in. long, 2
in. wide, and 1⁄4 in. thick, with the left end
built in and the right end free.

SOLUTION. The boundary conditions
are: at x = 0, X = 0, and X′ = 0; at x = l,
X″ = 0, and X″′ = 0. The first condition

requires that A = 0 since the other constants are multiplied by zero at x = 0. The sec-
ond condition requires that C = 0. From the third and fourth conditions, the following
equations are obtained:

0 = B(− cos κl − cosh κl) + D(− sin κl − sinh κl)

0 = B(sin κl − sinh κl) + D(− cos κl − cosh κl)

Solving each of these for the ratio D/B and equating, or making use of the mathe-
matical condition that for a solution the determinant of the two equations must van-
ish, the following equation results:

= − = (7.17)

Equation (7.17) reduces to cos κl cosh κl = −1. The values of κl which satisfy this
equation can be found by consulting tables of hyperbolic and trigonometric func-
tions. The first five are: κ1l = 1.875, κ2 l = 4.694, κ3l = 7.855, κ4l = 10.996, and 
κ5l = 14.137. The corresponding frequencies of vibration are found by substituting
the length of the beam to find each κ and then solving Eq. (7.14) for ωn:

ωn = κn
2 
�

For the rectangular section, I = bh3/12 = 1/384 in.4 and S = bh = 0.5 in.2 For steel,
E = 30 × 106 lb/in.2 and γ = 0.28 lb/in.3 Using these values,

EIg
�
�S

sin κl − sinh κl
��
cos κl + cosh κl

cos κl + cosh κl
��
sin κl + sinh κl

D
�
B
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FIGURE 7.6 First mode of vibration of beam
with left end clamped and right end free.
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ω1 = 
� = 89.6 rad/sec = 14.26 Hz

The remaining frequencies can be found by using the other values of κ. Using Fig.
7.4, the fundamental frequency is found to be about 12 Hz.

To find the mode shapes, the ratio D/B is found by substituting the appropriate
values of κl in Eq. (7.17). For the first mode:

cosh 1.875 = 3.33710 sinh 1.875 = 3.18373

cos 1.875 = −0.29953 sin 1.875 = 0.95409

Therefore, D/B = −0.73410. The equation for the first mode of vibration becomes

y = B1[(cos κx − cosh κx) − 0.73410 (sin κx − sinh κx)] cos (ω1t + θ1)

in which B1 is determined by the amplitude of vibration in the first mode. A similar
equation can be obtained for each of the modes of vibration; all possible free vibra-
tion of the beam can be expressed by taking the sum of these equations.

Frequencies and Shapes of Beams. Table 7.3 gives the information necessary
for finding the natural frequencies and normal modes of vibration of uniform beams
having various boundary conditions. The various constants in the table were deter-
mined by computations similar to those used in Example 7.4. The table includes (1)
diagrams showing the modal shapes including node locations, (2) the boundary con-
ditions, (3) the frequency equation that results from using the boundary conditions
in Eq. (7.16), (4) the constants that become zero in Eq. (7.16), (5) the values of κl
from which the natural frequencies can be computed by using Eq. (7.14), and (6) the
ratio of the nonzero constants in Eq. (7.16). By the use of the constants in this table,
the equation of motion for any normal mode can be written. There always is a con-
stant which is determined by the amplitude of vibration.

Values of characteristic functions representing the deflections of beams, at 50
equal intervals, for the first five modes of vibration have been tabulated.8 Functions
are given for beams having various boundary conditions, and the first three deriva-
tives of the functions are also tabulated.

Rayleigh’s Method. This method is useful for finding approximate values of the
fundamental natural frequencies of beams. In applying Rayleigh’s method, a suit-
able function is assumed for the deflection, and the maximum strain and kinetic
energies are calculated, using the equations in Table 7.1. These energies are equated
and solved for the frequency. The function used to represent the shape must satisfy
the boundary conditions associated with deflection and slope at the supports. Best
accuracy is obtained if other boundary conditions are also satisfied.The equation for
the static deflection of the beam under a uniform load is a suitable function,
although a simpler function often gives satisfactory results with less numerical work.

EXAMPLE 7.5. The fundamental natural frequency of the cantilever beam in
Example 7.4 is to be calculated using Rayleigh’s method.

SOLUTION. The assumed deflection Y = (a/3l4)[x4 − 4x3l + 6x2l2] is the static
deflection of a cantilever beam under uniform load and having the deflection Y = a
at x = l. This deflection satisfies the conditions that the deflection Y and the slope Y′
be zero at x = 0.Also, at x = l,Y″ which is proportional to the moment and Y″′ which
is proportional to the shear are zero. The second derivative of the function is Y″ =
(4a/l4)[x2 − 2xl + l2]. Using this in the expression from Table 7.1, the maximum strain
energy is

(30 × 106)(386)
��
(0.28)(384)(0.5)

(1.875)2

�
(24)2
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TABLE 7.3 Natural Frequencies and Normal Modes of Uniform Beams
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V = �l

0
� �2

dx =

The maximum kinetic energy is

T = �l

0
Y 2 dx =

Equating the two energies and solving for the frequency,

ωn = 
�× = 
�
The exact frequency as found in Example 7.4 is (3.516/l2) �EIg/γS; thus, Rayleigh’s
method gives good accuracy in this example.

If the deflection is assumed to be Y = a[1 − cos (πx/2l)], the calculated frequency
is (3.66/l2)�EIg/γS. This is less accurate, but the calculations are considerably
shorter. With this function, the same boundary conditions at x = 0 are satisfied; how-
ever, at x = l, Y″ = 0, but Y″′ does not equal zero. Thus, the condition of zero shear at
the free end is not satisfied. The trigonometric function would not be expected to
give as good accuracy as the static deflection relation used in the example, although
for most practical purposes the result would be satisfactory.

Effects of Rotary Motion and Shearing Force. In the preceding analysis of the
lateral vibration of beams it has been assumed that each element of the beam moves
only in the lateral direction. If each plane section that is initially normal to the axis
of the beam remains plane and normal to the axis, as assumed in simple beam the-
ory, then each section rotates slightly in addition to its lateral motion when the beam
deflects.9 When a beam vibrates, there must be forces to cause this rotation, and for
a complete analysis these forces must be considered. The effect of this rotation is
small except when the curvature of the beam is large relative to its thickness; this is
true either for a beam that is short relative to its thickness or for a long beam vibrat-
ing in a higher mode so that the nodal points are close together.

Another factor that affects the lateral vibration of a beam is the lateral shear
force. In Eq. (7.11) only the deflection associated with the bending stress in the
beam is included. In any beam except one subject only to pure bending, a deflec-
tion due to the shear stress in the beam occurs. The exact solution of the beam
vibration problem requires that this deflection be considered. The analysis of
beam vibration including both the effects of rotation of the cross section and the
shear deflection is called the Timoshenko beam theory. The following equation
governs such vibration:10

a2 + − ρ2 �1 + � + ρ2 = 0 (7.18)

where a2 = EIg/Sγ, E = modulus of elasticity, G = modulus of rigidity, and ρ = �I/S,
the radius of gyration; κ = Fs/GSβ, Fs being the total lateral shear force at any sec-
tion and β the angle which a cross section makes with the axis of the beam because
of shear deformation. Under the assumptions made in the usual elementary beam
theory, κ is 2⁄3 for a beam with a rectangular cross section and 3⁄4 for a circular beam.
More refined analysis shows11 that, for the present purposes, κ = 5⁄6 and 9⁄10 are more
accurate values for rectangular and circular cross sections, respectively. Using a
solution of the form y = C sin (nπx/l) cos ωnt, which satisfies the necessary end con-
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ditions, the following frequency equation is obtained for beams with both ends sim-
ply supported:

a2 − ωn
2 − ωn

2 − ωn
2 + ωn

4 = 0 (7.18a)

If it is assumed that nr/l << 1, Eq. (7.18a) reduces to

ωn = �1 − � �2 �1 + �� (7.18b)

When nr/l < 0.08, the approximate equation gives less than 5 percent error in the fre-
quency.11

Values of the ratio of ωn to the natural frequency uncorrected for the effects of
rotation and shear have been plotted,11 using Eq. (7.18a) for three values of E/κG,
and are shown in Fig. 7.7.

