Unité d'enseignement AN4 Examen - Durée : 2 heures.

Exercice 1

Soit $f:[2, +\infty[\longrightarrow \mathbb{R} \text{ la fonction définie par : }$

$$f(t) = \frac{1}{n \ln n}$$
 pour $t \in [n, n+1[, \forall n \in \mathbb{N} \setminus \{0, 1\}].$

1.1. On fixe un entier n avec n > 2. Expliquer pourquoi la fonction f est en escalier sur l'intervalle [2, n] et identifier une subdivision adaptée à f.

La subdivision $\sigma := \{2, 3, 4, \dots, n\}$ est adaptée à f puisque f est constante sur chaque sous-intervalle [j, j+1[avec $j \in \{2, \dots, n-1\}$. Le nombre de ces intervalles étant fini, la fonction f est en escalier.

1.2. Ecrire la valeur de l'intégrale $\int_2^n f(t) dt$ sous la forme d'une somme finie.

$$\int_{2}^{n} f(t) dt = \sum_{j=2}^{n-1} \frac{1}{j \ln j}.$$

1.3. Etablir l'inégalité $\int_{\ln 2}^{\ln n} \frac{ds}{s} \leq \int_{2}^{n} f(t) dt$.

On pose $g(t) := \frac{1}{t \ln t}$. On a $g(t) \le f(t)$ pour $t \in [2, n[$. Par comparaison puis en effectuant le changement de variable $s = \ln t$, cela conduit à :

$$\int_{\ln 2}^{\ln n} \frac{ds}{s} = \int_{2}^{n} g(t) dt \le \int_{2}^{n} f(t) dt.$$

1.4. Quelle est la nature (convergente ou divergente) de la série $\sum_{n=2}^{+\infty} \frac{1}{n \ln n}$?

Un calcul direct fournit:

$$\int_{\ln 2}^{\ln n} \frac{ds}{s} = \ln(\ln n) - \ln(\ln 2) \le \int_{2}^{n} f(t) dt = \sum_{j=2}^{n-1} \frac{1}{j \ln j}.$$

Comme le membre de gauche tend clairement vers $+\infty$ lorsque n tend vers $+\infty$, la série est divergente.

Soit $f:[0, +\infty[\longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^1 , qui vaut 0 en t=0, et qui admet une limite finie $l \in \mathbb{R}$ en $+\infty$. Pour tout $\varepsilon \in \mathbb{R}_+^*$, il existe $T \in \mathbb{R}_+$ tel que:

(1)
$$t \ge T \implies |f(t) - l| \le \varepsilon$$
.

2.1. On se donne $(a, b) \in \mathbb{R}^2$ avec 0 < a < b. On fixe $x \in \mathbb{R}_+^*$. Etablir l'identité:

$$\int_0^x \frac{f(b\,t) - f(a\,t)}{t} \,dt = \int_{a\,x}^{b\,x} \frac{f(t)}{t} \,dt \,.$$

On commence par remarquer que les deux fonctions $t \mapsto t^{-1} f(at)$ et $t \mapsto t^{-1} f(bt)$ se prolongent par continuité en t = 0 par les valeurs a f'(0) et b f'(0). Elles sont donc Riemann intégrables sur [0, x]. Ensuite, c'est la relation de Chasles combinée aux changements de variables s = bt et $\tilde{s} = at$ qui fournit:

$$\int_0^x \frac{f(bt) - f(at)}{t} dt = \int_0^x \frac{f(bt)}{t} dt - \int_0^x \frac{f(at)}{t} dt$$
$$= \int_0^{bx} \frac{f(t)}{t} dt - \int_0^{ax} \frac{f(t)}{t} dt = \int_{ax}^{bx} \frac{f(t)}{t} dt.$$

2.2. En s'appuyant sur (1), montrer l'existence de $X \in \mathbb{R}_+$ tel que:

$$x \ge X \implies \left| \int_0^x \frac{f(b\,t) - f(a\,t)}{t} \, dt - l \, \ln\left(\frac{b}{a}\right) \right| \le \varepsilon \, \ln\left(\frac{b}{a}\right).$$

On choisit X de façon à ce que $bX \ge aX > T$ de sorte que:

$$x \ge X \implies |f(t) - l| \le \varepsilon, \qquad \forall t \in [a X, b X].$$

Pour de tels x > X, on a alors:

$$\left| \int_{ax}^{bx} \frac{f(t)}{t} dt - l \ln\left(\frac{b}{a}\right) \right| = \left| \int_{ax}^{bx} \frac{f(t)}{t} dt - \int_{ax}^{bx} \frac{l}{t} dt \right|$$

$$\leq \int_{ax}^{bx} \frac{|f(t) - l|}{t} dt \leq \int_{ax}^{bx} \frac{\varepsilon}{t} dt \leq \varepsilon \ln\left(\frac{b}{a}\right).$$

2.3. En déduire que l'intégrale généralisée $\int_0^{+\infty} \frac{f(b\,t) - f(a\,t)}{t}\,dt$ est convergente et calculer sa valeur.

