Corrigé de l'examen du lundi 30 avril 2012

Exercise 1. (3 pts) Soit la fonction $f: \mathbb{R}^2 \setminus \{(x,y) \mid x=0\} \longrightarrow \mathbb{R}, (x,y) \mapsto \sin\left(\frac{\pi y}{2x}\right)$.

1. f est différentiable sur son domaine de définition comme composée de fonctions différentiables et pour tout $(x,y) \in \mathbb{R}^* \times \mathbb{R}$:

$$J_f(x,y) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right) = \left(-\frac{\pi y}{2x^2}\cos\left(\frac{\pi y}{2x}\right), \frac{\pi}{2x}\cos\left(\frac{\pi y}{2x}\right)\right).$$

En particulier au point (1,1), Jf(1,1) = (0,0) ainsi $Df(1,1)(h,k) = (0,0) \binom{h}{k} = 0$

2. f est deux fois différentiable sur son domaine de définition et pour tout $(x,y) \in \mathbb{R}^* \times \mathbb{R}$:

$$\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{\pi y}{x^3} \cos\left(\frac{\pi y}{2x}\right) - \left(\frac{\pi y}{2x^2}\right)^2 \sin\left(\frac{\pi y}{2x}\right)$$
$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = -\frac{\pi}{2x} \cos\left(\frac{\pi y}{2x}\right) - \frac{\pi^2 y}{4x^3} \sin\left(\frac{\pi y}{2x}\right)$$
$$\frac{\partial^2 f}{\partial y^2}(x,y) = -\left(\frac{\pi}{2x}\right)^2 \sin\left(\frac{\pi y}{2x}\right).$$

En particulier au point (1,1), $H_f(1,1) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(1,1) & \frac{\partial^2 f}{\partial x \partial y}(1,1) \\ \frac{\partial^2 f}{\partial x \partial y}(1,1) & \frac{\partial^2 f}{\partial y^2}(1,1) \end{pmatrix} = \begin{pmatrix} -\frac{\pi^2}{4} & \frac{\pi^2}{4} \\ \frac{\pi^2}{4} & -\frac{\pi^2}{4} \end{pmatrix}$

Ainsi $D^2 f(1,1)((h,k),(h,k)) = (h,k) \cdot H_f(1,1) \cdot \binom{h}{k} = -\frac{\pi^2}{4}(h-k)^2$.

3. On déduit de la question 1 que (1,1) est un point critique de f.

D'après la question 2, la forme quadratique $(h,k) \mapsto D^2 f(1,1)((h,k),(h,k))$ est négative, mais n'est pas définie, car

 $D^2f(1,1)((h,h),(h,h)) = 0$, on ne peut donc pas conclure avec les résultats du cours que (1,1) est un minimum local.

Cependant, comme $f(1,1) = \sin\left(\frac{\pi}{2}\right) = 1 \ge \sin\left(\frac{\pi y}{2x}\right) = f(x,y)$ pour tout $(x,y) \in \mathbb{R}^* \times \mathbb{R}$, (1,1) est un maximum global de f.

Exercice 2. (7 pts)

Soit
$$\lambda \in \mathbb{R}$$
. Soit $h_{\lambda} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $(x,y) \mapsto (x + \frac{y}{2}, y + \lambda \sin x)$.

1. h_{λ} est de classe C^1 sur \mathbb{R}^2 et pour tout $(x,y) \in \mathbb{R}^2$, $\frac{\partial f}{\partial x}(x,y) = (1,\lambda\cos x)$ et $\frac{\partial f}{\partial y}(x,y) = (\frac{1}{2},1)$. D'où la matrice jacobienne de h_{λ} est : $J_{h_{\lambda}}(x,y) = \begin{pmatrix} 1 & \frac{1}{2} \\ \lambda\cos x & 1 \end{pmatrix}$.

2. D'après le théorème d'inversion locale, h_{λ} est un difféomorphisme de classe C^1 au voisinage de tout points $(x,y) \in \mathbb{R}^2$ si et seulement si pour tout $(x,y) \in \mathbb{R}^2$, $J_{h_{\lambda}}(x,y)$ est inversible i.e. det $J_{h_{\lambda}}(x,y) = 1 - \frac{\lambda}{2} \cos x \neq 0$ qui s'écrit aussi $\lambda \cos x \neq 2$. Si $|\lambda| < 2$ alors $|\lambda \cos x| < 2$, ainsi $\lambda \cos x \neq 2$.

