4.2 Théorème spectral pour les opérateurs auto-adjoints compacts

Rappelons que si A est une matrice carrée $n \times n$, un nombre complexe λ est une valeur propre de A si et seulement si il existe un $x \in \mathbb{R}^n$ avec $x \neq 0$ tel que $Ax = \lambda x$, ce qui signifie que $(\lambda I - A)x = 0$, c'est-à-dire $\lambda I - A$ n'est pas inversible, où I est la matrice identité sur \mathbb{R}^n . Comme les valeurs propres ont de nombreuses applications en dimension finie, Dans cette partie on va étendre ces notion au espaces de Hilbert.

4.2.1 Le spectre d'un opérateur

4.2.1 DÉFINITION

Soit E est un espace vectoriel sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et T un endomorphisme de E. On appelle

- Spectre de T est l'ensemble $\sigma(T) := \{\lambda \in \mathbb{K} \mid \lambda I T \text{ ne soit pas inversible} \}$
- Spectre ponctuel de T est l'ensemble $\sigma_p(T) := \{\lambda \in \sigma(T) \mid \ker(\lambda I T) \neq \{0\}\}$ i.e. l'ensemble des valeurs propres de T. On appelle multiplicité de la valeur propre λ , la dimension du sous-espace propre $\ker(\lambda I T)$.

4.2.2 Remarque

- a) On a toujours $\sigma_p(T) \subset \sigma(T)$.
- b) Les vecteurs propres correspondant à des valeurs propres distinctes sont linéairement indépendants. Explicitement, soit E un espace vectoriel et T un opérateur linéaire sur E. Soit $\lambda_1, \lambda_2, \cdots, \lambda_k$ des valeurs propres distinctes de T et pour chaque $1 \leq j \leq k$, x_j un vecteur propre correspondant à λ_j . Alors x_1, x_2, \cdots, x_k sont linéairement indépendants.

Démonstration: Supposons qu'ils soient linéairement dépendants et soit une combinaison

$$\alpha_1 x_1 + \sum_{j=2}^k \alpha_j x_j = 0$$

avec $\alpha_1 \neq 0$. Soit P un polynôme tel que $P(\lambda_1) = 1$ et $P(\lambda_j) = 0$ pour $j \geq 2$. On remarque que $P(T)x_j = P(\lambda_j)x_j$, $P(\lambda)$ est une valeur propre de l' opérateur P(T). Par application de P(T), nous obtenons

$$0 = \alpha_1 P(T) x_1 + \sum_{j=2}^{k} \alpha_j P(T) x_j = x_1 \alpha_1.$$

Ainsi, $\alpha_1 = 0$ car $x_1 \neq 0$, ce qui est une contradiction. Nous répétons le même processus pour le reste des α_i .

- 4. Opérateurs compacts et théorie spectrale sur les espaces de Hilbert: Théorème spectral 129
- c) Soit \mathscr{V} est un espace vectoriel normé de dimension finie et T une application linéairesur \mathscr{V} . Alors $(\lambda I T)$ est inversible précisément lorsque λ n'est pas une valeur propre de T. Il en résulte que le spectre $\sigma(T) = \sigma_v(T)$.
- 4.2.4 EXEMPLE. Le sexemple suivant montrent que pour une application linéaire sur un espace de dimension infinie, le spectre peut être très complexe.
- 4.2.5 Exemple (opérateur diagonal sur $\ell^2(\mathbb{N},\mathbb{C})$). Soit $(\lambda_n)_{n\in\mathbb{N}}$ une suite dans $\mathbb{C}\setminus\{0\}$ telle que $\lim_{n\to+\infty}\lambda_n=0$. On définit l'opérateur T sur ℓ^2 par $T((x_n)_{n\in\mathbb{N}})=(\lambda_nx_n)_{n\in\mathbb{N}}$.

