

Analyse 4, Intégrale de fonctions de la variable réelle

TD5 : Covergence dominée ; fonctions définies par des intégrales

Exercice 1.

- 1) Rappeler le théorème de convergence dominée.
- 2) Soit $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définies sur [0,1], par $f_n(t) = \begin{cases} n & \text{si } t \in]0, \frac{1}{n}[0, t] \\ 0 & \text{sinon} \end{cases}$

Vérifier que $\lim_{n\to +\infty} \int_0^1 f_n(t) dt \neq \int_0^1 \lim_{n\to +\infty} f_n(t) dt$.

Qu'elle est l'hypothèse du théorème de convergence dominée qui n'est pas vérifiée?

Exercice 2.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonction $f_n:\left[0,\frac{\pi}{2}\right]\to\mathbb{R}$ définies par $f_n(t)=e^t\sin^n(t)$.

- 1) Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur $\left[0, \frac{\pi}{2}\right]$ vers une fonction f qu'on précisera. La convergence est-elle uniforme?
- 2) Montrer que $\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} e^t \sin^n(t) dt = 0.$

Exercice 3

Montrer que les suites suivantes convergent et déterminer leur limite.

1)
$$\int_0^1 \cos^{2n}(3x) dx$$

$$2) \int_{-\infty}^{+\infty} \frac{\sin^{2n}(x)}{x^2} dx, \quad n \ge 1$$

3)
$$\int_0^{+\infty} \frac{dx}{\sqrt[n]{x^{2n} + 1}}, \ n \ge 1$$

Exercice 4.

Soit $f:[0,+\infty[\to \mathbb{R}$ une fonction continue et g la fonction définie sur $[0,+\infty[$ par :

$$g(t) = \begin{cases} \frac{1}{t} \int_0^t f(s)ds & \text{si } t \neq 0\\ f(0) & \text{si } t = 0 \end{cases}$$

- 1. Montrer que g est continue sur $[0, +\infty[$, dérivable sur $]0, +\infty[$. Calculer g' en fonction de f et g.
- 2. On suppose que $\int_0^{+\infty} |f(t)|^2 dt$ converge. À l'aide de la question 1, montrer que

$$\int_{0}^{+\infty} |g(t)|^{2} dt \le 4 \int_{0}^{+\infty} |f(t)|^{2} dt.$$

Exercice 5.

1) Soit $f:]1, +\infty[\times[0,\pi]]$ la fonction définie par $f(x,t) = \ln(x-\cos t)$. On pose pour tout $x\in]1, +\infty[$, $F(x) = \int_0^\pi f(x,t)dt$.

Montrer que F est une fonction de classe C^1 sur $]1, +\infty[$.

2) En utilisant une autre expression de F, calculer pour tout a > 1 et b > 1:

$$\int_0^{\pi} \ln\left(\frac{a - \cos t}{b - \cos t}\right) dt.$$

Exercice 6.

Pour $x \in \mathbb{R}$, on pose $F(x) = \int_0^{+\infty} \frac{1 - \cos(tx)}{t^2} e^{-t} dt$.

- 1) Montrer que F est bien définie et est deux fois dérivables.
- 2) Calculer F'' et en déduire F.

Exercice 7.

Pour
$$x \in [0, +\infty[$$
, on pose $F(x) = \int_0^{+\infty} \frac{\sin(t)}{t} e^{-tx} dt$.

Étude sur $]0,+\infty[$:

- 1. Montrer que F est bien définie sur $]0, +\infty[$ et vérifie $|F(x)| \leq \frac{1}{x}, \ \forall x \in \mathbb{R}_+^*.$
- 2. Montrer que F est de classe C^1 sur $]0, +\infty[$ et calculer F'.
- 3. Á l'aide de deux intégrations par partie calculer F'.
- 4. En déduire que $F(x) = \lambda \arctan(x)$ avec λ à déterminer.

<u>Étude en 0 :</u>

- 5. Montrer que F est définie en 0. On pose $H(t) := \int_t^{+\infty} \frac{\sin(s)}{s} ds$
- 6. Montrer que H est une fonction continue dérivable sur $[0, +\infty[$. Montrer que H est bornée sur \mathbb{R}_+ .
- 7. Montrer que $F(x) F(0) = -x \int_0^{+\infty} H(t)e^{-tx}dt$.
- 8. En déduire que F est continue en 0. Déterminer la valeur de $\int_0^{+\infty} \frac{\sin(s)}{s} ds$.

Exercice 8.

Pour
$$x \in [0, +\infty[$$
, on pose $F(x) = \int_0^{+\infty} \frac{e^{-tx}}{\sqrt{t}(1+t)} dt$.

- a) Etudier la dérivabilité de F.
- b) Déterminer un équation différentielle du premier ordre satisfaite par F.
- c) En déduire la valeur de $\int_0^{+\infty} e^{-x^2} dx$.