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Abstract. We study non-elliptic quadratic differential operators. Quadratic dif-
ferential operators are non-selfadjoint operators defined in the Weyl quantization by
complex-valued quadratic symbols. When the real part of their Weyl symbols is a
non-positive quadratic form, we point out the existence of a particular linear subspace
in the phase space intrinsically associated to their Weyl symbols, called a singular
space, such that when the singular space has a symplectic structure, the associated
heat semigroup is smoothing in every direction of its symplectic orthogonal space.
When the Weyl symbol of such an operator is elliptic on the singular space, this
space is always symplectic and we prove that the spectrum of the operator is discrete
and can be described as in the case of global ellipticity. We also describe the large
time behavior of contraction semigroups generated by these operators.

Key words. quadratic differential operators, contraction semigroups, exponential
decay, FBI-Bargmann transform, spectrum, semigroup smoothing.

2000 AMS Subject Classification. 47A10, 47D06, 35P05.

1. Introduction

1.1. Miscellaneous facts about quadratic differential operators. Since the
classical work by J. Sjöstrand [12], the study of spectral properties of quadratic
differential operators has played a basic rôle in the analysis of partial differential
operators with double characteristics. Roughly speaking, if we have, say, a clas-
sical pseudodifferential operator p(x, ξ)w on Rn with the Weyl symbol p(x, ξ) =
pm(x, ξ) + pm−1(x, ξ) + . . . of order m, and if X0 = (x0, ξ0) ∈ R2n is a point where
pm(X0) = dpm(X0) = 0 then it is natural to consider the quadratic form q which
begins the Taylor expansion of pm at X0. The study of a priori estimates for p(x, ξ)w,
such as hypoelliptic estimates of the form

||u ||m−1 ≤ CK (|| p(x, ξ)wu ||0 + ||u ||m−2) , u ∈ C∞0 (K), K ⊂⊂ Rn,
then often depends on the spectral analysis of the quadratic operator q(x, ξ)w. See
also [7], as well as Chapter 22 of [8] together with further references given there.
In [12], the spectrum of a general quadratic differential operator has been determined,
under the basic assumption of global ellipticity of the associated quadratic form.

Now there exist many situations where one is naturally led to consider non-selfad-
joint quadratic differential operators whose symbols are not elliptic but rather satisfy
certain weaker conditions. An example particularly relevant to the following discus-
sion is obtained if one considers the Kramers-Fokker-Planck operator with a quadratic
potential [4], [3]. The corresponding (complex-valued) symbol is not elliptic, but nev-
ertheless, the operator has discrete spectrum and the associated heat semigroup is
well behaved in the limit of large times — see [5].

The purpose of the present paper is to provide a proof of a number of fairly general
results concerning the spectral and semigroup properties for the class of quadratic
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differential operators in the case when the global ellipticity fails. Specifically, and as
alluded to above, we shall consider the class of pseudodifferential operators defined
by the Weyl quantization formula,

(1.1.1) q(x, ξ)wu(x) =
1

(2π)n

∫
R2n

ei(x−y).ξq
(x+ y

2
, ξ
)
u(y)dydξ,

for some symbols q(x, ξ), where (x, ξ) ∈ Rn × Rn and n ∈ N∗, which are complex-
valued quadratic forms. Since the symbols are quadratic forms, the corresponding
operators in (1.1.1) are in fact differential operators. Indeed, the Weyl quantization
of the quadratic symbol xαξβ , with (α, β) ∈ N2n and |α + β| ≤ 2, is the differential
operator

xαDβ
x +Dβ

xx
α

2
, Dx = i−1∂x.

Let us also notice that since the Weyl symbols in (1.1.1) are complex-valued, the
quadratic differential operators are a priori formally non-selfadjoint.

In this paper, we shall first study the properties of contraction semigroups gener-
ated by quadratic differential operators whose Weyl symbols have a non-positive real
part,

(1.1.2) Re q ≤ 0.

Our first goal is to point out the existence of a linear subspace S in Rnx × Rnξ , which
will be called the singular space and which is defined in terms of the Hamilton map
of the Weyl symbol q, such that when S has a symplectic structure, the associated
heat equation

(1.1.3)

{
∂u

∂t
(t, x)− q(x, ξ)wu(t, x) = 0

u(t, ·)|t=0 = u0 ∈ L2(Rn),

is smoothing in every direction of the orthogonal complement Sσ⊥ of S with respect
to the canonical symplectic form σ on R2n,

(1.1.4) σ
(
(x, ξ), (y, η)

)
= ξ.y − x.η, (x, ξ) ∈ R2n, (y, η) ∈ R2n.

