Examen lundi 25 mai 2009 Durée 2h

L'épreuve est composée de 4 exercices indépendants Les documents et les calculatrices ne sont pas autorisés

Exercice 1. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $(x,y) \mapsto \sin(x+y^2) - 2y$.

- 1. Montrer que f est une fonction de classe C^{∞} et calculer en tout point $(x,y) \in \mathbb{R}^2$, sa matrice jacobienne $J_f(x,y)$.
- 2. Montrer qu'il existe $\varepsilon > 0$ et une fonction $\varphi :] \varepsilon, \varepsilon [\to \mathbb{R}$ tels que $: \varphi(0) = 0$ et $f(\varphi(y),y) = 0$.
- 3. Détermine le développement limité de φ à l'ordre 2 en 0. En déduire $\lim_{y\to 0}\frac{\varphi(y)-2y}{2y^2}.$

Exercice 2.

Soit $\phi : \mathbb{R} \times]0, +\infty[\longrightarrow \mathbb{R}^2, (x,y) \mapsto (e^x + \ln(y), e^x + \ln(y^3)).$

En déduire les éventuels extrema de f dans $\mathbb{R} \times]0, +\infty[$.

- 1. Rappeler la définition d'un difféomorphisme de classe $\mathbb{C}^1.$
- 2. Montrer que l'image de ϕ est l'ensemble $U = \{(u,v) \in \mathbb{R}^2 | v < 3u\}.$
- 3. Montrer que ϕ est un difféomorphisme de classe C^1 de $\mathbb{R} \times]0, +\infty[$ sur U.
- 4. Soit $f: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$, la fonction définie par : $f(x,y) = e^{3x} + e^{2x}(3 \ln y 1) + 3e^x((\ln y)^2 2 \ln y) + (\ln y)^3 9(\ln y)^2$. Montrer que $f = g \circ \phi$ où $g(u,v) = u^3 v^2$.

Exercice 3. Calculer $\int_{\gamma} \frac{e^z}{(z-1)^2 \sin z} dz$ dans chacun des cas suivants :

- 1. γ est le cercle de centre 0 et de rayon $\frac{1}{2},$ orienté dans le sens positif.
- 2. γ est le cercle de centre 1 et de rayon $\frac{1}{2},$ orienté dans le sens positif.
- 3. γ est le triangle de sommets : -i, (1+i) et 4, orienté dans le sens positif.

Exercice 4. Calculer les intégrales suivantes :

1.
$$J = \int_{-\infty}^{+\infty} \frac{\cos x}{(x^2 + 1)^2} dx$$
.

2.
$$I = \int_0^{2\pi} \frac{\cos 3t}{5 - 4\cos t} dt$$
.