For a cantilever beam the frequency equation is quite complicated. For E/κG =
3.20, corresponding approximately to the value for rectangular steel or aluminum
beams, the curves in Fig. 7.8 show the effects of rotation and shear on the natural fre-
quencies of the first six modes of vibration.

EXAMPLE 7.6. The first two natural frequencies of a rectangular steel beam 40 in.
long, 2 in. wide, and 6 in. thick, having simply supported ends, are to be computed with
and without including the effects of rotation of the cross sections and shear deflection.

SOLUTION. For steel E = 30 × 106 lb/in.2, G = 11.5 × 106 lb/in.2, and for a rect-
angular cross section κ = 5⁄6; thus E/κG = 3.13. For a rectangular beam ρ = h/12 where

E
�
κG

ρ
�
l

π2n2

�
2

aπ2

�
(l/n)2

ρ2γ
�
gκG

E
�
κG

n2π2ρ2

�
l 2

n2π2ρ2

�
l 2

n4π4

�
l4
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FIGURE 7.7 Influence of shear force and rotary motion on natural frequencies
of simply supported beams.The curves relate the corrected frequency to that given
by Eq. (7.14). (J. G. Sutherland and L. E. Goodman.11)
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h is the thickness; thus ρ/l = 6/(40 �12) = 0.0433. The approximate frequency equa-
tion, Eq. (7.18b), becomes

ωn = �1 − (0.0433n)2(1 + 3.13)�
= (1 − 0.038n2)

Letting ω0 = aπ2/(l/n)2 be the uncorrected frequency obtained by neglecting the
effect of n in Eq. (7.18b):

For n = 1: = 1 − 0.038 = 0.962

For n = 2: = 1 − 0.152 = 0.848

Comparing these results with Fig. 7.7, using the curve for E/κG = 3.00, the calculated
frequency for the first mode agrees with the curve as closely as the curve can be
read. For the second mode, the curve gives ωn/ω0 = 0.91; therefore the approximate
equation for the second mode is not very accurate.The uncorrected frequencies are,
since I/S = ρ2 = h2/12,

For n = 1: ω0 = 
� = 
� = 2170 rad/sec = 345 Hz(30 × 106)(36)386
��

(12)(0.28)
π2

�
(40)2
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l 2
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FIGURE 7.8 Influence of shear force and rotary motion on natural frequen-
cies of uniform cantilever beams (E/κG = 3.20). The curves relate the corrected
frequency to that given by Eq. (7.14). (J. G. Sutherland and L. E. Goodman.11)
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For n = 2: ω0 = 345 × 4 = 1380 Hz

The frequencies corrected for rotation and shear, using the value from Fig. 7.7 for
correction of the second mode, are:

For n = 1: fn = 345 × 0.962 = 332 Hz

For n = 2: fn = 1380 × 0.91 = 1256 Hz

Effect of Axial Loads. When an axial tensile or compressive load acts on a beam,
the natural frequencies are different from those for the same beam without such
load. The natural frequencies for a beam with hinged ends, as determined by an
energy analysis, assuming that the axial force F remains constant, are12

ωn = 
� 
�1 ± = ω0 
�1 ±

where α2 = Fl2/EIπ2, n is the mode number, ω0 is the natural frequency of the beam
with no axial force applied, and the other symbols are defined in Table 7.1. The plus
sign is for a tensile force and the minus sign for a compressive force.

For a cantilever beam with a constant axial force F applied at the free end, the
natural frequency is found by an energy analysis13 to be [1 + 5⁄14(Fl 2/EI)]1/2 times the
natural frequency of the beam without the force applied. If a uniform axial force is
applied along the beam, the effect is the same as if about seven-twentieths of the
total force were applied at the free end of the beam.

If the amplitude of vibration is large, an axial force may be induced in the beam
by the supports. For example, if both ends of a beam are hinged but the supports are
rigid enough so that they cannot move axially, a tensile force is induced as the beam
deflects. The force is not proportional to the deflection; therefore, the vibration is of
the type characteristic of nonlinear systems in which the natural frequency depends
on the amplitude of vibration. The natural frequency of a beam having immovable
hinged ends is given in the following table where the axial force is zero at zero
deflection of the beam14 and where x0 is the amplitude of vibration, I the moment of
inertia, and S the area of the cross section; ω0 is the natural frequency of the unre-
strained bar.

0 0.1 0.2 0.4 0.6 0.8

1 1.0008 1.0038 1.015 1.038 1.058

1.0 1.5 2 3 4 5

1.089 1.190 1.316 1.626 1.976 2.35

Beams Having Variable Cross Sections. The natural frequencies for beams of
several shapes having cross sections that can be expressed as functions of the dis-
tance along the beam have been calculated.15 The results are shown in Table 7.4. In
the analysis, Eq. (7.13) was used, with EI considered to be variable.
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TABLE 7.4 Natural Frequencies of Variable-Section Steel Beams (J. N. Macduff and R. P.
Felgar.16, 17)

fn = natural frequency, Hz l = beam length, in.
ρ = �I/S = radius of gyration, in. n = mode number
h = depth of beam, in. b = width of beam, in.

For materials other than steel: fn = fns 
�
E = modulus of elasticity, lb/in.2

γ = density, lb/in.3

Terms with subscripts refer to steel
Terms without subscripts refer to other material

Eγs�
Esγ

7.22
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Rayleigh’s or Ritz’s method can be used to find approximate values for the fre-
quencies of such beams. The frequency equation becomes, using the equations in
Table 7.1, and letting Y(x) be the assumed deflection,

ωn
2 =

where I = I(x) is the moment of inertia of the cross section and S = S(x) is the area of
the cross section. Examples of the calculations are in the literature.18 If the values of
I(x) and S(x) cannot be defined analytically, the beam may be divided into two or
more sections, for each of which I and S can be approximated by an equation. The
strain and kinetic energies of each section may be computed separately, using an
appropriate function for the deflection, and the total energies for the beam found by
adding the values for the individual sections.

Continuous Beams on Multiple Supports. In finding the natural frequencies of
a beam on multiple supports, the section between each pair of supports is considered
as a separate beam with its origin at the left support of the section. Equation (7.16)
applies to each section. Since the deflection is zero at the origin of each section,
A = 0 and the equation reduces to

X = B(cos κx − cosh κx) + C(sin κx + sinh κx) + D(sin κx − sinh κx)

There is one such equation for each section, and the necessary end conditions are as
follows:

1. At each end of the beam the usual boundary conditions are applicable, depend-
ing on the type of support.

2. At each intermediate support the deflection is zero. Since the beam is continuous,
the slope and the moment just to the left and to the right of the support are the
same.

General equations can be developed for finding the frequency for any number of
spans.19,20 Table 7.5 gives constants for finding the natural frequencies of uniform
continuous beams on uniformly spaced supports for several combinations of end
supports.