Comme
$$(T - \lambda I)x = ((\lambda_k - \lambda)x_k)_{k \in \mathbb{N}}$$
, alors $(T - \lambda I)^{-1}y = (\frac{y_k}{\lambda_k - \lambda})_{k \in \mathbb{N}}$. Il en ré-

sulte que $(T - \lambda I)^{-1}$ est un opérateur borné si et seulement si λ n'est pas dans l'adhérence de $\{\lambda_k\}_{k\in\mathbb{N}}$, qui n'est autre que $\{\lambda_k\}_{k\in\mathbb{N}} \cup \{0\}$.

Comme $Te_k = \lambda_k e_k$, pour e_k élément de la base canonique de ℓ^2 , on en déduit que tous les λ_k sont des valeurs propres de T. Mais 0 n'est pas valeur propre car T est injective (puisque tous les $\lambda_k \neq 0$).

D'où :
$$\sigma(T) = \{\lambda_k\}_{k \in \mathbb{N}} \cup \{0\} \text{ et } \sigma_p(T) = \{\lambda_k\}_{k \in \mathbb{N}}.$$

4.2.6 Exemple (Opérateur de multiplication sur $L^2[0,1]$). Considérons l'opérateur de multiplication $T:L^2[0,1]\to L^2[0,1]$ définie par (Tf)(t)=tf(t). Comme $(T-\lambda I)f(t)=(t-\lambda)f(t)$, nous aurons $(T-\lambda I)^{-1}y(t)=\frac{1}{t-\lambda}y(t)$. Si $\lambda\not\in[0,1]$, la fonction $t\mapsto\frac{1}{t-\lambda}$ est bornée, d'où $(T-\lambda I)^{-1}$ est un opérateur borné. Inversement, si $\lambda\in[0,1]$, alors $\frac{1}{t-\lambda}\not\in L^2[0,1]$ en raison de la singularité non-intégrable en $t=\lambda$. D'où $T-\lambda I$ n'est pas inversible (prendre par exemple $y(t)\equiv 1$). Par conséquent, $\sigma(T)=[0,1]$.

Supposons que λ soit une valeur propre de T avec f un vecteur propre dans $L^2[0,1]$. Cela signifie que l'identité suivante est vérifiée

$$(t - \lambda)f(t) = 0$$
 pour tout $t \in [0, 1]$.

Il en résulte que f=0 dans $L^2[0,1]$. Par conséquent, T n'a pas de valeurs propres. D'où : $\sigma(T)=[0,1]$ et $\sigma_p(T)=\emptyset$.

4.2.7 EXEMPLE (OPÉRATEUR DE DÉCALAGE). Considérons les opérateurs de décalage à droite R et à gauche L sur ℓ^2 , agissent sur un vecteur $x = (x_1, x_2, ...)$ par

$$R(x) = (0, x_1, x_2,...), L(x) = (x_2, x_3,...,).$$

R est clairement injectif mais pas surjectif comme L est surjectif mais pas injectif.n

4.2.8 Exercice Montrer que

$$\begin{split} &\sigma(R) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}, \, \sigma_p(R) = \emptyset, \\ &\sigma(L) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}, \, \sigma_p(L) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}. \end{split}$$

4.2.9 Proposition (Le spectre est un compact)

Soit *E* un espace de Banach et $T \in \mathcal{L}(E)$.

Le spectre $\sigma(T)$ de T est un sous-ensemble compact de \mathbb{K} contenu dans $\{\lambda \in \mathbb{C} : |\lambda| \leq ||T||\}.$

Démonstration: Soit $\lambda \in \mathbb{K}$ tel que $|\lambda| > ||T||$.

On a $T - \lambda I = \lambda(\lambda^{-1}T - I)$. Comme $\|\lambda^{-1}T\| < 1$, le lemme 2.1.10 implique que l'opérateur alors $T - \lambda I$ est inversible, donc $\lambda \notin \sigma(T)$ i.e. $\sigma(T) \subseteq \{\lambda \in \mathbb{C} : |\lambda| \leq \|T\|\}$.