We shall also describe the large time behavior of contraction semigroups

etq(x,ξ)
w

, t ≥ 0,

associated to (1.1.3). When the Weyl symbol q satisfies (1.1.2) and an assumption of
partial ellipticity, namely when q is elliptic on the singular space S in the sense that

(1.1.5) (x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0,

then S is automatically symplectic, and we prove that the spectrum of the quadratic
differential operator q(x, ξ)w is only composed of a countable number of eigenvalues
of finite multiplicity, with its structure similar to the one known in the case of global
ellipticity [12].

It seems to us that the singular space S introduced in this paper plays a basic rôle
in the understanding of non-elliptic quadratic differential operators. Its study may
therefore be also particularly relevant in the analysis of general pseudodifferential
operators with double characteristics, when the ellipticity of their quadratic approxi-
mations fails.
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Before giving the precise statements of these results, let us begin by recalling some
facts and notation about quadratic differential operators. Let

q : Rnx × Rnξ → C
(x, ξ) 7→ q(x, ξ),

be a complex-valued quadratic form with a non-positive real part,

(1.1.6) Re q(x, ξ) ≤ 0, (x, ξ) ∈ R2n, n ∈ N∗.

We know from [9] (p.425) that the maximal closed realization of the operator q(x, ξ)w,
i.e., the operator on L2(Rn) with the domain

{u ∈ L2(Rn) : q(x, ξ)wu ∈ L2(Rn)},

coincides with the graph closure of its restriction to S(Rn),

q(x, ξ)w : S(Rn)→ S(Rn),

and that every quadratic differential operator whose Weyl symbol has a non-positive
real part, generates a contraction semigroup. The Mehler formula proved by L. Hör-
mander in [9] gives an explicit expression for the Weyl symbols of these contraction
semigroups.

Associated to the quadratic symbol q is the numerical range Σ(q) defined as the
closure in the complex plane of all its values,

(1.1.7) Σ(q) = q(Rnx × Rnξ ).

We also recall [8] that the Hamilton map F ∈ M2n(C) associated to the quadratic
form q is the map uniquely defined by the identity

(1.1.8) q
(
(x, ξ); (y, η)

)
= σ

(
(x, ξ), F (y, η)

)
, (x, ξ) ∈ R2n, (y, η) ∈ R2n,

where q
(
·; ·
)
stands for the polarized form associated to the quadratic form q. It

follows directly from the definition of the Hamilton map F that its real part Re F
and its imaginary part Im F are the Hamilton maps associated to the quadratic forms
Re q and Im q, respectively. Next, (1.1.8) shows that a Hamilton map is always
skew-symmetric with respect to σ. This is just a consequence of the properties of
skew-symmetry of the symplectic form and symmetry of the polarized form,

(1.1.9) ∀X,Y ∈ R2n, σ(X,FY ) = q(X;Y ) = q(Y ;X) = σ(Y, FX) = −σ(FX, Y ).

Let us now consider the elliptic case, i.e., the case of quadratic differential operators
whose Weyl symbols are globally elliptic in the sense that

(1.1.10) (x, ξ) ∈ R2n, q(x, ξ) = 0⇒ (x, ξ) = 0.

In this case, the numerical range of a quadratic form can only take very particular
shapes. J. Sjöstrand proved in [12] (Lemma 3.1) that if q is a complex-valued elliptic
quadratic form on R2n, with n ≥ 2, then there exists z ∈ C∗ such that Re(zq) is a
positive definite quadratic form. If n = 1, the same result is fulfilled if we assume
besides that Σ(q) 6= C. This shows that the numerical range of an elliptic quadratic
form can only take two shapes. The first possible shape is when Σ(q) is equal to
the whole complex plane. This case can only occur in dimension n = 1. The second
possible shape is when Σ(q) is equal to a closed angular sector with a vertex in 0 and
an aperture strictly less than π (see [11] for more details).

We also know that elliptic quadratic differential operators define Fredholm opera-
tors (see Lemma 3.1 in [7] or Theorem 3.5 in [12]),

(1.1.11) q(x, ξ)w + z : B → L2(Rn),
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where B is the Hilbert space

B =
{
u ∈ L2(Rn) : q(x, ξ)wu ∈ L2(Rn)

}
(1.1.12)

=
{
u ∈ L2(Rn) : xαDβ

xu ∈ L2(Rn) if |α+ β| ≤ 2
}
,

with the norm
‖u‖2B =

∑
|α+β|≤2

‖xαDβ
xu‖2L2(Rn).

Moreover, the index of the operator (1.1.11) is independent of z and is equal to 0
when n ≥ 2. In the case n = 1, the index can take the values −2, 0 or 2. It vanishes
as soon as Σ(q) 6= C.