Réciproquement, si $|\lambda| \geq 2$, $\lambda \cos x = 2$ admet $x = \arccos \frac{2}{\lambda}$ comme solution, d'où pour tout $y \in \mathbb{R}$ le couple $(\arccos \frac{2}{\lambda}, y)$ vérifie det $J_{h_{\lambda}}(\arccos \frac{2}{\lambda}, y) = 0$.

Ainsi h_{λ} est un difféomorphisme local de classe C^1 au voisinage de tout point $(x,y) \in \mathbb{R}^2$ si et seulement si $|\lambda| < 2$.

3. Soient $(x,y), (x',y') \in \mathbb{R}^2$ tels que $h_{\lambda}(x,y) = h_{\lambda}(x',y')$.

Alors $\begin{cases} x + \frac{y}{2} = x' + \frac{y'}{2} \\ y + \lambda \sin x = y' + \lambda \sin x' \end{cases} \Leftrightarrow \begin{cases} x - x' = \frac{y' - y}{2} \\ y - y' = \lambda (\sin x' - \sin x) \end{cases}$ (1) D'après l'in-

égalité des accroissements finis $|\sin x' - \sin x| \le \max_{t \in \mathbb{R}} |\cos t| |x' - x| \le |x' - x|$, donc (2) donne $|y - y'| = |\lambda| |\sin x' - \sin x| \le |\lambda| |x - x'|$ et par suite (1) donne $|y - y'| \le \frac{|\lambda|}{2} |y - y'|$.

Maintenant, si on suppose que $y \neq y'$, on aura que $1 \leq \frac{|\lambda|}{2}$ ce qui est absurde, donc nécessairement y = y', et l'équation (1) entraı̂ne x = x'. Ainsi h_{λ} est injective.

Par le théorème d'inversion globale, comme h_{λ} est injective et difféomorphisme local de classe C^1 au voisinage de tout points $(x,y) \in \mathbb{R}^2$, h_{λ} est un difféomorphisme de \mathbb{R}^2 sur son image $h_{\lambda}(\mathbb{R}^2)$.

4. Soit $(u,v) \in \mathbb{R}^2$. On veut montrer qu'il existe $(x,y) \in \mathbb{R}^2$ tel que $h_{\lambda}(x,y) = (u,v)$

i.e.
$$\begin{cases} x + \frac{y}{2} = u \\ y + \lambda \sin x = v \end{cases} \Leftrightarrow \begin{cases} 2x - \lambda \sin x = 2u - v & (1) \\ y = -\lambda \sin x + v & (2) \end{cases}$$

Soit $g: \mathbb{R} \to \mathbb{R}$ la fonction définie par $g(x) = 2x - \lambda \sin x$.

Comme g est continue, $\lim_{x\to+\infty} g(x) = +\infty$ et $\lim_{x\to-\infty} g(x) = -\infty$, d'après le théorème des valeurs intermédiaires , $g(\mathbb{R}) = \mathbb{R}$, donc il existe $x \in \mathbb{R}$ tel que g(x) = 2u - v. Pour un tel x, si on pose $y = -\lambda \sin x + v$, alors $h_{\lambda}(x,y) = (u,v)$.

On a montré ainsi que h_{λ} est surjective i.e. $h_{\lambda}(\mathbb{R}^2) = \mathbb{R}^2$.

Exercice 3. (3 pts) Pour chacune des questions suivantes, justifier la réponse.

1. Quels sont les zéros de la fonction $z\mapsto \sin z$. Soit $z\in\mathbb{C}$.

 $\sin z = 0 \Leftrightarrow \frac{e^{iz} - e^{-iz}}{2i} = 0 \Leftrightarrow e^{iz} = e^{-iz} \Leftrightarrow \exists k \in \mathbb{Z} \text{ tel que } iz = -iz + 2ik\pi \Leftrightarrow \exists k \in \mathbb{Z} \text{ tel que } z = k\pi$

Ainsi, les zéros de la fonction $z\mapsto \sin z$ sont les $k\pi,\,k\in\mathbb{Z}.$

2. Existe-t-il une fonction holomorphe $f: D(0,1) \to \mathbb{C}$ non identiquement nulle et telle que $f(2^{-n}) = 0$ pour tout $n \in \mathbb{N}$?

Comme f est holomorphe elle est en particulier continue, ainsi $0 = \lim_{n \to +\infty} f(2^{-n}) = f(\lim_{n \to +\infty} 2^{-n}) = f(0)$.

Ainsi 0, n'est pas un zéro isolé de f, comme D(0,1) est connexe, d'après le principe des zéros isolés, f est nécessairement identiquement nulle.

Donc, il n'existe pas de fonction non identiquement nulle, qui vérifie cette condition.