Beams with Partly Clamped Ends. For a beam in which the slope at each end is
proportional to the moment, the following empirical equation gives the natural fre-
quency:21

fn = f0 �n + � �� �n + � ��
where f0 is the frequency of the same beam with simply supported ends and n is the
mode number. The parameters βL = kLl/EI and βR = kRl/EI are coefficients in which
kL and kR are stiffnesses of the supports as given by kL = ML/θL, where ML is the
moment and θL the angle at the left end, and kR = MR/θR, where MR is the moment
and θR the angle at the right end.The error is less than 2 percent except for bars hav-
ing one end completely or nearly clamped (β > 10) and the other end completely or
nearly hinged (β < 0.9).

βR�
5n + βR

1
�
2

βL�
5n + βL

1
�
2

�l

0 I (d 2Y/dx2)2 dx
���l

0
SY 2 dx
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�

γ
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TABLE 7.5 Natural Frequencies of Continuous Uniform Steel* Beams (J. N. Macduff and
R. P. Felgar.16, 17)

* For materials other than steel, use equation at bottom of Table 7.4.
fn = natural frequency, Hz n = mode number
ρ = �I/S = radius of gyration, in. N = number of spans
l = span length, in.
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LATERAL VIBRATION OF BEAMS WITH MASSES ATTACHED

The use of Fig. 7.4 is a convenient method of estimating the natural frequencies of
beams with added loads.

Exact Solution. If the masses attached to the beam are considered to be rigid
so that they exert no elastic forces, and if it is assumed that the attachment is such
that the bending of the beam is not restrained, Eqs. (7.13) and (7.16) apply. The sec-
tion of the beam between each two masses, and between each support and the adja-
cent mass, must be considered individually. The constants in Eq. (7.16) are different
for each section. There are 4N constants, N being the number of sections into which
the beam is divided. Each support supplies two boundary conditions. Additional
conditions are provided by:

1. The deflection at the location of each mass is the same for both sections adjacent
to the mass.

2. The slope at each mass is the same for each section adjacent thereto.
3. The change in the lateral elastic shear force in the beam, at the location of each

mass, is equal to the product of the mass and its acceleration ÿ.
4. The change of moment in the beam, at each mass, is equal to the product of the

moment of inertia of the mass and its angular acceleration (∂2/∂t2)(∂y/∂x).

Setting up the necessary equations is not difficult, but their solution is a lengthy
process for all but the simplest configurations. Even the solution of the problem of a
beam with hinged ends supporting a mass with negligible moment of inertia located
anywhere except at the center of the beam is fairly long. If the mass is at the center
of the beam, the solution is relatively simple because of symmetry and is illustrated
to show how the result compares with that obtained by Rayleigh’s method.

Rayleigh’s Method. Rayleigh’s method offers a practical method of obtaining a
fairly accurate solution of the problem, even when more than one mass is added. In
carrying out the solution, the kinetic energy of the masses is added to that of the
beam. The strain and kinetic energies of a uniform beam are given in Table 7.1. The
kinetic energy of the ith mass is (mi/2)ωn

2Y2(xi), where Y(xi) is the value of the ampli-
tude at the location of mass. Equating the maximum strain energy to the total maxi-
mum kinetic energy of the beam and masses, the frequency equation becomes

ωn
2 =

EI �l

0
(Y″)2 dx

(7.19)
�l

0
Y 2 dx + 	

n

i = 1
miY 2(xi)

where Y(x) is the maximum deflection. If Y(x) were known exactly, this equation
would give the correct frequency; however, since Y is not known, a shape must be
assumed. This may be either the mode shape of the unloaded beam or a polynomial
that satisfies the necessary boundary conditions, such as the equation for the static
deflection under a load.

Beam as Spring. A method for obtaining the natural frequency of a beam with
a single mass mounted on it is to consider the beam to act as a spring, the stiffness
of which is found by using simple beam theory. The equation ωn = �k/m is used.
Best accuracy is obtained by considering m to be made up of the attached mass plus
some portion of the mass of the beam. The fraction of the beam mass to be used
depends on the type of beam. The equations for simply supported and cantilevered
beams with masses attached are given in Table 7.2.

γS
�
g
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EXAMPLE 7.7. The fundamental nat-
ural frequencies of a beam with hinged
ends 24 in. long, 2 in. wide, and 1⁄4 in. thick
having a mass m attached at the center
(Fig. 7.9) are to be calculated by each of
the three methods, and the results com-
pared for ratios of mass to beam mass of
1, 5, and 25. The result is to be compared
with the frequency from Fig. 7.4.

EXACT SOLUTION. Because of sym-
metry, only the section of the beam to
the left of the mass has to be considered
in carrying out the exact solution. The
boundary conditions for the left end are:
at x = 0, X = 0, and X″ = 0. The shear
force just to the left of the mass is nega-

tive at maximum deflection (Fig. 7.9B) and is Fs = − EIX″′; to the right of the mass,
because of symmetry, the shear force has the same magnitude with opposite sign.
The difference between the shear forces on the two sides of the mass must equal the
product of the mass and its acceleration. For the condition of maximum deflection,

2EIX″′ = mÿmax (7.20)

where X″′ and ÿmax must be evaluated at x = l/2. Because of symmetry the slope at the
center is zero. Using the solution y = X cos ωnt and ÿmax = −ωn

2X, Eq. (7.20) becomes

2EIX″′ = −mωn
2X (7.21)

The first boundary condition makes A = 0 in Eq. (7.16) and the second condition
makes B = 0. For simplicity, the part of the equation that remains is written

X = C sin κx + D sinh κx (7.22)

Using this in Eq. (7.20) gives

2EI �− Cκ 3 cos + Dκ 3 cosh � = −mωn
2 �C sin + D sinh � (7.23)

The slope at the center is zero. Differentiating Eq. (7.22) and substituting x = l/2,

κ �C cos + D cosh � = 0 (7.24)

Solving Eqs. (7.23) and (7.24) for the ratio C/D and equating, the following fre-
quency equation is obtained:

2 = �tan − tanh �
where mb = γSl/g is the total mass of the beam. The lowest roots for the specified
ratios m/mb are as follows:

m/mb 1 5 25

κl/2 1.1916 0.8599 0.5857

κl
�
2

κl
�
2

κl
�
2

mb�
m

κl
�
2

κl
�
2

κl
�
2

κl
�
2

κl
�
2

κl
�
2
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FIGURE 7.9 (A) Beam having simply sup-
ported ends with mass attached at center. (B)
Forces exerted on mass, at extreme deflection,
by shear stresses in beam.
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The corresponding natural frequencies are found from Eq. (7.14) and are tabulated,
with the results obtained by the other methods, at the end of the example.

Solution by Rayleigh’s Method. For the solution by Rayleigh’s method it is
assumed that Y = B sin (πx/l). This is the fundamental mode for the unloaded beam
(Table 7.3). The terms in Eq. (7.19) become

�l

0
(Y″)2 dx = B2 � �4 �l

0
sin2 dx = B2 � �4

�l

0
Y 2 dx = B2 �l

0
sin2 dx = B2

Y 2(x1) = B2

Substituting these terms, Eq. (7.19) becomes

ωn = 
� = 
�
The frequencies for the specified values of m/mb are tabulated at the end of the
example. Note that if m = 0, the frequency is exactly correct, as can be seen from
Table 7.3. This is to be expected since, if no mass is added, the assumed shape is the
true shape.

Lumped Parameter Solution. Using the appropriate equation from Table 7.2,
the natural frequency is

ωn = 
�
Since mb = γSl/g, this becomes

ωn = 
�
�
Comparison of Results. The results for each method can be expressed as a

coefficient α multiplied by �EIg/Sγl4. The values of α for the specified values by
m/mb for the three methods of solution are:

m/mb 1 5 25

Exact 5.680 2.957 1.372
Rayleigh 5.698 2.976 1.382
Spring 5.657 2.954 1.372

The results obtained by all the methods agree closely. For large values of m/mb the
third method gives very accurate results.

