L2 PCGS - Outils Mathématiques 4

Contrôle continu $n^{\circ}3$ - 20 mars 2019 - Durée: 30 minutes

L'épreuve se compose de 2 exercices indépendants. Les documents, calculatrice et téléphone portable ne sont pas autorisés. Le barème est à titre indicatif.

Exercice 1. (6 points.) Soit $\omega = 2xyz dx + x^2z dy + x^2y dz$.

- i) Déterminer une paramétrisation du segment γ d'origine (1,1,1) et d'extrémité (1,2,4).
- ii) Calculer l'intégrale curviligne $\int_{\gamma} 2xyz \, dx + x^2z \, dy + x^2y \, dz$.
- iii) Déterminer une fonction f définie sur \mathbb{R}^3 telle que $\omega = df$.
- iv) Calculer $\int_C 2xyz\,dx + x^2z\,dy + x^2y\,dz$ où C est un arc de cercle d'origine (1,1,1) et d'extrémité (1,2,4).

Exercice 2. (4 points.)

- i) Calculer le travail du gradient de $f(x,y,z)=\frac{1}{\sqrt{x^2+y^2+z^2}}+\frac{1}{\sqrt{(x-1)^2+(y-1)^2+z^2}}$ le long de l'hélice $\gamma(t)=(\cos 2\pi t,\sin 2\pi t,t)$ où $t\in[0,1].$
- ii) Calculer le travail de $\vec{V}(x,y)=\frac{-y}{x^2+4y^2}\vec{i}+\frac{x}{x^2+4y^2}\vec{j}$ le long de l'ellipse $\mathcal{E}:x(t)=2\cos t,\ y(t)=\sin t$ où $t\in[0,2\pi].$ Que peut-on en déduire?

Question bonus (+1 point):

Calculer, en utilisant une intégrale curviligne, l'aire du triangle de sommets A = (0,0), B = (2,-3) et C = (3,4).