Il suffit de s'appuyer sur la question 2.2 qui indique que $\int_0^x \frac{f(b\,t) - f(a\,t)}{t} dt$ converge vers une limite finie égale à $l \ln\left(\frac{b}{a}\right)$.

2.4. Soit $(\alpha, \beta) \in]0, 1[^2$ avec $\alpha < \beta$. Effectuer le changement de variables $t = -\ln s$ au niveau de l'intégrale $\int_{\alpha}^{\beta} \frac{s-1}{\ln s} ds$.

On trouve:

$$\int_{\alpha}^{\beta} \frac{s-1}{\ln s} \, ds \, = \, \int_{-\ln \alpha}^{-\ln \beta} \, \frac{e^{-t}-1}{-t} \, \left(-\,e^{-t}\right) \, dt \, = \, -\, \int_{-\ln \beta}^{-\ln \alpha} \, \frac{e^{-2t}-e^{-t}}{t} \, dt \, .$$

2.5. Déduire de ce qui précède que l'intégrale généralisée $\int_0^1 \frac{s-1}{\ln s} \, ds$ converge et calculer sa valeur.

On applique la question 2.4. Avec $\alpha \to 0$ et $\beta \to 1$, on voit qu'on a affaire à:

$$\int_{0}^{+\infty} \frac{f(b\,t) - f(a\,t)}{t} \,dt \quad avec \quad f(t) = e^{-t} - 1 \,, \quad a = 1 \,, \quad b = 2 \,.$$

Il suffit alors de renvoyer à 2.3 qui donne la convergence avec $\int_0^1 \frac{s-1}{\ln s} ds = -\ln 2$.

Exercice 3

3.1. On fixe $x \in \mathbb{R}$. Montrer que l'intégrale généralisée $\int_0^{+\infty} e^{-t} \cos(t x) dt$ est absolument convergente. On note f(x) sa valeur.

Cela tient à ce que:

$$(\star)$$
 $|e^{-t}\cos(tx)| \le e^{-t}, \quad \int_0^{+\infty} e^{-t} dt = 1 < +\infty.$

3.2. En appliquant le théorème de continuité sous le signe somme (après en avoir vérifié les hypothèses), prouver que la fonction f est continue sur \mathbb{R} .

On observe que:

- a) Pour tout x, la fonction $t\longmapsto e^{-t}\,\cos{(t\,x)}\,$ est localement intégrable sur $[0,+\infty[$;
- b) Pour tout $t \in [0, +\infty[$, la fonction $x \longmapsto e^{-t} \cos(t x)$ est continue;
- c) On dispose de la majoration uniforme en $x \in \mathbb{R}$ soulignée en (\star) .

La continuité de f découle alors du théorème de continuité sous le signe somme.

3.3. En s'appuyant sur une double intégration par parties, calculer f(x).

On trouve:

$$f(x) = 1 - x \int_0^{+\infty} e^{-t} \sin(t x) dt = 1 - x^2 \int_0^{+\infty} e^{-t} \cos(t x) dt.$$

D'où l'on déduit facilement $f(x) = (1 + x^2)^{-1}$.

Cet exercice porte sur l'étude de l'application:

$$\begin{array}{cccc} f \,:\, [1,+\infty[\times[0,+\infty[&\longrightarrow&\mathbb{R}\\ & (x,t)&\longmapsto&f(x,t)\,=\,\frac{e^{-(t+1)\,x}}{t+1}\,. \end{array}$$

Le réel $x \in [1, +\infty[$ ou $t \in [0, +\infty[$ étant fixés, on note :

$$f_{x,}: [0, +\infty[\longrightarrow \mathbb{R}$$
 $f_{x,}(t) := f(x,t),$ $f_{,t}: [1, +\infty[\longrightarrow \mathbb{R}$ $x \longmapsto f_{,t}(x) := f(x,t).$

On considère aussi la fonction:

$$F : [1, +\infty[\longrightarrow \mathbb{R}]$$

$$x \longmapsto \int_{0}^{+\infty} f(x,t) \ dt = \int_{0}^{+\infty} f_{x}(t) \ dt = \int_{0}^{+\infty} \frac{e^{-(t+1)x}}{t+1} \ dt \ .$$

4.1. Expliquer brièvement pourquoi la fonction F est bien définie.

Cela tient à ce que:

$$(*) \qquad |\frac{e^{-(t+1)x}}{t+1}| \, \leq \, e^{-t} \, , \quad \forall \, (x,t) \in [1,+\infty[\times[0,+\infty[\,,\, \int_0^{+\infty}e^{-t} \, \, dt = 1 < +\infty \, .$$

4.2. Soit $t \in [0, +\infty[$. Montrer que l'application $f_{,t}$ est dérivable sur \mathbb{R} et calculer la dérivée partielle $\frac{\partial f}{\partial x}(x,t)$.

$$\frac{\partial f}{\partial x}(x,t) = -e^{-x} e^{-(tx)}.$$

4.3. Rappeler quel est l'énoncé du théorème de dérivabilité sous le signe somme. On demande en particulier de rappeler quelles en sont les hypothèses.

