Université de Rennes 1 Département de Mathématiques

Licence de Mathématiques "Calcul Différentiel et Fonctions Holomorphes"

Examen du 9 mai 2007 (Durée 2 h) (documents et calculettes ne sont pas autorisés)

Exercice 1:

- a) Formuler le théorème des fonctions implicites.
- b) Démontrer que l'équation

$$x^4 + xy + y^4 = 3$$

et la condition f(1) = 1 définissent la fonction y = f(x) au voisinage de x = 1. Trouver les dérivées f'(1) et f''(1).

Exercice 2:

- a) On considère une fonction $f: M \to \mathbf{R}$ définie sur une variété $M \subset \mathbf{R}^n$. Donner la définition de : f admet un minimum local en un point $\mathbf{x}_0 \in M$.
- b) Supposons que les fonctions $f: \mathbf{R}^n \to \mathbf{R}$ et $g: \mathbf{R}^n \to \mathbf{R}$ sont de classe C^1 et que l'équation $g(\mathbf{x}) = 0$ définit une variété M. Donner la condition nécessaire pour qu'un point $\mathbf{x}_0 \in M$ soit un extrêmum de $f: M \to \mathbf{R}$.
- c) On considère la fonction f(x, y, z) = x 2y + 2z sur la sphère d'équation $x^2 + y^2 + z^2 = 1$. Trouver les points où la condition nécessaire d'extrêmum est satisfaite.
- d) Sous les hypothèses de c), est-ce qu'un minimum ou un maximum (local ou global) est vraiment atteint en ces points ?

Exercice 3:

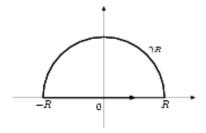
Soit Ω un ouvert convexe du plan complexe \mathbf{C} , γ un chemin dans Ω et f une fonction holomorphe sur Ω .

1.a) Comment est définie $\int_{\gamma} f(z)dz$? Quelle est sa valeur si γ est un chemin fermé? On pourra utiliser sans démonstration un théorème du cours.

On suppose dorénavant que $\gamma:[a,b]\to {\bf C}$ est un chemin fermé simple, c'est-à-dire que

$$\forall t, t' \in [a, b[, \gamma(t) = \gamma(t') \Rightarrow t = t']$$
.

- 1.b) Soit $z_0 \in \Omega$, rappeler la formule de Cauchy reliant $f(z_0)$ et $\int_{\gamma} \frac{f(z)}{z-z_0} dz$ en précisant pour quels z_0 elle est valide.
- 2. Soit R > 1. On note γ_R le chemin fermé correspondant au demi cercle de centre 0 et de rayon R parcouru entre 0 et π , suivi du segment [-R, R]. Le tout parcouru une seule fois et dans le sens trigonométrique (ou sens positif):



2.a) Déterminer les pôles de la fonction définie par :

$$f(z) = \frac{e^{i\lambda z}}{1 + z^2}$$

et calculer ses résidus.

2.b) En déduire la valeur, pour $\lambda>0,$ de l'intégrale

$$\int_{\gamma_R} \frac{e^{i\lambda z}}{1+z^2} dz.$$

- 2.c) En considérant une paramétrisation du contour γ_R , décomposer cette intégrale en deux intégrales d'une variable réelle.
- 2.d) Déterminer la limite, lorsque R tend vers l'infini, de l'intégrale sur le demi-cercle.
- 2.e) En déduire que, pour $\lambda > 0$,

$$\int_{-\infty}^{+\infty} \frac{e^{i\lambda x}}{1+x^2} dx = \pi e^{-\lambda}$$

Exercice 4

Soit f une fonction holomorphe sur $\{z \in \mathbf{C}, \ 0 < |z| < 1\}$. On suppose que

$$|f(z)|e^{-\frac{1}{|z|}} \to 1$$

lorsque $z \to 0$.

- 1. Donner la définition d'une singularité éliminable. Montrer que la singularité de f en 0 n'est pas éliminable.
- 2. Enoncer la définition d'un pôle d'ordre m. Supposons que 0 soit un pôle d'ordre m pour f, montrer que

$$|z|^{m+1}|f(z)| \to 0$$

lorsque $z\to 0$. En déduire que 0 n'est pas un pôle pour f. A quel type de singularité a-t-on affaire ?