When Σ(q) 6= C, J. Sjöstrand has proved in Theorem 3.5 of [12] (see also Lemma 3.2
and Theorem 3.3 in [7]) that the spectrum of an elliptic quadratic differential operator

q(x, ξ)w : B → L2(Rn),

is only composed of eigenvalues with finite multiplicity,

(1.1.13) σ
(
q(x, ξ)w

)
=
{ ∑

λ∈σ(F ),
−iλ∈Σ(q)\{0}

(
rλ + 2kλ

)
(−iλ) : kλ ∈ N

}
,

where F is the Hamilton map associated to the quadratic form q and rλ is the dimen-
sion of the space of generalized eigenvectors of F in C2n belonging to the eigenvalue
λ ∈ C.

Let us also recall the result proved in [11] about contraction semigroups generated
by elliptic quadratic differential operators whose Weyl symbols have a non-positive
real part. This result shows that, as soon as the real part of their Weyl symbols is
a non-zero quadratic form, the norm of contraction semigroups generated by these
operators decays exponentially in time.

In this paper, we study the case when the ellipticity fails. Our second result
(Theorem 1.2.2) extends the description of the spectra (1.1.13) to the case of quadratic
differential operators whose Weyl symbols are partially elliptic, but not necessarily
globally so. To get this result, we only require that these symbols have a non-positive
real part and are elliptic on their associated singular spaces. We also prove a result
on the exponential decay in time for the norm of contraction semigroups generated
by non-elliptic quadratic differential operators.

Let us now define this singular space. The singular space S associated to the
symbol q is defined as the following intersection of the kernels,

(1.1.14) S =
(+∞⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n,

where the notation Re F and Im F stands respectively for the real part and the
imaginary part of the Hamilton map associated to q. Notice that the Cayley-Hamilton
theorem applied to Im F shows that

(Im F )kX ∈ Vect
(
X, ..., (Im F )2n−1X

)
, X ∈ R2n, k ∈ N,

where Vect
(
X, ..., (Im F )2n−1X

)
is the vector space spanned by the vectors X, ...,

(Im F )2n−1X, and therefore the singular space is actually equal to the following finite
intersection of the kernels,

(1.1.15) S =
( 2n−1⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n.
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The subspace S obviously satisfies the two following properties,

(1.1.16) (Re F )S = {0} and (Im F )S ⊂ S.

We can now give the statements of the main results contained in this paper.

1.2. Statement of the main results. In the following statements, we consider a
complex-valued quadratic form

q : Rnx × Rnξ → C,

with a non-positive real part,

(1.2.1) Re q(x, ξ) ≤ 0, (x, ξ) ∈ R2n, n ∈ N∗,

and we denote by S the singular space defined in (1.1.14) or (1.1.15).
Our first result states that when the singular space S has a symplectic structure,

in the sense that the restriction of σ to S is nondegenerate, the heat equation (1.1.3)
associated to the operator q(x, ξ)w is smoothing in every direction of its orthogonal
complement Sσ⊥ with respect to the canonical symplectic form in R2n.

Theorem 1.2.1. Let us assume that the singular space S has a symplectic structure.
If (x′, ξ′) are some linear symplectic coordinates on the symplectic space Sσ⊥, then
for all t > 0, N ∈ N and u ∈ L2(Rn),

(1.2.2)
(
(1 + |x′|2 + |ξ′|2)N

)w
etq(x,ξ)

w

u ∈ L2(Rn).

Let us mention that the assumption about the symplectic structure of S is always
fulfilled by any quadratic symbol q elliptic on S, i.e.,

(1.2.3) (x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0.

This assumption is therefore always fulfilled for elliptic quadratic differential opera-
tors. We will see that it is also the case for instance for the Kramers-Fokker-Planck
operator with a quadratic potential, which is a non-elliptic operator.

When q is a complex-valued quadratic form with a non-positive real part veri-
fying (1.2.3), we can give another description of the singular space in terms of the
eigenspaces of F associated to its real eigenvalues. Under these assumptions, the set
of real eigenvalues of the Hamilton map F can be written as

σ(F ) ∩ R = {λ1, ..., λr,−λ1, ...,−λr},

with λj 6= 0 and λj 6= ±λk if j 6= k. The singular space is then the direct sum of the
symplectically orthogonal spaces

(1.2.4) S = Sλ1 ⊕σ⊥ Sλ2 ⊕σ⊥ ...⊕σ⊥ Sλr ,

where Sλj is the symplectic space

(1.2.5) Sλj =
(
Ker(F − λj)⊕Ker(F + λj)

)
∩ R2n.