Numerical Calculations. For steel, E = 30 × 106 lb/in.2, γ = 0.28 lb/in.3; for a rect-
angular beam, I = bh3/12 = 1/384 in.4 and S = bh = 1⁄2 in.2. The fundamental frequency
using the value of α for the exact solution when m/mb = 1 is

ω1 = 
� = 
� = 145 rad/sec = 23 Hz(30 × 106)(386)
��
(0.5)(384)(0.28)

5.680
�
576

EIg
�
Sγ

α
�
l2

EIg
�
Sγl4

48
��
(m/mb) + 0.5

48EI
��
l 3(m + 0.5mb)

EIg
�
Sγl4

π2

��
�1 + 2m/mb

EIB2(l/2)(π/l)4

��
(SγB2l/2g) + mB2

l
�
2

πx
�

l

π
�
l

l
�
2

πx
�

l
π
�
l
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Other frequencies can be found by using
the other values of α. Nearly the same
result is obtained by using Fig. 7.4, if half
the mass of the beam is added to the
additional mass.

LATERAL VIBRATION 

OF PLATES

General Theory of Bending of Rect-
angular Plates. For small deflections
of an initially flat plate of uniform thick-

ness (Fig. 7.10) made of homogeneous isotropic material and subjected to normal
and shear forces in the plane of the plate, the following equation relates the lateral
deflection w to the lateral loading:22

D∇4w = D � + 2 + � = P + Nx + 2Nxy + Ny

(7.25)

where D = Eh3/12(1 − µ2) is the plate stiffness, h being the plate thickness and µ Pois-
son’s ratio. The parameter P is the loading intensity, Nx the normal loading in the X
direction per unit of length, Ny the normal loading in the Y direction, and Nxy the
shear load parallel to the plate surface in the X and Y directions.

The bending moments and shearing forces are related to the deflection w by the
following equations:23

M1x = − D � + µ � M1y = − D � + µ �
T1xy = D(1 − µ) (7.26)

S1x = −D� + � S1y = −D� + �
As shown in Fig. 7.10, M1x and M1y are the bending moments per unit of length on the
faces normal to the X and Y directions, respectively, T1xy is the twisting or warping
moment on these faces, and S1x, S1y are the shearing forces per unit of length normal
to the plate surface.

The boundary conditions that must be satisfied by an edge parallel to the X axis,
for example, are as follows:
Built-in edge:

w = 0 = 0

Simply supported edge:

w = 0 M1y = −D � + µ � = 0
∂2w
�
∂x2

∂2w
�
∂y2

∂w
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FIGURE 7.10 Element of plate showing bend-
ing moments, normal forces, and shear forces.
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Free edge:

M1y = −D � + µ � = 0 T1xy = 0 S1y = 0

which together give

� + (2 − µ) � = 0

Similar equations can be written for other edges. The strains caused by the bend-
ing of the plate are

�x = −z �y = −z γxy = 2z (7.27)

where z is the distance from the center plane of the plate.
Hooke’s law may be expressed by the following equations:

�x = (σx − µσy) σx = (�x + µ�y)

�y = (σy − µσx) σy = (�y + µ�x) (7.28)

γxy = τxy = Gγxy

Substituting the expressions giving the strains in terms of the deflections, the fol-
lowing equations are obtained for the bending stresses in terms of the lateral
deflection:

σx = − � + µ � = z

σy = − � + µ � = z (7.29)

τxy = 2G z = z

Table 7.6 gives values of maximum deflection and bending moment at several points
in plates which have various shapes and conditions of support and which are sub-
jected to uniform lateral pressure. The results are all based on the assumption that
the deflections are small and that there are no loads in the plane of the plate. The
bending stresses are found by the use of Eqs. (7.29). Bending moments and deflec-
tions for many other types of load are in the literature.22

The stresses caused by loads in the plane of the plate are found by assuming that
the stress is uniform through the plate thickness. The total stress at any point in the
plate is the sum of the stresses caused by bending and by the loading in the plane of
the plate.

For plates in which the lateral deflection is large compared to the plate thickness
but small compared to the other dimensions, Eq. (7.25) is valid. However, additional
equations must be introduced because the forces Nx, Ny, and Nxy depend not only on
the initial loading of the plate but also upon the stretching of the plate due to the
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TABLE 7.6 Maximum Deflection and Bending Moments in Uniformly Loaded Plates under
Static Conditions
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bending. The equations of equilibrium for the X and Y directions in the plane of the
plate are

+ = 0 + = 0 (7.30)

It can be shown27 that the strain components are given by

�x = + � �2
�y = + � �2

γxy = + +
(7.31)

where u is the displacement in the X direction and v is the displacement in the Y
direction. By differentiating and combining these expressions, the following relation
is obtained:

+ − = � �2
− (7.32)

If it is assumed that the stresses caused by the forces in the plane of the plate are uni-
formly distributed through the thickness, Hooke’s law, Eqs. (7.28), can be expressed:

�x = (Nx − µNy) �y = (Ny − µNx) γxy = Nxy (7.33)

The equilibrium equations are satisfied by a stress function φ which is defined as
follows:

Nx = h Ny = h Nxy = −h (7.34)

If these are substituted into Eqs. (7.33) and the resulting expressions substituted
into Eq. (7.32), the following equation is obtained:

+ 2 + = E �� �2
− � (7.35)

A second equation is obtained by substituting Eqs. (7.34) in Eq. (7.25):

D∇4w = P + h � − 2 + � (7.36)

Equations (7.35) and (7.36), with the boundary conditions, determine φ and w, from
which the stresses can be computed. General solutions to this set of equations are
not known, but some approximate solutions can be found in the literature.28

Free Lateral Vibrations of Rectangular Plates. In Eq. (7.25), the terms on the
left are equal to the sum of the rates of change of the forces per unit of length in the
X and Y directions where such forces are exerted by shear stresses caused by bend-
ing normal to the plane of the plate. For a rectangular element with dimensions dx
and dy, the net force exerted normal to the plane of the plate by these stresses is 
D∇4w dx dy. The last three terms on the right-hand side of Eq. (7.25) give the net
force normal to the plane of the plate, per unit of length, which is caused by the forces
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acting in the plane of the plate. The net force caused by these forces on an element
with dimensions dx and dy is (Nx ∂2w/∂x2 + 2Nxy ∂2w/∂x ∂y + Ny ∂2w/∂y2) dx dy. As in
the corresponding beam problem, the forces in a vibrating plate consist of two parts:
(1) that which balances the static load P including the weight of the plate and (2) that
which is induced by the vibration.The first part is always in equilibrium with the load
and together with the load can be omitted from the equation of motion if the deflec-
tion is taken from the position of static equilibrium. The force exerted normal to the
plane of the plate by the bending stresses must equal the sum of the force exerted
normal to the plate by the loads acting in the plane of the plate; i.e., the product of the
mass of the element (γh/g) dx dy and its acceleration ẅ. The term involving the accel-
eration of the element is negative, because when the bending force is positive the
acceleration is in the negative direction. The equation of motion is

D∇4w = − hẅ + �Nx + 2Nxy + Ny � (7.37)

This equation is valid only if the magnitudes of the forces in the plane of the plate
are constant during the vibration. For many problems these forces are negligible and
the term in parentheses can be omitted.

When a system vibrates in a natural mode, all parts execute simple harmonic
motion about the equilibrium position; therefore, the solution of Eq. (7.37) can be
written as w = AW(x,y) cos (wnt + θ) in which W is a function of x and y only. Substi-
tuting this in Eq. (7.37) and dividing through by A cos (wnt + θ) gives

D∇4W = W + �Nx + 2Nxy + Ny � (7.38)

The function W must satisfy Eq. (7.38) as well as the necessary boundary conditions.
The solution of the problem of the lateral vibration of a rectangular plate with all

edges simply supported is relatively simple; in general, other combinations of edge
conditions require the use of other methods of solution. These are discussed later.