3. Existe-t-il une fonction holomorphe et non constante $f: \mathbb{C} \to \mathbb{C}$ telle que $f(\mathbb{C}) \subset \mathbb{C} \setminus D(0,\frac{1}{2})$?

Soit f une telle fonction, alors f ne s'annule pas sur \mathbb{C} et $|f(z)| \ge \frac{1}{2}$ pour tout $z \in \mathbb{C}$. Donc si on pose $g = \frac{1}{f}$, on aura $g : \mathbb{C} \to \mathbb{C}$ holomorphe et bonée (car pour tout $z \in \mathbb{C}$ $|g(z)| \le 2$). Par le théorème de Liouville, g est constante et par suite f l'est aussi.

Donc les seules fonctions vérifiant la condition sont les fonctions constantes f(z) = c pour tout $z \in \mathbb{C}$ avec $c \in \mathbb{C} \setminus D(0, \frac{1}{2})$.

Exercice 4. (2 pts) $f(z) = \frac{1}{(z-2)^2(z-4)}$. a deux pôles, à savoir z=2 est un pôle d'ordre 2 et z=4 est un pôle simple.

On a
$$Res(f,2) = \lim_{z\to 2} ((z-2)^2 f(z))' = \lim_{z\to 2} \left(-\frac{1}{(z-4)^2}\right) = -\frac{1}{4}$$
 et $Res(f,4) = \lim_{z\to 4} ((z-4)f(z)) = \lim_{z\to 4} \left(\frac{1}{(z-2)}\right) = \frac{1}{4}$.

D'après le théorème des résidus, pour tout lacet γ dont l'image ne contient pas 2 et 4 : $\int_{\gamma} \frac{dz}{(z-2)^2(z-4)} = 2i\pi \left(Res(f,2).Ind_{\gamma}(2) + Res(f,4).Ind_{\gamma}(4)\right)$

- 1. γ est le cercle de centre 0 et de rayon 3, orienté dans le sens positif. Alors $Ind_{\gamma}(2)=1$ et $Ind_{\gamma}(4)=0$ d'où $\int_{\gamma} \frac{dz}{(z-2)^2(z-4)}=2i\pi.(-\frac{1}{4})=\frac{-i\pi}{2}$.
- 2. γ est le triangle de sommets 0, 5+4i et 5-4i, orienté dans le sens positif. Alors $Ind_{\gamma}(2)=1$ et $Ind_{\gamma}(4)=1$ d'où $\int_{\gamma} \frac{dz}{(z-2)^2(z-4)}=2i\pi\left(-\frac{1}{4}+\frac{1}{4}\right)=0$.

Exercice 5. (5 pts)

- 1. Comme $\alpha \in \mathbb{R}$, $\left|\frac{e^{i\alpha x}}{1+x^4}\right| = \frac{1}{1+x^2}$. D'autre part , $x \mapsto \frac{1}{1+x^4}$ est continue sur \mathbb{R} et $\frac{1}{1+x^4} \mathop{\sim}\limits_{x \to \pm \infty} \frac{1}{x^4}$ donc, $x \mapsto \frac{1}{1+x^4}$ est intégrable ainsi $x \mapsto \frac{e^{i\alpha x}}{1+x^4}$ est absolument intégrable, d'où $\int_{-\infty}^{+\infty} \frac{e^{i\alpha x}}{1+x^4} dx$ est convergente.
- 2. Les points singuliers de F sont les zéros du numérateurs, $z^4+1=0$ i.e. $z^4=-1\Leftrightarrow\{e^{\frac{i\pi}{4}},e^{\frac{3i\pi}{4}},e^{\frac{5i\pi}{4}},e^{\frac{7i\pi}{4}}\}.$

Ainsi F à deux pôles simples, situé dans le demi-plan $\mathcal{H}^+=\{z\in\mathbb{C}\,|\,\mathfrak{Im}(z)\geq 0\}$ à savoir $e^{\frac{i\pi}{4}}$ et $e^{\frac{3i\pi}{4}}$. On calcul les résidus par la formule