Voir le cours.

4.4. Montrer que ces hypothèses se trouvent vérifiées dans le cas présent. Que peuton en déduire en ce qui concerne la dérivée de la fonction F?

On observe que:

- a) Pour tout $x \in [1, +\infty[$, la fonction $t \longmapsto f_{x,}(t)$ est localement intégrable sur $[0, +\infty[$;
- b) Pour tout $t \in [0, +\infty[$, la fonction $x \longmapsto f_{,t}(x)$ est dérivable;
- c) On dispose de la majoration uniforme:

$$\left| \frac{\partial f}{\partial x}(x,t) \right| = \left| e^{-x} \ e^{-(t\,x)} \right| \le g(t) := e^{-t}, \qquad \forall \, (x,t) \in [1,+\infty[\times[0,+\infty[$$

où la fonction g est intégrable sur $[0, +\infty[$.

La dérivabilité de F découle alors du théorème de dérivabilité sous le signe somme.

4.5. Déduire de ce qui précède l'expression explicite de F'(x).

$$F'(x) = -e^{-x} \int_0^{+\infty} e^{-(tx)} dt = -\frac{e^{-x}}{x}.$$

4.6. Justifier la formule:
$$F(x) = \int_x^{+\infty} s^{-1} e^{-s} ds$$
.

o Méthode 1. On a clairement:

$$0 \le F(x) \le e^{-x} \int_0^{+\infty} e^{-t} dt \le e^{-x}.$$

En particulier, cela dit que F tend vers 0 en $+\infty$. On peut donc écrire:

$$F(x) = -\int_{x}^{+\infty} F'(s) ds = \int_{x}^{+\infty} s^{-1} e^{-s} ds.$$

o <u>Méthode</u> <u>2</u>. Partir de la définition initiale de F et effectuer le changement de variables s = (t+1)x où x est vu comme un paramètre.

4.7. Justifier la formule:
$$F(x) + \ln x = \int_x^1 s^{-1} (e^{-s} - 1) ds + \int_1^{+\infty} s^{-1} e^{-s} ds$$

On a par définition:

$$F(x) + \ln x = \int_{x}^{+\infty} \frac{e^{-s}}{s} ds - \int_{x}^{1} \frac{1}{s} ds.$$

On peut appliquer la relation de Chasle:

$$F(x) + \ln x = \int_{x}^{1} \frac{e^{-s} - 1}{s} ds + \int_{1}^{+\infty} \frac{e^{-s}}{s} ds.$$

ce qui conduit au résultat recherché par simple regroupement des termes.

4.8. Trouver un équivalent de F pour x qui tend vers 0 par valeurs positives.

On peut s'appuyer sur le 4.7. La fonction $s \longrightarrow s^{-1} (1 - e^{-s})$ se prolonge par continuité en s = 0. Par conséquent:

$$\lim_{x \to 0} \int_{x}^{1} \frac{e^{-s} - 1}{s} ds = \int_{0}^{1} \frac{e^{-s} - 1}{s} ds \in \mathbb{R}.$$

Cela implique:

$$\lim_{x \to 0} F(x) + \ln x = \int_0^1 \frac{e^{-s} - 1}{s} ds + \int_1^{+\infty} s^{-1} e^{-s} ds.$$

ce qui suffit pour pouvoir affirmer $F(x) \sim -\ln x$.

Question bonus (sur 4 points). Effectuer une étude adaptée de celle qui est proposée ci-dessus en vue d'analyser la dérivabilité de la fonction:

$$\tilde{F}: [1, +\infty[\longrightarrow \mathbb{R}]$$

$$x \longmapsto \int_0^{+\infty} \frac{e^{-i(t+1)x}}{t+1} dt.$$

La première chose à faire, comme en 4.1, est d'expliquer pourquoi \tilde{F} est bien définie. Une intégration par parties fournit:

$$(\Box) \qquad \int_0^{+\infty} \frac{e^{-i(t+1)x}}{t+1} dt = \frac{e^{-ix}}{ix} - \frac{1}{ix} \int_0^{+\infty} \frac{e^{-i(t+1)x}}{(t+1)^2} dt.$$

L'intégrale généralisée de droite est absolument convergente (donc convergente) car:

$$\left| \frac{e^{-i(t+1)x}}{(t+1)^2} \right| \le \frac{1}{(t+1)^2}, \qquad \int_0^{+\infty} \frac{dt}{(t+1)^2} = 1 < +\infty.$$

Ensuite, pour $x \in [1, +\infty[$, il s'agit d'avoir accès à $\tilde{F}'(x)$. Le point de départ est l'identité (\Box) . Une seconde intégration par parties permet d'interpréter l'intégrale généralisée:

$$\int_0^{+\infty} \frac{e^{-i(t+1)x}}{(t+1)^2} dt$$

en vue de dégager cette fois-ci une décroisssance en $(t+1)^{-3}$. Finalement, on peut appliquer comme ci-dessus le théorème de dérivabilité sous le signe somme (dont on prend soin de vérifier les hypothèses) pour terminer le calcul.