Il reste à montrer que $\sigma(T)$ est fermé. Soit $\lambda_0 \notin \sigma(T)$, alors $S = T - \lambda_0 I$ est inversible. D'où $T - \lambda I = S - (\lambda_0 - \lambda)I = S(I - (\lambda_0 - \lambda)S^{-1})$, d'après le lemme 2.1.10, $T - \lambda I$ est inversible si $\|(\lambda_0 - \lambda)S^{-1}\| = |\lambda - \lambda_0|.\|S^{-1}\| < 1$, donc si $|\lambda - \lambda_0| < \frac{1}{\|S^{-1}\|}$. Ainsi le disque $\{\lambda \in \mathbb{K}, |\lambda - \lambda_0| < \frac{1}{\|S^{-1}\|}\}$ est contenu in $\mathbb{K} \setminus \sigma(T)$. Ce qui montre que $\mathbb{K} \setminus \sigma(T)$ est ouvert et donc $\sigma(T)$ est fermé.

4.2.11 Théorème (Propriétés du spectre d'un opérateur compact)

Soit $\mathcal H$ un espace de Hilbert sur $\mathbb K$ et T un opérateur compact sur $\mathcal H$. Alors :

- (i) Si \mathcal{H} est de dimension infinie, $0 \in \sigma(T)$.
- (ii) $\sigma(T) = \sigma_p(T) \cup \{0\}$ et toute valeur propre non nulle est de multiplicité finie.
- (iii) Soit $\delta > 0$, alors l'ensemble des valeurs propres deux à deux disjointes et de module $\geq \delta$ est fini. Par conséquent, $\sigma(T)$ est au plus dénombrable et son seul point d'accumulation est 0.

Démonstration: (i) Si 0 $\notin \sigma(T)$ alors T est un isomorphisme, contredit T compact d'après 4.1.6.

- (ii) Soit $\lambda \neq 0$, si $\lambda \notin \sigma_p(T)$, alors $T \lambda I = -\lambda(I \lambda^{-1}T)$ est injectif et d'après l'alternative de fredholm 4.1.31, $T \lambda I$ est sujectif, donc $\lambda \notin \sigma(T)$.
- (iii) Soit $\delta > 0$. Supposons qu'il existe une suite $(\lambda_n)_{n \in \mathbb{N}} \subset \sigma_p(T) \setminus \{0\}$, formée d'éléments deux à deux disjoints tels que $|\lambda_n| \geq \delta$.

Pour tout $n \in \mathbb{N}$, soit x_n un vecteurs propres associé à la valeur propre λ_n . On pose $H_n = \operatorname{Vect}\{x_0, \dots, x_n\}$. Alors $T(H_n) \subset H_n$ et $(T - \lambda_n I)H_n \subset H_{n-1}$. Par le procédé d'ortonormalisation de Gram-Schmidt, on construit une suite $(e_n)_{n \in \mathbb{N}}$ telle que $||e_n|| = 1$ et $e_n \perp H_{n-1}$ pour tout $n \in \mathbb{N}^*$.

Alors, pour n > m, on a $Te_n - Te_m = \lambda_n e_n + \underbrace{(Te_n - \lambda_n e_n) - Te_m}_{\in H_{n-1}}$, d'où,

$$||Te_n - Te_m|| \ge \inf_{z \in H_{n-1}} ||\lambda_n e_n - z|| = ||\lambda_n e_n|| = |\lambda_n| \ge \delta > 0.$$

Ceci entraîne que $(Te_n)_{n\in\mathbb{N}}$ n'a pas de valeur d'adhérence, contredit ainsi la compacité de T.

4.2.2 Opérateurs auto-adjoints

Soit T est un opérateur linéaire borné sur un espace de Hilbert, soit $T \in \mathcal{L}(\mathcal{H})$. Rappelons 3.2.2, que l'opérateur adjoint $T^* \in \mathcal{L}(\mathcal{H})$ est définie par $\langle T^*x,y \rangle = \langle x,Ty \rangle$ pour $x,y \in \mathcal{H}$.