These facts will be proved in section 1.4.
Our second result deals with the structure of the spectra for non-elliptic quadratic

differential operators. This result extends the description of the spectra (1.1.13)
proved by J. Sjöstrand in [12] (Theorem 3.5) for elliptic quadratic differential operators
to the case of quadratic differential operators which are only partially elliptic. To get
this description, we only require in addition to the assumption (1.2.1) the property
of partial ellipticity (1.2.3) for their Weyl symbols.
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Theorem 1.2.2. If q is a complex-valued quadratic form with a non-positive real part
and if q is elliptic on S,

(x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0,

then the spectrum of the quadratic differential operator q(x, ξ)w is only composed of
eigenvalues of finite multiplicity,

(1.2.6) σ
(
q(x, ξ)w

)
=
{ ∑

λ∈σ(F ),
−iλ∈C−∪(Σ(q|S)\{0})

(
rλ + 2kλ

)
(−iλ) : kλ ∈ N

}
,

where F is the Hamilton map associated to the quadratic form q, rλ is the dimension
of the space of generalized eigenvectors of F in C2n belonging to the eigenvalue λ ∈ C,

Σ(q|S) = q(S) and C− = {z ∈ C : Re z < 0}.

Since the singular space S is distinct from the whole phase space as soon as the
real part of q is not identically equal to zero, Theorem 1.2.2 is a generalization of the
result proved by J. Sjöstrand for elliptic quadratic differential operators.

Finally, we give a result concerning the large time behavior of contraction semi-
groups generated by non-elliptic quadratic differential operators, which extends the
result obtained by the second author in [11].

Theorem 1.2.3. Let us consider a complex-valued quadratic form

q : Rnx × Rnξ → C, n ∈ N∗,

with a non-positive real part, such that its singular space S has a symplectic structure.
Then, the following assertions are equivalent:

(i) The norm of the contraction semigroup generated by the operator q(x, ξ)w
decays exponentially in time,

∃M > 0,∃a > 0,∀t ≥ 0, ‖etq(x,ξ)
w

‖L(L2) ≤Me−at.

(ii) The real part of the symbol q is a non-zero quadratic form

∃(x0, ξ0) ∈ R2n, Re q(x0, ξ0) 6= 0.

(iii) The singular space is distinct from the whole phase space S 6= R2n.

Since the assumption about the symplectic structure of the singular space S is
always fulfilled when the symbol q verifies (1.2.3), Theorem 1.2.3 is a generalization
of the result proved in [11] for elliptic quadratic differential operators.

Remark. It follows from [11] that if the quadratic form q, satisfying (1.1.2), is such
that Re F is not nilpotent, then the statement (i) in Theorem 1.2.3 holds. On the
other hand, if Re F is nilpotent then necessarily (Re F )2 = 0, see [11]. In this
case the assumption about the symplectic structure of the singular space in Theorem
1.2.3 cannot be dropped completely. Indeed, let us consider the quadratic differential
operator defined in the Weyl quantization by the symbol

q(x, ξ) = −x2.

This operator is just the operator of multiplication by −x2, which generates the
contraction semigroup

etq(x,ξ)
w

u = e−tx
2
u, t ≥ 0, u ∈ L2(Rn),
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whose norm is identically equal to 1,

‖etq(x,ξ)
w

‖L(L2) = 1, t ≥ 0.

Remark. Let us mention that our proof will show in particular that when q is a
complex-valued quadratic form on R2n, n ≥ 1, with a non-positive real part and a
zero singular space S = {0}, then

etq(x,ξ)
w

= etq(x,ξ)
w

Πa +Oa(e−at), t ≥ 0,

in the space L(L2) of bounded operators on L2(Rn), for any a > 0 such that

σ
(
q(x, ξ)w

)
∩ {z ∈ C : Re z = −a}

=
{ ∑

λ∈σ(F ),
Re(−iλ)<0

(
rλ + 2kλ

)
(−iλ) : kλ ∈ N

}
∩ {z ∈ C : Re z = −a} = ∅,

where Πa stands for the finite rank spectral projection associated to the following
eigenvalues of the operator q(x, ξ)w,

σ
(
q(x, ξ)w

)
∩ {z ∈ C : −a ≤ Re z}

=
{ ∑

λ∈σ(F ),
Re(−iλ)<0

(
rλ + 2kλ

)
(−iλ) : kλ ∈ N

}
∩ {z ∈ C : −a ≤ Re z},

where F is the Hamilton map associated to the quadratic form q and rλ is the dimen-
sion of the space of generalized eigenvectors of F in C2n belonging to the eigenvalue
λ ∈ C.

Let us now explain the key arguments in our proofs of these theorems.

