

Algèbre et Arithmétique 2

Feuille d'exercices n°1

Exercice n°1 Contrôle continu 2014

- 1) Trouver les complexes a, b et c tels que $(a + bX)(X + 1) + c(X^2 + 1) = 1$
- 2) Trouver les complexes a, b et c tels que $(a + bX)(X + 1) + c(X^2 + 1) = X^3$
- 3) Trouver les complexes a, b et c tels que $(a + bX)(X + 1) + c(X^2 + 1) = 1 + 2X + X^2$.

Exercice n°2 Contrôle continu 2013

Trouver $a, b, c \in \mathbb{C}$ tels que :

1)
$$a(X+2)(X+3) + b(X+1)(X+3) + c(X+1)(X+2) = X$$
.

2)
$$a(X+5)(X+3) + b(X+1)(X+3) + c(X+1)(X+5) = X^4$$
.

Exercice n°3

Soient $\mathbb{K}[X]$ l'anneau des polynômes à coefficients dans le corps \mathbb{K} (\mathbb{R} ou \mathbb{C} par exemple) et a un élément de \mathbb{K} . Montrer que le polynôme $P = X(X+a)(X+2a)(X+3a)+a^4$ est un carré. En déduire une décomposition de X(X+1)(X+2)(X+3)-8 en produit dans $\mathbb{R}[X]$.

Exercice n°4 Contrôle continu 2016

Soient a, b des réels, et $P = X^4 + 2aX^3 + bX^2 - 12X + 4$. Pour quelles valeurs de a et b existe-t-il un polynôme Q de $\mathbb{R}[X]$ tel que $P = Q^2$?

Exercice n°5

- 1) Soient a, b des réels, et $P = X^4 + 2aX^3 + bX^2 + 2X + 1$. Pour quelles valeurs de a et b le polynôme P est-il le carré d'un polynôme de $\mathbb{R}[X]$?
- 2) Trouver une condition nécessaire et suffisante sur les réels a et b pour que le polynôme $X^4 + aX^3 + bX^2 + 12X + 4$ soit le carré d'un polynôme de $\mathbb{R}[X]$.

Exercice $n^{\circ}6$ (*)

Soit $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes définie par $P_0=X-2$ et $\forall n\in\mathbb{N},\ P_{n+1}=P_n^2-2$. Calculer le coefficient de X^2 dans P_n .

Exercice n°7

Pour $n \in \mathbb{N}$, développer le polynôme : $(1+X)(1+X^2)(1+X^4)...(1+X^{2^n})$.

Exercice n°8

Soit $n \in \mathbb{N}$. Déterminer le degré du polynôme $(X^2 + 1)^n - 2X^{2n} + (X^2 - 1)^n$ de $\mathbb{C}[X]$.

Exercice n°9

Pour tout $n \in \mathbb{N}^*$, soit P_n le polynôme défini par

$$P_n(X) = \frac{1}{2i}[(1+iX)^n - (1-iX)^n].$$

Montrer que P_n est à coefficients réels. Quel est le degré de P_n ?

Exercice n°10

- 1) Résoudre l'équation $Q^2 = XP^2$ d'inconnues les polynômes P et Q de $\mathbb{K}[X]$.
- 2) Déterminer les polynômes de $\mathbb{R}[X]$ vérifiant : 3P(X) = XP(X).

Exercice n°11

Soit $\mathbb{K}[X]$ l'anneau des polynômes à coefficients dans un certain corps \mathbb{K} . Soit a un élément de \mathbb{K} .

- 1) Montrer que l'application $P \mapsto P(X+a)$ est une bijection de $\mathbb{K}[X]$ dans lui même. Quelle est la bijection réciproque?
- 2) Soient $P \in \mathbb{K}[X]$. Montrer qu'il existe un unique $Q_a \in \mathbb{K}[X]$ tel que $Q_a(X-a) = P(X)$. $(Q_a(X-a))$ est le développement de P en a.) Déterminer Q_a lorsque $P(X) = X^3 + 2X + 1$ et a = 1.

Exercice n°12

Un polynôme P est dit **pair** si P(-X) = P(X). Un polynôme P est dit **impair** si P(-X) = -P(X).

- 1) Soit $P = \sum_{k=0}^{n} a_k X^k$ un polynôme. Montrer que P est pair (respectivement impair) si et seulement si pour tout k de \mathbb{N} , $a_{2k+1} = 0$ (respectivement $a_{2k} = 0$).
- 2) Montrer que tout polynôme A de $\mathbb{C}[X]$ peut s'écrire de manière unique sous la forme A = P + I où P est un polynôme pair et I un polynôme impair.

Exercice n°13

Soit n un entier strictement positif.

- 1) Montrer que pour tout polynôme P de $\mathbb{R}_n[X]$, il existe un unique polynôme Q de $\mathbb{R}_n[X]$ tel que $P(X)P(-X) = Q(X^2)$.