4.2.13 Définition

Un opérateur $T \in \mathcal{L}(\mathcal{H})$ est dit **auto-adjoint** si $T^* = T$, i.e.

$$\langle Tx, y \rangle = \langle x, Ty \rangle, \quad x, y \in \mathcal{H}.$$

- 4.2.14 EXEMPLE. Des exemples suivant sont des opérateurs auto-adjoints :
 - (i) L'opérateur identité sur un espace de Hilbert est auto-adjoint.
 - (ii) les opérateurs linéaires sur \mathbb{C}^n donné par des matrices hermitiennes (a_{ij}) , c'est à dire telles que $a_{ij} = \overline{a_{ji}}$;
 - (iii) Un opérateur intégral $(Tf)(t) = \int_0^1 k(s,t) f(s) ds$ sur $L^2([0,1],\mathbb{C})$ avec un noyau hermitien, c'est à dire tel que $k(s,t) = \overline{k(t,s)}$;
 - (iv) Les projections orthogonales sur des sous-espaces de \mathcal{H} . (Pourquoi?)

4.2.15 Remarque

Tout opérateur $A \in \mathcal{L}(\mathcal{H})$ peut être représenté de manière unique comme

$$A = T + iS$$

où $T, S \in \mathcal{L}(\mathcal{H})$ sont opérateurs auto-adjoints.

En effet, si on écrit A = T + iS, alors $A^* = T - iS$. La résolution de ce système d'équations, donne $T = \frac{A + A^*}{2}$ et $S = \frac{A - A^*}{2i}$.

- 4.2.16 Exercice Montrer que l'ensemble des opérateurs auto-adjoints forme un sous-espace vectoriel fermé de $\mathscr{L}(\mathscr{H})$.
- 4.2.17 Définition (Sous-Espace invariant)

Un sous-espace E de \mathscr{H} est invariant par T si $T(E) \subseteq E$.

4.2.18 Exemple. Chaque sous-espace propre de T est invariant. Plus généralement, l'espace engendré par n'importe quel sous-ensemble de vecteurs propres de T est un sous-espace invariant.

4.2.19 Proposition

Soit $T \in \mathcal{L}(\mathcal{H})$ et auto-adjoint. Si $E \subseteq \mathcal{H}$ est un sous-espace invariant par T alors E^{\perp} est aussi un sous-espace invariant par T.

Démonstration: Soit $x \in E^{\perp}$. Alors pour tout $y \in E$, $\langle Tx, y \rangle = \langle x, Ty \rangle = 0$, d'où $Tx \in E^{\perp}$.

4.2.21 REMARQUE

Si \mathscr{H} est un espace de Hilbert complexe et $T \in \mathscr{L}(\mathscr{H})$ un opérateur auto-adjoint, Alors pour tout $x \in \mathscr{H}$, $\langle Tx, x \rangle \in \mathbb{R}$. En effet, $\langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$.

4.2.22 LEMME

Soit \mathscr{H} est un espace de Hilbert et $T \in \mathscr{L}(\mathscr{H})$ un opérateur auto-adjoint. Alors toutes les valeurs propres de T sont réelles (c.-à-d $\sigma_p(T) \subset \mathbb{R}$) et les vecteurs propres correspondant à des valeurs propres différentes sont orthogonaux.

Démonstration: Soit λ une valeur propre de T et x un vecteur propre associé. Alors $\langle Tx, x \rangle = \langle \lambda x, x \rangle$, donc, remarque 4.2.21, on a $\lambda = \frac{\langle Tx, x \rangle}{\langle x, x \rangle} = \frac{\langle Tx, x \rangle}{\|x\|^2} \in \mathbb{R}$. Si μ est une autre valeur propre de T et y un vecteur propre associé, alors

$$\lambda \langle x, y \rangle = \langle Tx, y \rangle = \langle x, Ty \rangle = \overline{\mu} \langle x, y \rangle = \mu \langle x, y \rangle.$$

Il en résulte que $(\lambda - \mu)\langle x, y \rangle = 0$. Comme $\lambda \neq \mu$, on aura $\langle x, y \rangle = 0$