1.3. Structure of the proof. Our main assumption about the symplectic structure
of the singular space S fulfilled in the assumptions of all the three theorems allows
us to find some symplectic coordinates (x′, ξ′) in Sσ⊥ and (x′′, ξ′′) in S such that the
complex-valued quadratic form q verifying (1.2.1) can be written as the sum of two
quadratic forms with a tensorization of the variables (x′, ξ′) and (x′′, ξ′′),

q = q|S + q|Sσ⊥ , (x, ξ) = (x′, x′′; ξ′, ξ′′) ∈ R2n,

where the first quadratic form q|S is equal to

q|S = iq̃|S ,
with q̃|S a real-valued quadratic form; and where the second quadratic form q|Sσ⊥ is
a complex-valued quadratic form with a non-positive real part. This real part is not
in general negative definite (unless the real part of q is). However, it follows from the
definition of the singular space S that the average of the real part of the quadratic
form q|Sσ⊥ by the flow generated by the Hamilton vector field of its imaginary part,
HImq|

Sσ⊥
,

〈Re q|Sσ⊥〉T (X ′) =
1

2T

∫ T

−T
Re q|Sσ⊥(etHImq|

Sσ⊥X ′)dt, T > 0, X ′ = (x′, ξ′),

is negative definite. Studying the contraction semigroup

(1.3.1) etq|
w

Sσ⊥ , t ≥ 0,

generated by the operator q|wSσ⊥ , on the FBI-Bargmann transform side, we prove,
using the averaging property just mentioned, that (1.3.1) is compact and strongly
regularizing for every t > 0. This compactness result is really the key point in our
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proofs of the three theorems, and their complete statements then follow from a small
additional amount of work.

1.4. Some examples. In this section, we prove that if a quadratic symbol q is elliptic
on its singular space then the singular space always has a symplectic structure. We
also check that this property is fulfilled for the Kramers-Fokker-Plank operator with
a quadratic potential.

1.4.1. Partially elliptic quadratic differential operators. Let us consider the case of
quadratic differential operators whose Weyl symbols are elliptic on their singular
spaces. Let

q : Rnx × Rnξ → C, n ∈ N∗,
be a complex-valued quadratic form, which is elliptic on its singular space S,

(1.4.1) (x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0.

We want to prove that

S =
( 2n−1⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n,

has a symplectic structure. This fact follows from some arguments similar to those
used in [11] (Lemma 3).

We can assume that S 6= {0} since the space {0} is obviously symplectic. Let us
therefore consider X0 ∈ S \ {0}. We define

(1.4.2)

 e1 = X0

ε1 = − 1
Im q(X0)

Im FX0.

This is possible, since from (1.1.8) and (1.1.16), we have

Re q(X0) = σ(X0,Re FX0) = 0,

and the ellipticity of q on S implies that

Im q(X0) 6= 0,

as X0 ∈ S\{0}. By using the skew-symmetry of the Hamilton map Im F (see (1.1.9)),
it follows that

σ(ε1, e1) = σ
(
− (Im q(X0))−1Im FX0, X0

)
= (Im q(X0))−1σ(X0, Im FX0) = 1,

which shows that the system (e1, ε1) is symplectic. We get from (1.1.16) and (1.4.2)
that

Vect(e1, ε1) ⊂ S.
If S = Vect(e1, ε1), the singular space S is symplectic. If it is not the case, so that,

S 6= Vect(e1, ε1),

we can continue our construction of a symplectic basis for S by considering

X1 ∈ S \Vect(e1, ε1)

and

(1.4.3) X̃1 = X1 + σ(X1, ε1)e1 − σ(X1, e1)ε1 ∈ S \Vect(e1, ε1).

Let us set

(1.4.4)

 e2 = X̃1

ε2 = − 1
Im q(X̃1)

(
Im FX̃1 + σ(Im FX̃1, ε1)e1 − σ(Im FX̃1, e1)ε1

)
,
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which is again possible according to (1.1.16) and the assumption of ellipticity on S
since

Re q(X̃1) = σ(X̃1,Re FX̃1) = 0,
because X̃1 ∈ S \ {0}. Then, we can directly verify by using (1.4.3) and (1.4.4) that
(e1, e2, ε1, ε2) is a symplectic system. By using (1.1.16) again, we get

Vect(e1, e2, ε1, ε2) ⊂ S.
If S = Vect(e1, e2, ε1, ε2), then S is symplectic. If it is not the case, then

S 6= Vect(e1, e2, ε1, ε2),

and we can again iterate the preceding construction. After a finite number of such
iterations, we obtain with this process a symplectic basis of S, proving its symplectic
structure.

