Examen terminal Vendredi 10 décembre 2010 Durée 2h

Documents et calculatrices interdits

Exercice 1. Soit $\mathcal{H} = L^2([-1,1],\mathbb{C})$ muni du produit scalaire, $\langle f,g \rangle = \int_{-1}^1 f(x) \, \overline{g(x)} \, dx$.

On définit $M_1 := \{ f \in \mathcal{H} \mid \int_{-1}^1 f(x) \, dx = 0 \}$ et $M_2 := \{ f \in \mathcal{H} \mid f(x) = f(-x) \, p.p. \}.$

- 1. Montrer que M_1 est un fermé et déterminer M_1^{\perp} .
- 2. Déterminer la distance de $f(x) = x^2$ à M_1 .
- 3. Montrer que M_2 est un fermé et déterminer M_2^{\perp} .
- 4. Déterminer la distance de $g(x) = e^x$ à M_2 .

Exercice 2.

- 1. Déterminer si les ensembles suivants sont des sous-espaces vectoriels denses dans $\ell^2(\mathbb{N},\mathbb{R})$.
 - (a) $V_1 = \{(a_n) \in \ell^2(\mathbb{N}, \mathbb{R}) \mid a_{2010} \ge 0\}.$
 - (b) $V_2 = \{(a_n) \in \ell^2(\mathbb{N}, \mathbb{R}) \mid a_{2010} = 0\}.$
 - (c) $V_3 = \{(a_n) \in \ell^2(\mathbb{N}, \mathbb{R}) \mid \sum_{n \in \mathbb{N}} |\sin(a_n)| < +\infty \}.$
- 2. Monter que $V_3 = \ell^1(\mathbb{N}, \mathbb{R})$.

Exercice 3. Soit $L^2(\mathbb{R},\mathbb{C})$ muni du produit scalaire, $\langle f,g\rangle = \int_{\mathbb{R}} f(x) \, \overline{g(x)} \, dx$.

- 1. Montrer que $\langle f,g\rangle = \langle \mathcal{F}(f),\mathcal{F}(g)\rangle$ pour $f,g\in L^2(\mathbb{R},\mathbb{C})$
- 2. Soit $t \in \mathbb{R}$. Exprimer la transformée de Fourier de g(x) := f(x+t) en fonction de celle de f.
- 3. Soit $f \in L^2(\mathbb{R},\mathbb{C})$ telle que $||f||_2 = 1$. Montrer que $\lim_{t\to 0} \int_{\mathbb{R}} f(x) \overline{f(x+t)} \, dx = 1$.

Exercice 4. Soit $P(z) = z^7 - 4z^4 + 6z^3 + 15$.

- 1. Montrer que P a toutes ses racines dans D(0,2).
- 2. Combien de racines a t-il dans la couronne $\{z \in \mathbb{C}, 1 < |z| < 3\}$?

Exercice 5. Calculer par la méthode des résidus $\int_0^{+\infty} \frac{\ln x}{4+x^2} dx$.

Exercice 6. Soit f une fonction entière telle que $f(\mathbb{C}) \subset \mathbb{C} \setminus [0, +\infty[$.

- 1. Montrer qu'il existe une fonction entière g telle que $f=e^g$ et vérifier que $g(\mathbb{C})\subset\mathbb{C}\backslash\mathbb{R}$. (on pourra considérer une primitive de $\frac{f'}{f}$.)
- 2. Monter que f est constante.

Exercice 7.

Soient $a = \sqrt{\frac{\pi}{2}}(1+i)$ et g définie par $g(z) = \frac{e^{-z^2}}{1+e^{-2az}}$.

Pour tout R>0 on note γ_R le lacet correspondant au parallélogramme de sommets -R, R, R+a et -R+a orienté dans le sens positif.

1. Calculer

$$\int_{\gamma_R} g(z)dz.$$

2. Montrer que $g(z) - g(z+a) = e^{-z^2}$ et utiliser ce résultat pour démontrer que

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$

3. Montrer que pour R > 0 on a la majoration

$$\int_{R}^{+\infty} e^{-x^2} dx \le \sqrt{\pi} \frac{e^{-R^2}}{1 - e^{-\sqrt{2\pi}R}}.$$