EXAMPLE 7.8. The natural frequencies and normal modes of small vibration of
a rectangular plate of length a, width b, and thickness h are to be calculated. All
edges are hinged and subjected to unchanging normal forces Nx and Ny.

SOLUTION. The following equation, in which m and n may be any integers, satis-
fies the necessary boundary conditions:

W = A sin sin (7.39)

Substituting the necessary derivatives into Eq. (7.38),

D �� �4
+ 2 � �2 � �2

+ � �4� π4 sin sin 

= sin sin − π2 �Nx � �2
+ Ny � �2� sin sin 

Solving for �n
2,

�n
2 = �π4D�� �2

+ � �2�2
+ π2 �Nx � �2

+ Ny � �2�� (7.40)

By using integral values of m and n, the various frequencies are obtained from Eq.
(7.40) and the corresponding normal modes from Eq. (7.39). For each mode, m and
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n represent the number of half sine waves in the X and Y directions, respectively. In
each mode there are m − 1 evenly spaced nodal lines parallel to the Y axis, and n − 1
parallel to the X axis.

Rayleigh’s and Ritz’s Methods. The modes of vibration of a rectangular plate
with all edges simply supported are such that the deflection of each section of the
plate parallel to an edge is of the same form as the deflection of a beam with both
ends simply supported. In general, this does not hold true for other combinations of
edge conditions. For example, the vibration of a rectangular plate with all edges built
in does not occur in such a way that each section parallel to an edge has the same
shape as does a beam with both ends built in. A function that is made up using the
mode shapes of beams with built-in ends obviously satisfies the conditions of zero
deflection and slope at all edges, but it cannot be made to satisfy Eq. (7.38).

The mode shapes of beams give logical functions with which to formulate shapes
for determining the natural frequencies, for plates having various edge conditions,
by the Rayleigh or Ritz methods. By using a single mode function in Rayleigh’s
method an approximate frequency can be determined. This can be improved by
using more than one of the modal shapes and using Ritz’s method as discussed
below.

The strain energy of bending and the kinetic energy for plates are given in Table
7.1. Finding the maximum values of the energies, equating them, and solving for �n

2

gives the following frequency equation:

Vmax�n
2 =

�
A
� W 2 dx dy

(7.41)

where V is the strain energy.
In applying the Rayleigh method, a function W is assumed that satisfies the nec-

essary boundary conditions of the plate. An example of the calculations is given in
the section on circular plates. If the shape assumed is exactly the correct one, Eq.
(7.41) gives the exact frequency. In general, the correct shape is not known and a
frequency greater than the natural frequency is obtained. The Ritz method involves
assuming W to be of the form W = a1W1(x,y) + a2W2(x,y) + . . . in which W1, W2, . . . all
satisfy the boundary conditions, and a1, a2, . . . are adjusted to give a minimum fre-
quency. Reference 29 is an extensive compilation, with references to sources, of cal-
culated and experimental results for plates of many shapes. Some examples are cited
in the following sections.

Square, Rectangular, and Skew Rectangular Plates. Tables of the functions
necessary for the determination of the natural frequencies of rectangular plates by
the use of the Ritz method are available,30 these having been derived by using the
modal shapes of beams having end conditions corresponding to the edge condi-
tions of the plates. Information is included from which the complete shapes of the
vibrational modes can be determined. Frequencies and nodal patterns for several
modes of vibration of square plates having three sets of boundary conditions are
shown in Table 7.7. By the use of functions which represent the natural modes of
beams, the frequencies and nodal patterns for rectangular and skew cantilever
plates have been determined31 and are shown in Table 7.8. Comparison of calcu-
lated frequencies with experimentally determined values shows good agreement.
Natural frequencies of rectangular plates having other boundary conditions are
given in Table 7.9.

γh
�
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Triangular and Trapezoidal Plates. Nodal patterns and natural frequencies for
triangular plates have been determined33 by the use of functions derived from the
mode shapes of beams, and are shown in Table 7.10. Certain of these have been com-
pared with experimental values and the agreement is excellent. Natural frequencies
and nodal patterns have been determined experimentally for six modes of vibration
of a number of cantilevered triangular plates34 and for the first six modes of can-
tilevered trapezoidal plates derived by trimming the tips of triangular plates parallel
to the clamped edge.35 These triangular and trapezoidal shapes approximate the
shapes of various delta wings for aircraft and of fins for missiles.

Circular Plates. The solution of the problem of small lateral vibration of circular
plates is obtained by transforming Eq. (7.38) to polar coordinates and finding the
solution that satisfies the necessary boundary conditions of the resulting equation.
Omitting the terms involving forces in the plane of the plate,36

� + + � � + + � = κ 4W (7.42)

where

κ 4 = γh�n
2

�
gD

∂2W
�
∂θ2
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�
r

∂W
�
∂r

1
�
r

∂2W
�
∂r 2

∂2

�
∂θ2

1
�
r

∂
�
∂r

1
�
r

∂2

�
∂r 2
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TABLE 7.7 Natural Frequencies and Nodal Lines of Square Plates with Various Edge Con-
ditions (After D. Young.29)
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The solution of Eq. (7.42) is36

W = A cos (nθ − β)[Jn(κr) + λJn(iκr)] (7.43)

where Jn is a Bessel function of the first kind. When cos (nθ − β) = 0, a mode having
a nodal system of n diameters, symmetrically distributed, is obtained. The term in
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TABLE 7.8 Natural Frequencies and Nodal Lines of Cantilevered Rectangular and Skew
Rectangular Plates (µ = 0.3)* (M. V. Barton.30)

* For terminology, see Table 7.7.
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brackets represents modes having concentric nodal circles. The values of κ and λ
are determined by the boundary conditions, which are, for radially symmetrical
vibration:
Simply supported edge:

W = 0 M1r = D � + � = 0

Fixed edge:

W = 0 = 0
dW
�
dr

dW
�
dr

µ
�
a

d 2W
�
dr2
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TABLE 7.9 Natural Frequencies of Rectangular Plates (R. F. S. Hearman.32)
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Free edge:

M1r = D � + � = 0 � + � = 0

EXAMPLE 7.9. The steel diaphragm of a radio earphone has an unsupported
diameter of 2.0 in. and is 0.008 in. thick. Assuming that the edge is fixed, the lowest
three frequencies for the free vibration in which only nodal circles occur are to be
calculated, using the exact method and the Rayleigh and Ritz methods.

EXACT SOLUTION. In this example n = 0, which makes cos (nθ − β) = 1; thus, Eq.
(7.43) becomes

W = A[J0(κr) + λI0(κr)]

where J0(iκr) = I0(κr) and I0 is a modified Bessel function of the first kind.
At the boundary where r = a,

= Aκ[−J1(κa) + λI1(κa)] = 0 −J1(κa) + λI1(κa) = 0

The deflection at r = a is also zero:

∂W
�
∂r

dW
�
dr

1
�
r

d 2W
�
dr 2

d
�
dr

dW
�
dr

µ
�
a

d 2W
�
dr 2
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TABLE 7.10 Natural Frequencies and
Nodal Lines of Triangular Plates (B. W.
Anderson.33)
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J0(κa) + λI0(κa) = 0

The frequency equation becomes

λ = = −

The first three roots of the frequency equation are: κa = 3.196, 6.306, 9.44. The cor-
responding natural frequencies are, from Eq. (7.42),

ωn = 
� 
� 
�
For steel, E = 30 × 106 lb/in.2, γ = 0.28 lb/in.3, and µ = 0.28. Hence

D = = = 1.38 lb-in.