Let us now consider a complex-valued quadratic form

q : Rnx × Rnξ → C, n ∈ N∗,
with a non-positive real part

Re q ≤ 0,
such that (1.4.1) is fulfilled and denote by F its Hamilton map. We know from
Proposition 4.4 in [9] that the kernel Ker(F + λ) is the complex conjugate of the
kernel Ker(F − λ) for every λ ∈ R, and that the spaces

Ker(F − λ)⊕Ker(F + λ),

where λ ∈ R∗, and Ker F , are the complexifications of their intersections with R2n.
Let us set

(1.4.5) S0 = (Ker F ) ∩ R2n

and

(1.4.6) Sλ =
(
Ker(F − λ)⊕Ker(F + λ)

)
∩ R2n,

for λ ∈ R∗. Proposition 4.4 in [9] also shows that

Re F Ker(F ± λ) = {0},
for all λ ∈ R. This implies that

(1.4.7) (Re F )Sλ = {0} and (Im F )Sλ ⊂ Sλ,
and proves in view of (1.1.15) that for all λ ∈ R,

(1.4.8) Sλ ⊂ S.
If 0 ∈ σ(F ) ∩ R, this would imply that S0 6= 0. Since from (1.4.5),

q(X) = σ(X,FX) = 0,

for allX ∈ S0, the inclusion (1.4.8) would then contradict our assumption of ellipticity
on the singular space (1.4.1). This proves that the set of real eigenvalues of the
Hamilton map F can be written as

(1.4.9) σ(F ) ∩ R = {λ1, ..., λr,−λ1, ...,−λr},
with λj 6= 0 and λj 6= ±λk if j 6= k.

Let us now check that the spaces Sλj , j = 1, ..., r, are symplectic. Let X0 be in
Sλj such that for all Y ∈ Sλj ,

σ(X0, Y ) = 0.
It follows that for all Y and Z in Sλj ,

σ(X0, Y + iZ) = 0,
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which induces that

∀X ∈ Ker(F − λj)⊕Ker(F + λj), σ(X0, X) = 0,

because Ker(F − λj)⊕Ker(F + λj) is a complexification of Sλj . On the other hand,
since X0 ∈ Sλj , we have FX0 ∈ Ker(F − λj)⊕Ker(F + λj), which implies that

q(X0) = σ(X0, FX0) = 0.

We then deduce from the ellipticity of q on the singular space (1.4.1) and (1.4.8) that
X0 = 0, which proves the symplectic structure of the space Sλj .

Let us now assume that there exists another real eigenvalue λk of F distinct from
λj and −λj . We already know that this eigenvalue λk is necessarily non-zero. Let

X ∈ Ker(F − ε1λj) and Y ∈ Ker(F − ε2λk),

with ε1, ε2 ∈ {±1}, we obtain from the skew-symmetry property of the Hamilton map
F with respect to σ that

σ(X,Y ) = σ(X, ε−1
2 λ−1

k FY ) = − 1
ε2λk

σ(FX, Y ) = − ε1λj
ε2λk

σ(X,Y ).

Since ∣∣∣∣ ε1λj
ε2λk

∣∣∣∣ 6= 1,

because λj and λk are real numbers such that λk 6∈ {λj ,−λj}, we finally deduce that

σ(X,Y ) = 0,

which proves that the spaces Sλj and Sλk are symplectically orthogonal, and we get
from (1.4.8) and (1.4.9) that

(1.4.10) Sλ1 ⊕σ⊥ Sλ2 ⊕σ⊥ ...⊕σ⊥ Sλr ⊂ S.

Let us prove that the singular space is actually exactly equal to this direct sum of
symplectic spaces. We recall that from (1.1.16),

(Re F )S = {0} and (Im F )S ⊂ S.

Since
q(X) = σ(X,FX) = iσ(X, Im FX), X ∈ S,

we deduce from (1.4.1) and the lemma 18.6.4 in [8] that we can find new symplectic
basis (ẽ1, ..., ẽm, ε̃1, ..., ε̃m) in the symplectic space S such that

(1.4.11) q(X) = iε
m∑
j=1

µj(ξ̃2
j + x̃2

j ), X = x̃1ẽ1 + ...+ x̃mẽm + ξ̃1ε̃1 + ...+ ξ̃mε̃m,

where ε ∈ {±1} and µj > 0 for all j = 1, ...,m. Indeed, this is linked to the fact that
a real-valued elliptic quadratic form must be positive definite or negative definite. By
computing F from (1.4.11), we get that

(1.4.12) FXj = −εµjXj and FX̃j = εµjX̃j ,

if Xj = ẽj + iε̃j and X̃j = ẽj − iε̃j for all j = 1, ...,m. The identities (1.4.12) prove
that the singular space is actually equal to the direct sum of the symplectic spaces
Sλj defined in (1.4.6),

S = Sλ1 ⊕σ⊥ Sλ2 ⊕σ⊥ ...⊕σ⊥ Sλr .
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1.4.2. Kramers-Fokker-Planck operator with a quadratic potential. Let us consider the
Kramers-Fokker-Planck operator [4],

K = −∆v +
v2

4
− 1

2
+ v.∂x −

(
∂xV (x)

)
.∂v, (x, v) ∈ R2,

with a quadratic potential

V (x) =
1
2
ax2, a ∈ R∗.