4.2.24 LEMME (NORME D'UN OPÉRATEUR AUTO-ADJOINT)

Soit \mathscr{H} est un espace de Hilbert et $T \in \mathscr{L}(\mathscr{H})$ un opérateur auto-adjoint. Alors

$$||T|| = \sup_{||x||=1} |\langle Tx, x \rangle|.$$

Démonstration: Soit $\alpha:=\sup\{|\langle Tx,x\rangle|:x\in\mathcal{H},\|x\|\leq 1\}$. En utilisant l'inégalité de Cauchy-Schwarz, on obtient facilement que $\alpha\leq\|T\|$. Passons à l'inégalité inverse, pour tous $x,y\in\mathcal{H}$, comme $T^*=T$, on a $\langle T(x+y),x+y\rangle=\langle Tx,x\rangle+2\operatorname{Re}\langle Tx,y\rangle+\langle Ty,y\rangle$ et $\langle T(x-y),x-y\rangle=\langle Tx,x\rangle-2\operatorname{Re}\langle Tx,y\rangle+\langle Ty,y\rangle$. D'où

$$4\operatorname{Re}\langle Tx,y\rangle \leq \langle T(x+y), x+y\rangle - \langle T(x-y), x-y\rangle$$

$$\leq \alpha^{2}(\|x+y\|^{2} + \|x-y\|^{2})$$

$$\leq 2\alpha^{2}(\|x\|^{2} + \|y\|^{2}),$$

Pour tout x, tel que ||x||=1 et $Tx\neq 0$, on prend $y=\frac{Tx}{\|Tx\|}$, d'où $4\|Tx\|^2\leq 4\alpha^2$ et par suite la borne supérieure sur $\|x\|=1$ et $Tx\neq 0$ nous donne $\|T\|\leq \alpha$.

Il s'ensuit que $\sup_{\|x\|=1} \langle Tx, x \rangle = \|T\|$ ou bien $\sup_{\|x\|=1} \langle Tx, x \rangle = -\|T\|$.

4.2.26 Proposition

Soit \mathcal{H} est un espace de Hilbert et T un opérateur compact auto-adjoint ed \mathcal{H} . Soit $\alpha = \sup \langle Tx, x \rangle$. Alors α est une valeur propre de T.

D'où ||T|| ou -||T|| est valeur propre de T.

Démonstration: On suppose que $\alpha \neq 0$, sinon T = 0. Soit $(x_n) \in \mathcal{H}$ telle que $||x_n|| = 1$ et $\lim_{n \to +\infty} \langle Tx_n, x_n \rangle = \alpha$.

$$||(T - \alpha I)x_n||^2 = ||Tx_n - \alpha x_n||^2$$

$$= ||Tx||^2 + \alpha^2 ||x||^2 - 2\alpha \langle Tx_n, x_n \rangle$$

$$\leq \alpha^2 + \alpha^2 - 2\alpha \langle Tx_n, x_n \rangle$$

et d'où $\lim_{n\to+\infty} \|(T-\alpha I)x_n\| = 0.$

Comme T est compact, quitte à prendre une sous-suite, on peut supposer que (Tx_n) converge vers un $x \in \mathcal{H}$. Alors $\lim_{n \to +\infty} \alpha x_n = x \neq 0$ et par suite le passage à la limite de $T(\alpha x_n) = \alpha T(x_n)$, donne $Tx = \alpha x$. Ainsi $\alpha \in \sigma_p(T)$.

Diagonalisation des opérateurs auto-adjoints compacts

Un résultat d'algèbre linéaire dit que pour une matrice A hermitienne i.e. $A^* = A$ (respectivement normale i.e. $AA^* = A^*A$) il existe une base orthonormée dans laquelle elle est diagonale réelle (respectivement diagonale complexe). Dans ce qui suit nous allons montrer un résultat analogue pour les opérateurs compact auto-adjoints (respectivement normaux) dans un espace de Hilbert.

4.2.28 Théorème (Diagonalisation des opérateurs auto-adjoints compacts)

Soit \mathscr{H} est un espace de Hilbert sur \mathbb{K} et $T \in K(\mathscr{H})$ un opérateur auto-adjoint compact. Alors, il existe une base hilbertienne de \mathscr{H} formée de vecteurs propres de T.