Thus, the lowest natural frequency is

ω1 = 10.21 
� = 4960 rad/sec = 790 Hz

The second frequency is 3070 Hz, and the third is 6880 Hz.
SOLUTION BY RAYLEIGH’S METHOD. The equations for strain and kinetic ener-

gies are given in Table 7.1.The strain energy for a plate with clamped edges becomes

V = πD �a

0
� + �2

r dr

The maximum kinetic energy is

T = �a

0
W 2r dr

An expression of the form W = a1 [1 − (r/a)2]2, which satisfies the conditions of zero
deflection and slope at the boundary, is used. The first two derivatives are ∂W/∂r =
a1(−4r/a2 + 4r 3/a4) and ∂2W/∂r 2 = a1(−4/a2 + 12r 2/a4). Using these values in the equa-
tions for strain and kinetic energy, V = 32πDa1

2/3a2 and T = ωn
2πγha2a1

2/10g. Equat-
ing these values and solving for the frequency,

ωn = 
� = 
�
This is somewhat higher than the exact frequency.

SOLUTION BY RITZ’S METHOD. Using an expression for the deflection of the form

W = a1[1 − (r/a)2]2 + a2[1 − (r/a)2]3

and applying the Ritz method, the following values are obtained for the first two
frequencies:

ω1 = 
� ω2 = 
�
The details of the calculations giving this result are in the literature.37 The first fre-
quency agrees with the exact answer to four significant figures, while the second fre-
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∂r 2

(1.38)(386)
��
(0.28)(0.008)

30 × 106(0.008)3

��
12(1 − 0.078)

Eh3

��
12(1 − µ2)

Dg
�
γh

88.9
�

a2

Dg
�
γh

39.77
�

a2

Dg
�
γh

10.21
�

a2

J0(κa)
�
I0(κa)

J1(κa)
�
I1(κa)

7.38 CHAPTER SEVEN

8434_Harris_07_b.qxd  09/20/2001  11:24 AM  Page 7.38



quency is somewhat high. A closer approximation to the second frequency and
approximations of the higher frequencies could be obtained by using additional
terms in the deflection equation.

The frequencies of modes having n nodal diameters are:37

n = 1: ω1 = 
�
n = 2: ω2 = 
�
For a plate with its center fixed and edge free, and having m nodal circles, the fre-
quencies are:38

m 0 1 2 3

ωna2/
� 3.75 20.91 60.68 119.7

Stretching of Middle Plane. In the usual analysis of plates, it is assumed that the
deflection of the plate is so small that there is no stretching of the middle plane. If
such stretching occurs, it affects the natural frequency.Whether it occurs depends on
the conditions of support of the plate, the amplitude of vibration, and possibly other
conditions. In a plate with its edges built in, a relatively small deflection causes a sig-
nificant stretching.The effect of stretching is not proportional to the deflection; thus,
the elastic restoring force is not a linear function of deflection. The natural fre-
quency is not independent of amplitude but becomes higher with increasing ampli-
tudes. If a plate is subjected to a pressure on one side, so that the vibration occurs
about a deflected position, the effect of stretching may be appreciable. The effect of
stretching in rectangular plates with immovable hinged supports has been dis-
cussed.39 The effect of the amplitude on the natural frequency is shown in Fig. 7.11;
the effect on the total stress in the plate is shown in Fig. 7.12. The natural frequency
increases rapidly as the amplitude of vibration increases.

Rotational Motion and Shearing Forces. In the foregoing analysis, only the
motion of each element of the plate in the direction normal to the plane of the
plate is considered. There is also rotation of each element, and there is a deflection
associated with the lateral shearing forces in the plate. The effects of these factors
becomes significant if the curvature of the plate is large relative to its thickness,
i.e., for a plate in which the thickness is large compared to the lateral dimensions
or when the plate is vibrating in a mode for which the nodal lines are close
together. These effects have been analyzed for rectangular plates40 and for circular
plates.41

Complete Circular Rings. Equations have been derived42,43 for the natural fre-
quencies of complete circular rings for which the radius is large compared to the
thickness of the ring in the radial direction. Such rings can execute several types of
free vibration, which are shown in Table 7.11 with the formulas for the natural fre-
quencies.

Dg
�
γh

Dg
�
γh

34.84
�

a2

Dg
�
γh

21.22
�

a2
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TRANSFER MATRIX METHOD

In some assemblies which consist of various types of elements, e.g., beam segments,
the solution for each element may be known. The transfer matrix method44,45 is a
procedure by means of which the solution for such elements can be combined to
yield a frequency equation for the assembly. The associated mode shapes can then
be determined. The method is an extension to distributed systems of the Holzer
method, described in Chap. 38, in which torsional problems are solved by dividing

an assembly into lumped masses and
elastic elements, and of the Myklestad
method,46 in which a similar procedure
is applied to beam problems. The
method has been used47 to find the nat-
ural frequencies and mode shapes of
the internals of a nuclear reactor by
modeling the various elements of the
system as beam segments.

The method will be illustrated by set-
ting up the frequency equation for a can-
tilever beam, Fig. 7.13, composed of
three segments, each of which has uni-
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FIGURE 7.11 Influence of amplitude on
period of vibration of uniform rectangular
plates with immovable hinged edges. The aspect
ratio r is the ratio of width to length of the plate.
(H. Chu and G. Herrmann.39)

FIGURE 7.12 Influence of amplitude on max-
imum total stress in rectangular plates with
immovable hinged edges. The aspect ratio r is
the ratio of width to length of the plate. (H. Chu
and G. Herrmann.39)

FIGURE 7.13 Cantilever beam made up of
three segments having different section proper-
ties.
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form section properties. Only the effects of bending will be considered, but the
method can be extended to include other effects, such as shear deformation and
rotary motion of the cross section.45 Application to other geometries is described in
Ref. 45.

Depending on the type of element being considered, the values of appropriate
parameters must be expressed at certain sections of the piece in terms of their val-
ues at other sections. In the beam problem, the deflection and its first three deriva-
tives must be used.

Transfer Matrices. Two types of transfer matrix are used. One, which for the
beam problem is called the R matrix (after Lord Rayleigh44), yields the values of the
parameters at the right end of a uniform segment of the beam in terms of their val-
ues at the left end of the segment. The other type of transfer matrix is the point
matrix, which yields the values of the parameters just to the right of a joint between
segments in terms of their values just to the left of the joint.

VIBRATION OF SYSTEMS HAVING DISTRIBUTED MASS AND ELASTICITY 7.41

TABLE 7.11 Natural Frequencies of Complete Circular Rings Whose Thickness in Radial
Direction Is Small Compared to Radius
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As can be seen by looking at the successive derivatives, the coefficients in Eq.
(7.16) are equal to the following, where the subscript 0 indicates the value of the
indicated parameter at the left end of the beam:

A = C = B = D =

Using the following notation, X and its derivatives at the right end of a beam seg-
ment can be expressed, by the matrix equation, in terms of the values at the left end
of the segment. The subscript n refers to the number of the segment being consid-
ered, the subscript l to the left end of the segment and the subscript r to the right end.

C0n =

S1n =

C2n =

S3n =

where κn takes the value shown in Eq. (7.14) with the appropriate values of the
parameters for the segment and ln is the length of the segment.

�
X

� �
C0n S1n C2n S3n

� �
X

�X′ κn
4S3n C0n S1n C2n X′

X″
=

κn
4C2n κn

4S3n C0n S1n X″
X″′ rn κn

4S1n κn
4C2n κn

4S3n C0n X″′ ln

or xrn = RnXln, where the boldface capital letter denotes a square matrix and the
boldface lowercase letters denote column matrices. Matrix operations are discussed
in Chap. 28.