We can write

(1.4.13) K = −q(x, v, ξ, η)w − 1
2
,

with

(1.4.14) q(x, v, ξ, η) = −η2 − 1
4
v2 − i(vξ − axη).

This symbol q is a non-elliptic complex-valued quadratic form with a non-positive
real part and a numerical range equal to the half-plane

Σ(q) = {z ∈ C : Re z ≤ 0}.
We can directly check that its Hamilton map F for which

q(x, v, ξ, η) = σ
(
(x, v, ξ, η), F (x, v, ξ, η)

)
,

is given by

(1.4.15) F =


0 − 1

2 i 0 0
1
2ai 0 0 −1
0 0 0 − 1

2ai
0 1

4
1
2 i 0

 ,

and that the singular space

S =
( 3⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R4,

is reduced to the trivial symplectic space {0}.
As a simple application of Theorem 1.2.2, let us also describe explicitly the spectrum of
the quadratic operator q(x, v, ξ, η)w (see also [3], [5]). We are interested in eigenvalues
of the Hamilton map F in (1.4.15) such that Im λ < 0. Now a computation shows
that λ ∈ C is an eigenvalue of 2F precisely when(a

λ
− λ
)2

+ 1 = 0,

and we easily see that when a < 0, the eigenvalues λ of 2F with Im λ < 0 are given
by

λ1 =
−i− i

√
1− 4a

2
, λ2 =

i− i
√

1− 4a
2

.

When a > 0, we get the eigenvalues

λ1 =
−i+ i

√
1− 4a

2
, λ2 =

−i− i
√

1− 4a
2

.

According to Theorem 1.2.2, the spectrum of q(x, v, ξ, η)w is given by{(
1
2

+ k1

)
λ1

i
+
(

1
2

+ k2

)
λ2

i
, kj ∈ N

}
.

In particular, when a > 0, we observe that the lowest eigenvalue of the spectrum of
the operator K in (1.4.13) is 0 (see also [5]).
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Remark. Starting from the quadratic Kramers-Fokker-Planck operator, we may con-
struct examples of quadratic forms with non-positive real parts, for which the singular
space S is non-trivial. Indeed, when q1(x′, ξ′) is a quadratic form defined as in (1.4.14),
we let

q(x′, x′′, ξ′, ξ′′) = q1(x′, ξ′) + iq2(x′′, ξ′′),

where q2 is a real valued quadratic form in the variables (x′′, ξ′′). It is then easy
to see that the singular space associated to the quadratic form q is given by S =
{(x′, x′′, ξ′, ξ′′) : x′ = ξ′ = 0}.

Acknowledgment. The research of the first author is supported in part by the
National Science Foundation under grant DMS–0653275 and the Alfred P. Sloan Re-
search Fellowship. He would also like to thank Joe Viola for a stimulating discussion.
The second author is very grateful to Bernard Helffer and Francis Nier for their in-
terest in his thesis work and for their very stimulating questions during the defense
that we have tried to answer in the present work. We would also like to thank the
referee for helpful comments leading to the improved presentation.

2. Symplectic decomposition of the symbol

In this section, we explain how the main assumption about the symplectic structure
of the singular space S fulfilled in the hypotheses of all our three theorems allows us
to tensor the variables in the symbol q by writing it as a sum of two quadratic forms
where the first one is purely imaginary-valued and where the second one verifies the
averaging property of its real part by the flow defined by the Hamilton vector field of
its imaginary part.