$$\begin{split} Res(F, e^{\frac{i\pi}{4}}) &= \frac{e^{i\alpha z}}{(1+z^4)'}\big|_{z=e^{\frac{i\pi}{4}}} = \frac{e^{iaz}}{4z^3}\big|_{z=e^{\frac{i\pi}{4}}} = \frac{e^{i\alpha e^{\frac{i\pi}{4}}}}{4e^{\frac{3i\pi}{4}}} \\ &= \frac{1}{4}exp\big(i\alpha e^{\frac{i\pi}{4}} - \frac{3i\pi}{4}\big) = \frac{1}{4}e^{-\alpha/\sqrt{2}}\exp\Big(i\left(\frac{\alpha}{\sqrt{2}} - \frac{3\pi}{4}\right)\Big) = -\frac{1}{4}e^{-\alpha/\sqrt{2}}\exp\Big(i\left(\frac{\alpha}{\sqrt{2}} + \frac{\pi}{4}\right)\Big) \\ \text{de même on trouve } Res(F, e^{\frac{3i\pi}{4}}) = \frac{1}{4}exp\big(i\alpha e^{\frac{3i\pi}{4}} - \frac{i\pi}{4}\big) = \frac{1}{4}e^{-\alpha/\sqrt{2}}\exp\Big(-i\left(\frac{\alpha}{\sqrt{2}} + \frac{\pi}{4}\right)\Big) \,. \end{split}$$

3. On va appliquer le théorème des résidus au domaine (simplement connexe) \mathbb{C} , au lacet simple γ_R et à la fonction $F \in \mathcal{H}(\mathbb{C} - \{e^{\frac{i\pi}{4}}, e^{\frac{3i\pi}{4}}, e^{\frac{5i\pi}{4}}, e^{\frac{7i\pi}{4}}\})$. Comme γ_R ne passe par les pôles car R > 1 et que seuls $e^{\frac{i\pi}{4}}$ et $e^{\frac{3i\pi}{4}}$ sont à l'intérieur de γ_R on aura :

$$\int_{\gamma_R} F(z) dz = 2i\pi \left(Res(F, e^{\frac{i\pi}{4}}) + Res(F, e^{\frac{3i\pi}{4}}) \right) =$$

$$2i\pi \times \frac{1}{4} e^{-\alpha/\sqrt{2}} \left(-exp\left(i\left(\frac{\alpha}{\sqrt{2}} + \frac{\pi}{4}\right)\right) + exp\left(-i\left(\frac{\alpha}{\sqrt{2}} + \frac{\pi}{4}\right)\right) \right) =$$

$$2i\pi \times \frac{1}{4} e^{-\alpha/\sqrt{2}} \left(-2i\sin\left(\frac{\alpha}{\sqrt{2}} + \frac{\pi}{4}\right) \right) = \pi e^{-\alpha/\sqrt{2}} \sin\left(\frac{\alpha}{\sqrt{2}} + \frac{\pi}{4}\right).$$

D'autre part, si on prend la paramétrisation du demi-cercle Γ_R donnée par $\Gamma_R(t) = Re^{it}$, $t \in [0,\pi]$, on a $dz = \Gamma_R'(t)dt = iR^{it}dt$.

Comme, α et $\mathfrak{Im}(z)$ sont positifs, $|F(z)| = \frac{e^{-\alpha \mathfrak{Im}(z)}}{|1+z^4|} \leq \frac{1}{R^4-1}$ et que la longueur de Γ_R est égale à πR on aura

$$\left| \int_{\Gamma_R} \frac{e^{i\alpha z}}{1 + z^4} \, dz \right| \le \frac{\pi R}{R^4 - 1} \underset{R \to +\infty}{\longrightarrow} 0$$

Maintenant, $\pi e^{-\alpha/\sqrt{2}} \sin\left(\frac{\alpha}{\sqrt{2}} + \frac{\pi}{4}\right) = \int_{\gamma_R} F(z) dz = \int_{\Gamma_R} \frac{e^{i\alpha z}}{1 + z^4} dz + \int_{-R}^R \frac{e^{i\alpha x}}{1 + x^4} dx$, par passage à la limite lorsque $R \to +\infty$ on obtient le résultat :

$$\int_{-\infty}^{+\infty} \frac{e^{i\alpha x}}{1+x^4} dx = \pi e^{-\alpha/\sqrt{2}} \sin\left(\frac{\alpha}{\sqrt{2}} + \frac{\pi}{4}\right).$$

4. Soit $\alpha < 0$. Par le changement de variable u = -x on a $\int_{-\infty}^{+\infty} \frac{e^{i\alpha x}}{1+x^4} dx = \int_{-\infty}^{+\infty} \frac{e^{-i\alpha x}}{1+u^4} du$ comme $-\alpha > 0$, d'après la question 3, on a $\int_{-\infty}^{+\infty} \frac{e^{-i\alpha x}}{1+u^4} du = \pi e^{\alpha/\sqrt{2}} \sin\left(\frac{-\alpha}{\sqrt{2}} + \frac{\pi}{4}\right)$ d'où $\int_{-\infty}^{+\infty} \frac{e^{i\alpha x}}{1+x^4} dx = \pi e^{\alpha/\sqrt{2}} \sin\left(\frac{-\alpha}{\sqrt{2}} + \frac{\pi}{4}\right)$.