At a section where two segments of a beam are joined, the deflection, the slope, the
bending moment, and the shear must be the same on the two sides of the joint. Since
M = EI ⋅ X″ and V = EI ⋅ X″′, the point transfer matrix for such a joint is as follows,
where the subscript jn refers to the joint to the right of the nth segment of the beam:

�
X

� �
1 0 0 0

� �
X

�X′ 0 1 0 0 X′
X″

=
0 0 (EI)l/(EI)r 0 X″

X″′ rjn 0 0 0 (EI)l/(EI)r X″′ ljn

or xrjn = Jnxljn.
The Frequency Equation. For the cantilever beam shown in Fig. 7.13, the coef-

ficients relating the values of X and its derivatives at the right end of the beam to
their values at the left end are found by successively multiplying the appropriate R
and J matrices, as follows:

xr3 = R3J2R2J1R1xl1

−(sin κnln − sinh κnln)���
2κn

3

−(cos κnln − cosh κnln)���
2κn

2

sin κnln + sinh κnln��
2κn

cos κnln + cosh κnln���
2

−X0″′
�

2κ 3

−X0″�
2κ 2

X0′�
2κ

X0�
2
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Carrying out the multiplication of the square R and J matrices and calling the result-
ing matrix P yields

�
X

� �
P11 P12 P13 P14

� �
X

�X′ P21 P22 P23 P24 X′
X″

=
P31 P32 P33 P34 X″

X″′ r3 P41 P42 P43 P44 X″′ l1

The boundary conditions at the fixed left end of the cantilever beam are X = X′ = 0.
Using these and performing the multiplication of P by xl1 yields the following:

Xr3 = P13Xl1″ + P14Xl1″′

Xr3′ = P23Xl1″ + P24Xl1″′

Xr3″ = P33Xl1″ + P34Xl1″′

Xr3″′ = P43Xl1″ + P44Xl1″′

(7.44)

The boundary conditions for the free right end of the beam are X″ = X″′ = 0. Using
these in the last two equations results in two simultaneous homogeneous equations,
so that the following determinant, which is the frequency equation, results:

� P33 P34 � = 0P43 P44

It can be seen that for a beam consisting of only one segment, this determinant yields
a result which is equivalent to Eq. (7.17).

While in theory it would be possible to multiply the successive R and J matrices
and obtain the P matrix in literal form, so that the transcendental frequency equa-
tion could be written, the process, in all but the simplest problems, would be long and
time-consuming.A more practicable procedure is to perform the necessary multipli-
cations with numbers, using a digital computer, and finding the roots by trial and
error.

Mode Shapes. Either of the last two equations of Eq. (7.44) may be used to find
the ratio Xl1″/Xl1″′. These are used in Eq. (7.16), with κ = κ1 to find the shape of the
first segment. By the use of the R and J matrices the values of the coefficients in Eq.
(7.16) are found for each of the other segments.

With intermediate rigid supports or pinned connections, numerical difficulties
occur in the solution of the frequency equation. These difficulties are eliminated by
the use of delta matrices, the elements of which are combinations of the elements of
the R matrix.These delta matrices, for various cases, are tabulated in Refs. 44 and 45.

In Ref. 47 transfer matrices are developed and used for structures which consist,
in part, of beams that are parallel to each other.

FORCED VIBRATION

CLASSICAL SOLUTION

The classical method of analyzing the forced vibration that results when an elastic
system is subjected to a fluctuating load is to set up the equation of motion by the
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application of Newton’s second law. During the vibration, each element of the sys-
tem is subjected to elastic forces corresponding to those experienced during free
vibration; in addition, some of the elements are subjected to the disturbing force.
The equation which governs the forced vibration of a system can be obtained by
adding the disturbing force to the equation for free vibration. For example, in Eq.
(7.13) for the free vibration of a uniform beam, the term on the left is due to the
elastic forces in the beam. If a force F (x,t) is applied to the beam, the equation of
motion is obtained by adding this force to Eq. (7.13), which becomes, after rear-
ranging terms,

EI + = F (x,t)

where EI is a constant. The solution of this equation gives the motion that results
from the force F. For example, consider the motion of a beam with hinged ends sub-
jected to a sinusoidally varying force acting at its center. The solution is obtained by
representing the concentrated force at the center by its Fourier series:

EIy″″ + ÿ = �sin − sin + sin ⋅⋅⋅� sin ωt

= 	
n = ∞

n = 1
�sin sin � sin ωt (7.45)

where sin (nπ/2), which appears in each term of the series, makes the nth term posi-
tive, negative, or zero. The solution of Eq. (7.45) is

y = 	
n = ∞

n = 1
�An sin sin ωnt + Bn sin cos ωnt

+ sin sin sin ωt� (7.46)

The first two terms of Eq. (7.46) are the values of y which make the left side of
Eq. (7.45) equal to zero.They are obtained in exactly the same way as in the solution
of the free-vibration problem and represent the free vibration of the beam.The con-
stants are determined by the initial conditions; in any real beam, damping causes the
free vibration to die out. The third term of Eq. (7.46) is the value of y which makes
the left-hand side of Eq. (7.45) equal the right-hand side; this can be verified by sub-
stitution. The third term represents the forced vibration. From Table 7.3, κnl = nπ for
a beam with hinged ends; then from Eq. (7.14), ωn

2 = n4π4EIg/Sγl4. The term repre-
senting the forced vibration in Eq. (7.46) can be written, after rearranging terms,

y = 	
n = ∞

n = 1
sin sin ωt (7.47)

From Table 7.3 and Eq. (7.16), it is evident that this deflection curve has the same
shape as the nth normal mode of vibration of the beam since, for free vibration of a
beam with hinged ends, Xn = 2C sin κx = sin (nπx/l).

The equation for the deflection of a beam under a distributed static load F(x) can
be obtained by replacing −(γS/g)ÿ with F in Eq. (7.12); then Eq. (7.13) becomes

ys″″ = (7.48)
F(x)
�

EI

nπx
�

l
sin (nπ/2)

��
ωn

2[1 − (ω/ωn)2]
2Fg
�
Sγl

nπx
�

l
2Fg/Sγl

���
(nπ/l)4(EIg/Sγ) − ω2

nπ
�
2

nπx
�

l
nπx
�

l

nπx
�

l
nπ
�
2

2F
�

l

5πx
�

l
3πx
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l
πx
�

l
2F
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l
γS
�
g

∂2y
�
∂t2

γS
�
g

∂4y
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∂x4
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where EI is a constant. For a static loading F(x) = 2F/l sin nπ/2 sin nπx/l correspon-
ding to the nth term of the Fourier series in Eq. (7.45), Eq. (7.48) becomes ysn″″ =
2F/EIl sin nπ/2 sin nπx/l. The solution of this equation is

ysn = � �4
sin sin 

Using the relation ωn
2 = n4π4EIg/Sγ l4, this can be written

ysn = sin sin 

Thus, the nth term of Eq. (7.47) can be written

yn = ysn sin ωt

Thus, the amplitude of the forced vibration is equal to the static deflection under
the Fourier component of the load multiplied by the “amplification factor” 1/[1 −
(ω/ωn)2]. This is the same as the relation that exists, for a system having a single
degree-of-freedom, between the static deflection under a load F and the amplitude
under a fluctuating load F sin ωt. Therefore, insofar as each mode alone is con-
cerned, the beam behaves as a system having a single degree-of-freedom. If the
beam is subjected to a force fluctuating at a single frequency, the amplification fac-
tor is small except when the frequency of the forcing force is near the natural fre-
quency of a mode. For all even values of n, sin (nπ/2) = 0; thus, the even-numbered
modes are not excited by a force acting at the center, which is a node for those
modes. The distribution of the static load that causes the same pattern of deflec-
tion as the beam assumes during each mode of vibration has the same form as the
deflection of the beam. This result applies to other beams since a comparison of
Eqs. (7.15) and (7.48) shows that if a static load F = (ωn

2γS/g)y is applied to any
beam, it will cause the same deflection as occurs during the free vibration in the
nth mode.