Démonstration: On désigne par $\mathcal B$ l'ensemble des parties U de $\mathcal H$ qui vérifient les conditions

$$\begin{cases} x \in U \Rightarrow ||x|| = 1 \\ x, y \in U \text{ et } x \neq y \Rightarrow \langle x, y \rangle = 0 \\ x \in U \Rightarrow Tx \in \mathbb{K}x = \text{Vect}\{x\} \end{cases}$$
 (*)

ordonné par l'inclusion (\subset) des parties de \mathscr{H} . \mathscr{B} est non vide, car T a au moins une valeur propre, à savoir $-\|T\|$ ou $\|T\|$, et donc un vecteur propre, le singleton formé de ce vecteur propre est alors un élément de \mathscr{B} . Montrons que (\mathscr{B}, \subset) est inductif. Soit $\mathscr{C} = \{B_i, i \in I\}$ une partie totalement ordonnée de (\mathscr{B}, \subset)

Pour montrer que $\bigcup_{i \in I} B_i$ est un majorant de C, il suffit de montrer que $\bigcup_{i \in I} B_i$ vérifie (*). Soit $x, y \in \bigcup_{i \in I} B_i$, $x \neq y$, alors il existe $j \in I$ tel que $x, y \in B_j$, d'où $\|x\| = \|y\| = 1$, $Tx \in \mathbb{K}x$, $Ty \in \mathbb{K}y$ et $\langle x, y \rangle = 0$. Ainsi, $\bigcup_{i \in I} B_i$ vérifie (*). D'après le lemme de Zorn, il existe un élément maximal B dans \mathcal{B} . Alors B est une base hilbertienne de \mathcal{H} formée de vecteurs propres : En effet, les deux premières conditions de (*) montrent que les éléments de B forment un système orthonormé et la troixième condition, qu'ils sont des vecteurs propres de T.

Il reste à montrer que *B* est total i.e $\overline{\text{Vect}(B)} = \mathcal{H}$.

Sinon, $H_0 = \overline{\text{Vect}(B)}^{\perp} \neq \{0\}$. On pose $T_0 = T|_{H_0}$.

D'après le lemme 4.2.19, H_0 est stable par T, d'où $T_0: H_0 \to H_0$ définit un opérateur auto-adjoint compact.

D'après le corollaire 4.2.26, on peut trouver $v_0 \neq 0$ qui soit vecteur propre de T_0 associé à une valeur propre λ telle que $|\lambda| = ||T_0||$.

Mais alors $B \cup \{v_0\}$ est un sytème vérifiant (*) et qui contient strictement B, ceci contredit le caractère maximal de B. Donc B est total et par suite une base hilbertienne de \mathcal{H} .

Maintenant, nous pouvons énoncer ce qu'on appelle le théorème spectrale pour opérateurs auto-adjoints compacts sur un espace de Hilbert séparable.

4.2.30 Théorème (Théorème spectral)

Soient \mathscr{H} est un espace de Hilbert séparable et $T \in \mathscr{L}(\mathscr{H})$ un opérateur compact auto-adjoint. Alors il existe une base orthonormée $\{e_n\}_{n\in\mathbb{N}}$ de \mathscr{H} et une suite de réells $(\lambda_n)_n$ tels que pour tout $n\in\mathbb{N}$, $Te_n=\lambda_n e_n$ et pour tout $x\in\mathscr{H}$

$$Tx = \sum_{n \in \mathbb{N}} \lambda_n \langle x, e_n \rangle e_n$$

Si dim $\mathcal{H} = +\infty$ on a de plus $\lim_{n \to +\infty} \lambda_n = 0$.

