Devoir à rendre le mardi 03 novembre 2009

Partie1-Le théorème de Lax-Milgram

Soit \mathcal{H} un espace de Hilbert sur \mathbb{R} . Soit $a:\mathcal{H}\times\mathcal{H}\to\mathbb{R}$ une forme bilinéaire.

On suppose que a est continue dans le sens où il existe une constante C > 0 telle que

$$|a(x,y)| \le C||x||||y|| \quad \forall x,y \in \mathcal{H}.$$

On suppose également que a est **coercitive** dans le sens où il existe une constante $\alpha > 0$ telle que

$$|a(x,x)| \ge \alpha ||x||^2 \quad \forall x \in \mathcal{H}.$$

- (i) Pour $x \in \mathcal{H}$ fixé, démontrer que la forme linéaire $T_x : \mathcal{H} \to \mathbb{R}$ définie par, $y \mapsto T_x(y) = a(x,y)$ est continue.
- (ii) Montrer qu'il existe un unique élément, que nous noterons A(x), tel que

$$T_x(y) = \langle A(x), y \rangle \quad \forall y \in \mathcal{H}.$$

(iii) Montrer que l'application $\mathcal{H} \to \mathcal{H}$, $x \mapsto A(x)$ est linéaire, et de plus elle vérifie

$$||A(x)|| \le C||x|| \qquad \forall x \in \mathcal{H} \tag{1}$$

et

$$\langle A(x), x \rangle \ge \alpha ||x||^2, \quad \forall x \in \mathcal{H}$$
 (2)

- (iv) Montrer que l'application A est injective.
- (v) Nous allons montrer qu'elle est surjective. Soit $z \in \mathcal{H}$ et $\beta > 0$ fixés, on définie l'application $\phi_{\beta,z} : \mathcal{H} \to \mathcal{H}$ par $\phi_{\beta,z}(x) = x + \beta(z A(x))$.

Montrer en utilisant (1) et (2), que pour β assez petit, $\phi_{\beta,z}$ est une application contractante i.e. il existe $0 \le K < 1$, tel que $\|\phi_{\beta,z}(y) - \phi_{\beta,z}(y')\| \le K\|y - y'\|$ pour tout $y,y' \in \mathcal{H}$.

Conclure, en utilisant le théorème du point fixe, qu'il existe un unique x telle que $x = \beta(z - A(x)) + x$.

En déduire que l'application A est surjective.

(vi) Démontrer que pour toute forme linéaire continue $f:\mathcal{H}\to\mathbb{R}$ il existe un unique $x\in\mathcal{H}$ tel que :

$$f(y) = a(x,y) \qquad \forall y \in \mathcal{H}$$

(Il s'agit d'une généralisation du théorème de Riesz ne nécessitant pas le caractère symétrique de la forme bilinéaire)

Partie 2-Transformée de Fourier

Exercice 1. Soit A une matrice symétrique réelle $n \times n$ telle qu'il existe une constante $\alpha > 0$ avec

$$\langle Ax, x \rangle \ge \alpha ||x||^2 \qquad \forall x \in \mathbb{R}^n.$$

- 1. Montrer que la fonction f définie par $x \mapsto e^{-\langle Ax, x \rangle}$ est dans $L^1(\mathbb{R}^n)$.
- 2. On se propose de calculer la transformée de Fourier de f.
 - i) Traiter le cas n=1.
 - ii) Traiter le cas A diagonale.
 - iii) En diagonalisant A dans une base orthonormée, déduire la transformée de Fourier de f.

Exercice 2.

- 1. Soit g_n l'indicatrice de [-n,n], et h l'indicatrice de [-1,1]. Calculer explicitement $g_n \star h$.
- 2. Montrer que $g_n \star h$ est la transformée de Fourier de

$$f_n = \frac{1}{x^2 \pi^2} \sin(2\pi nx) \sin(2\pi x).$$

- 3. Montrer que $||f_n||_1 \to +\infty$ quand $n \to +\infty$.
- 4. En déduire que la transformée de Fourier n'est pas un opérateur surjectif de $L^1(\mathbb{R})$ dans $C_0(\mathbb{R})$.
- 5. Montrer que son image est dense.