 Dans toute la suite, on note Φ l'application de $\mathbb{R}_n[X]$ dans lui-même qui à un polynôme P associe le polynôme Q tel que $P(X)P(-X) = Q(X^2)$.
- **2)** Calculer $\Phi(1)$, $\Phi(X)$, $\Phi(X+1)$, $\Phi(X-1)$, $\Phi(X^2-1)$, $\Phi(X^2+2X+1)$.
- 3) Démontrer que $\forall (P_1, P_2) \in (\mathbb{R}_n[X])^2, \ \Phi(P_1P_2) = \Phi(P_1)\Phi(P_2)$
- 4) Trouver deux polynômes P_1 et P_2 tels que $\Phi(P_1 + P_2) \neq \Phi(P_1) + \Phi(P_2)$.

Exercice n°14

On considère les couples de polynômes (P,Q) suivants dans $\mathbb{R}[X]$.

- \bullet P = X, Q = X 1
- P = X $Q = X^2 1$
- $P = X^2$ $Q = X^2 1$
- $P = X^2 1$ $Q = X^2 + X + 1$
- $P = X^2 2X + 1$ $Q = X^2 + X + 1$
- $P = X^2 1$ $Q = X^3 1$
- $P = X^3 X^2 + 2X 2$ $Q = X^3 1$

Pour chacun de ces couples :

- 1) Écrire les polynômes P' et Q', calculer le polynôme PQ et vérifier la formule (PQ)' = P'Q + PQ'.
- 2) Calculer les polynômes $P \circ Q$ et $Q \circ P$ et vérifier les formules $(P \circ Q)' = Q'(P' \circ Q)$ et $(Q \circ P)' = P'(Q' \circ P)$.

Exercice n°15 Contrôle continu 2016

- 1) Soit $n \in \mathbb{N}$. Déterminer la dérivée d'ordre n du polynôme $X^n(1-X)^n$ de $\mathbb{R}[X]$:
 - a) en utilisant la formule de Leibniz de dérivation à l'ordre n d'un produit.
 - b) en développant au préalable $(1-X)^n$ par la formule du binôme.
- 2) En déduire que $\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$. (On pourra identifier les coefficients de X^n dans les deux expressions obtenues.)

Exercice n°16

- 1) Déterminer l'ensemble des polynômes P de $\mathbb{R}[X]$, de degré au plus 2, tels que $P(X+1)P(X)=-P(X^2)$
- 2) Soit $P \in \mathbb{C}[X]$ de degré n. Déterminer le degré du polynôme Q(X) = P(X+1) P(X).
- 3) Résoudre les équations suivantes, où l'inconnue est un polynôme P de $\mathbb{R}[X]$:

a)
$$P(X^2) = (X^2 + 1)P(X)$$
 b) $P'^2 = 4P$ c) $P \circ P = P$.

b)
$$P'^2 = 4P$$

c)
$$P \circ P = P$$
.

Exercice n°17

- 1) Déterminer l'ensemble des polynômes P de $\mathbb{R}[X]$ tels que P(2X) = P'P''
- 2) Déterminer l'ensemble des polynômes P de $\mathbb{R}[X]$ tels que X(X+1)P''+(X+2)P'-P=0
- 3) Déterminer l'ensemble des polynômes P de $\mathbb{C}[X]$ tels que 18P = P'P''
- 4) Montrer que pour tout $n \in \mathbb{N}$, il existe un polynôme unique P_n de $\mathbb{R}[X]$ tel que $P_n P'_n = X^n$

Contrôle continu 2016 Exercice n°18

Déterminer l'ensemble des polynômes P de $\mathbb{C}[X]$ tels que $X^2P'' - (X+1)P' + P = 0$.

Exercice n°19

Pour tout entier naturel n, on note P_n la dérivée à l'ordre n du polynôme $(X^2-1)^n$.

- 1) Calculer P_1 , P_2 et P_3 .
- 2) Montrer que, pour tout n de \mathbb{N} , le polynôme P_n est de degré n et calculer son coefficient dominant.
- 3) Donner, en fonction de n, la parité de P_n .

Exercice n°20

On considère l'application $\Phi: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$ définie par $\forall P \in \mathbb{R}[X], \ \Phi(P) = (2X-1)P - (X^2 + \frac{1}{2})P'$. Déterminer le degré de $\Phi(P)$ en fonction du degré de P. Résoudre l'équation $\Phi(P)=1$.

$|\mathbf{Exercice} \ \mathbf{n}^{\circ}\mathbf{21}|$ (À réserver à une deuxième lecture)

Soit $n \in \mathbb{N}$. On note $\mathbb{K}_n[X]$ l'ensemble des polynômes (à coefficients dans \mathbb{K}) de degré au plus n. Montrer que $\mathbb{K}_n[X]$ est un espace vectoriel et que $(1, X, \dots, X^n)$ en est une base (**base canonique**). $\mathbb{K}_n[X]$ est-il stable par multiplication?

Exercice n°22 (À réserver à une deuxième lecture)

Soit $(P_k)_{k\in\mathbb{N}}$ une famille de polynômes non nuls de $\mathbb{K}[X]$. On suppose cette famille étagée en valuations : $\forall k \in \mathbb{N}, \operatorname{val}(P_k) < \operatorname{val}(P_{k+1}).$ Montrer que cette famille est libre dans $\mathbb{K}[X]$. Soit $n \in \mathbb{N}$. Montrer que la famille $\{X^k(1-X)^{n-k}, k \in [0,n]\}$ est une base de $\mathbb{K}_n[X]$.