The results for the simply supported beam are typical of those which are
obtained for all systems having distributed mass and elasticity. Vibration of such a
system at resonance is excited by a force which fluctuates at the natural frequency of
a mode, since nearly any such force has a component of the shape necessary to excite
the vibration. Even if the force acts at a nodal point of the mode, vibration may be
excited because of coupling between the modes.

METHOD OF VIRTUAL WORK

Another method of analyzing forced vibration is by the use of the theorem of virtual
work and D’Alembert’s principle. The theorem of virtual work states that when any
elastic body is in equilibrium, the total work done by all external forces during any
virtual displacement equals the increase in the elastic energy stored in the body. A
virtual displacement is an arbitrary small displacement that is compatible with the
geometry of the body and which satisfies the boundary conditions.

In applying the principle of work to forced vibration of elastic bodies, the prob-
lem is made into one of equilibrium by the application of D’Alembert’s principle.
This permits a problem in dynamics to be considered as one of statics by adding to
the equation of static equilibrium an “inertia force” which, for each part of the body,

1
��
1 − (ω/ωn)2

nπ
�
2

nπx
�

l
2Fg
�
ωn

2Sγl

nπx
�

l
nπ
�
2

l
�
nπ

2F
�
EIl
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is equal to the product of the mass and the acceleration. Using this principle, the the-
orem of virtual work can be expressed in the following equation:

∆V = ∆(FI + FE) (7.49)

in which V is the elastic strain energy in the body, FI is the inertia force, FE is the
external disturbing force, and ∆ indicates the change of the quantity when the body
undergoes a virtual displacement. The various quantities can be found separately.

For example, consider the motion of a uniform beam having hinged ends with a
sinusoidally varying force acting at the center, and compare the result with the solu-
tion obtained by the classical method. All possible motions of any beam can be rep-
resented by a series of the form

y = q1X1 + q2X2 + q3X3 + ⋅⋅⋅ = 	
n = ∞

n = 1
qnXn (7.50)

in which the X’s are functions representing displacements in the normal modes of
vibration and the q’s are coefficients which are functions of time.The determination
of the values of qn is the problem to be solved. For a beam having hinged ends, Eq.
(7.50) becomes

y = 	
n = ∞

n = 1
qn sin (7.51)

This is evident by using the values of κnl from Table 7.3 in Eq. (7.16). A virtual dis-
placement, being any arbitrary small displacement, can be assumed to be

∆y = ∆qmXm = ∆qm sin 

The elastic strain energy of bending of the beam is

V = �l

0
� �2

dx = 	
n = ∞

n = 1
qn

2 �l

0
� �sin ��2

dx

= 	
n = ∞

n = 1
qn

2 � �4 �l

0
�sin �2

dx = 	
n = ∞

n = 1
qn

2 � �4

For the virtual displacement, the change of elastic energy is

∆V = ∆qm = (nπ)4qm∆qm = (κnl)4qm∆qm

The value of the inertia force at each section is

FI = − ÿ = − 	
n = ∞

n = 1
sin 

The work done by this force during the virtual displacement ∆y is

∆FI = FI ∆y = − 	
n = ∞

n = 1
∆qm �l

0
sin sin dx

= − ∆qm
d 2qm�
dt 2
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The orthogonality relation of Eq. (7.1) is used here, making the integral vanish when
n = m. For a disturbing force FE, the work done during the virtual displacement is

∆FE = FE ∆y = F(Xm)x = c ∆qm

in which (Xm)x = c is the value of Xm at the point of application of the load. Substitut-
ing the terms into Eq. (7.49),

q̈m + (κml)4qm = F(Xm)x = c

Rearranging terms and letting EI/Sγ = a2,

q̈m + κm
4a2qm = F(Xm)x = c (7.52)

If FE is a force which varies sinusoidally with time at any point x = c,

F (Xm)x = c = F̄ sin sin ωt

and Eq. (7.52) becomes

q̈m + κm
4a2qm = sin sin ωt

The solution of this equation is

qm = Am sin κm
2at + Bm cos κm

2at + sin ωt

Since κm
2a = ωm,

qm = Am sin ωmt + Bm cos ωmt + sin ωt

when the force acts at the center c/l = 1⁄2. Substituting the corresponding values of q
in Eq. (7.51), the solution is identical to Eq. (7.46), which was obtained by the classi-
cal method.

VIBRATION RESULTING FROM MOTION OF SUPPORT

When the supports of an elastic body are
vibrated by some external force, forced
vibration may be induced in the body.48

For example, consider the motion that
results in a uniform beam, Fig. 7.14, when
the supports are moved through a sinu-
soidally varying displacement (y)x = 0, l =
Y0 sin ωt. Although Eq. (7.13) was devel-
oped for the free vibration of beams, it is
applicable to the present problem
because there is no force acting on any

section of the beam except the elastic force associated with the bending of the beam.
If a solution of the form y = X(x) sin ωt is assumed and substituted into Eq. (7.13):

sin (mπc/l)
��

ωm
2 − ω2

2F̄g
�
γSl

sin (mπc/l)
��
κm

4a2 − ω2

2F̄g
�
γSl

mπc
�

l
2gF̄
�
γSl

mπc
�

l

2g
�
γSl

EI
�
2l 3

γSl
�
2g
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FIGURE 7.14 Simply supported beam under-
going sinusoidal motion induced by sinusoidal
motion of the supports.
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X″″ = X (7.53)

This equation is the same as Eq. (7.15) except that the natural frequency ωn
2 is

replaced by the forcing frequency ω2. The solution of Eq. (7.53) is the same except
that κ is replaced by κ′ = (ω2γS/EIg)1/4:

X = A1 sin κ′x + A2 cos κ′x + A3 sinh κ′x + A4 cosh κ′x (7.54)

The solution of the problem is completed by finding the constants, which are deter-
mined by the boundary conditions. Certain boundary conditions are associated with
the supports of the beam and are the same as occur in the solution of the problem of
free vibration. Additional conditions are supplied by the displacement through
which the supports are forced. For example, if the supports of a beam having hinged
ends are moved sinusoidally, the boundary conditions are: at x = 0 and x = l, X″ = 0,
since the moment exerted by a hinged end is zero, and X = Y0, since the amplitude of
vibration is prescribed at each end. By the use of these boundary conditions, Eq.
(7.54) becomes

X = �tan sin κ′x + cos κ′x − tanh sinh κ′x + cosh κ′x� (7.55)

The motion is defined by y = X sin ωt. For all values of κ′, each of the coefficients
except the first in Eq. (7.55) is finite. The tangent term becomes infinite if κ′l = nπ,
for odd values of n. The condition for the amplitude to become infinite is ω = ωn

because κ′/κ = ω2/ωn
2 and, for natural vibration of a beam with hinged ends, κnl = nπ.

Thus, if the supports of an elastic body are vibrated at a frequency close to a natural
frequency of the system, vibration at resonance occurs.

DAMPING

The effect of damping on forced vibration can be discussed only qualitatively.
Damping usually decreases the amplitude of vibration, as it does in systems having
a single degree-of-freedom. In some systems, it may cause coupling between modes,
so that motion in a mode of vibration that normally would not be excited by a cer-
tain disturbing force may be induced.
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