Démonstration: D'après le théorème 4.2.28, il existe une base hilbertienne de \mathscr{H} formée de vecteurs propres de T. Cette base est dénombrable car \mathscr{H} est séparable. On la note $\{e_n\}_{n\in\mathbb{N}}$. Pour tout $x\in\mathscr{H}$ et $m>k\geq 0$, on a

$$\left\| \sum_{n=k}^{m} \lambda_n \langle x, e_n \rangle e_n \right\|^2 = \sum_{n=k}^{m} |\lambda_n \langle x, e_n \rangle|^2 \le \|T\| \sum_{n=k}^{m} |\langle x, e_n \rangle|^2 \to 0 \quad \text{lorsque } k, m \to +\infty.$$

Donc $\sum_{n\in\mathbb{N}} \lambda_n \langle x, e_n \rangle e_n$ est convergente dans \mathcal{H} .

De plus, pour tout $x \in \mathcal{H}$, on a pour tout $m \ge 0$, nous avons

$$\left\| \sum_{n=0}^{m} \lambda_n \langle x, e_n \rangle e_n \right\|^2 \le \|T\| \sum_{n=0}^{m} |\langle x, e_n \rangle|^2 \le \|T\|^2 \|x\|^2. \tag{4.2.1}$$

Par conséquent, si nous définissons $Lx = \sum_{n \in \mathbb{N}} \lambda_n \langle x, e_n \rangle e_n$, à partir de (4.2.1), nous constatons que $L \in \mathcal{L}(\mathcal{H})$ et pour tout $n \in \mathbb{N}$ $L(e_n) = T(e_n)$. Ainsi, par linéarité et continuité, on aura T = L.

4.2.32 Proposition

Soient \mathscr{H} est un espace de Hilbert séparable et $T,S\in\mathscr{L}(\mathscr{H})$ deux opérateurs compacts auto-adjoints tels que TS=ST. Alors il existe une base orthonormée $\{e_n\}_{n\in\mathbb{N}}$ de \mathscr{H} formée de vecteurs propres de T et S.

Démonstration: pour toute valeur propre λ de T, on note $N_{\lambda} = \ker(T - \lambda I)$, son espace propre. Alors pour tout $x \in N_{\lambda}$ on a $TSx = STx = \lambda x$. D'où $Sx \in N_{\lambda}$ Ainsi la restriction de S à N_{λ} est opérateur auto-adjoint compact, donc il existe une base hilbertienne de N_{λ} formée de vecteurs propres de S. En prenant la réunion sur tous les sous-espaces propres on obtient le résultat.

4.2.34 COROLLAIRE (THÉORÈME SPECTRALE POUR LES OPÉRATEURS COMPACTS NORMAUX)

Soient \mathscr{H} est un espace de Hilbert séparable et $T \in \mathscr{L}(\mathscr{H})$ un opérateur compact auto-adjoint i.e. $TT^* = T^*T$. Alors il existe une base orthonormée $\{e_n\}_{n \in \mathbb{N}}$ de \mathscr{H} et une suite de nombres complexes $(\lambda_n)_n$ tels que pour tout $n \in \mathbb{N}$, $Te_n = \lambda_n e_n$ et pour tout $x \in \mathscr{H}$

$$Tx = \sum_{n \in \mathbb{N}} \lambda_n \langle x, e_n \rangle e_n$$

Si dim $\mathscr{H} = +\infty$ on a de plus $\lim_{n \to +\infty} \lambda_n = 0$.

Démonstration: On décompose T en deux opérateurs T=A+iB avec $A=\frac{T+T^*}{2}$

et $B = \frac{T - T^*}{2i}$. Alors A et B sont auto-adjoints et comme T est normal ils commutent i.e. AB = BA. Ainsi, d'après le théorème spectrale 4.2.30 et la proposition 4.2.32, il existe une base orthonormée (e_n) des suites de réelles (α_n) et (β_n) telles que pour tout $n \in \mathbb{N}$ on a $Ae_n = \alpha_n e_n$ et $Be_n = \beta_n e_n$. Alors pour tout $n \in \mathbb{N}$, $Te_n = (\alpha_n + i\beta_n)e_n$, d'où e_n est un vecteur propre associé à la valeur propre $\lambda_n = \alpha_n + i\beta_n$ et comme $\lim_{n \to +\infty} \alpha_n = \lim_{n \to +\infty} \beta_n = 0$ il s'en suit que $\lim_{n \to +\infty} \lambda_n = 0$.