Let us consider a complex-valued quadratic form q verifying (1.2.1) and let us
assume that the singular space S defined in (1.1.15) is symplectic. Let us recall
that it is indeed the case when q verifies (1.2.3). Then, we can find χ, a real linear
symplectic transformation of R2n, such that

(2.0.1) (q ◦ χ)(x, ξ) = q1(x′, ξ′) + iq2(x′′, ξ′′), (x, ξ) = (x′, x′′; ξ′, ξ′′) ∈ R2n,

where q1 is a complex-valued quadratic form on R2n′ with a non-positive real part

(2.0.2) Re q1 ≤ 0,

and q2 is a real-valued quadratic form verifying the following properties:

Proposition 2.0.1. The two quadratic forms q1 and q2 satisfy the following proper-
ties:

(i) For all T > 0, the average of the real part of the quadratic form q1 by the flow
defined by the Hamilton vector field of Im q1,

〈Re q1〉T (X ′) =
1

2T

∫ T

−T
Re q1(etHImq1X ′)dt, X ′ = (x′, ξ′) ∈ R2n′ ,

is negative definite.
(ii) The quadratic form

2n−1∑
j=0

Re q1

(
(Im F1)jX ′

)
, X ′ = (x′, ξ′) ∈ R2n′ ,

where F1 stands for the Hamilton map of q1, is negative definite.
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(iii) If the symbol q fulfills an additional assumption of ellipticity on S,

(2.0.3) (x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0,

then we can assume that

q2(x′′, ξ′′) = ε

n′′∑
j=1

λj(ξ′′2j + x′′2j ),

where ε ∈ {±1} and λj > 0 for all j = 1, ..., n′′.

To prove these results, we begin by considering Sσ⊥, the orthogonal complement of
S in R2n with respect to the symplectic form and F the Hamilton map of q. The space
Sσ⊥ is symplectic because it is the case for S. Moreover, since according to (1.1.16),
S is stable by the maps Re F and Im F , its orthogonal complement also fulfills these
properties. Indeed, let X be in Sσ⊥. By using (1.1.16) and the skew-symmetry of
any Hamilton map with respect to σ, we get for all Y ∈ S,

σ(Y,Re FX) + iσ(Y, Im FX) = −σ(Re FY,X)− iσ(Im FY,X) = 0,

because (Re F )Y ∈ S and (Im F )Y ∈ S. This induces that for all Y ∈ S,
σ(Y,Re FX) = σ(Y, Im FX) = 0,

and proves that (Re F )X ∈ Sσ⊥ and (Im F )X ∈ Sσ⊥.
We can then write the phase space R2n as a direct sum of two symplectically

orthogonal real symplectic spaces stable by the maps Re F and Im F ,

(2.0.4) R2n = S1 ⊕σ⊥ S2, (Re F )Sj ⊂ Sj , (Im F )Sj ⊂ Sj ,
for j ∈ {1, 2} with
(2.0.5) S1 = Sσ⊥ and S2 = S.

Let us now consider a symplectic basis (e1,j , ..., eNj ,j , ε1,j , ..., εNj ,j) of Sj . By col-
lecting these two bases, we get a symplectic basis of R2n, which allows by using the
stability and the orthogonality properties of the spaces Sj to obtain the following
decomposition of q,

q(x, ξ) = σ
( ∑

1≤j≤2,
1≤k≤Nj

(xk,jek,j + ξk,jεk,j), F
( ∑

1≤j≤2,
1≤k≤Nj

(xk,jek,j + ξk,jεk,j)
))

=
∑

1≤j≤2

σ
( ∑

1≤k≤Nj

(xk,jek,j + ξk,jεk,j), F
( ∑

1≤k≤Nj

(xk,jek,j + ξk,jεk,j)
))
.

This implies that we can find symplectic coordinates

(x, ξ) = (x′, x′′; ξ′, ξ′′) ∈ R2n,

where (x′, ξ′) and (x′′, ξ′′) are some symplectic coordinates in Sσ⊥ and S respectively,
such that

(2.0.6) q(x, ξ) = q1(x′, ξ′) + q2(x′′, ξ′′),

with

(2.0.7) q1(x′, ξ′) = σ
(
(x′, ξ′), F |Sσ⊥(x′, ξ′)

)
and

(2.0.8) q2(x′′, ξ′′) = σ
(
(x′′, ξ′′), F |S(x′′, ξ′′)

)
.

Since from (1.1.16),
(Re F )S = {0},
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the quadratic form q2 is purely imaginary-valued and can be written as

(2.0.9) q2 = iq̃2,

where q̃2 is the real-valued quadratic form

(2.0.10) q̃2(x′′, ξ′′) = σ
(
(x′′, ξ′′), Im F |S(x′′, ξ′′)

)
.

When the additional assumption (2.0.3) is fulfilled, this quadratic form q̃2 must be
elliptic on R2n′′ . Since a real-valued elliptic quadratic form is necessarily a positive
definite or negative definite quadratic form, we deduce from the lemma 18.6.4 in [8]
that we can find new symplectic coordinates (x′′, ξ′′) in S and ε ∈ {±1} such that

(2.0.11) q̃2(x′′, ξ′′) = ε

n′′∑
j=1

λj(ξ′′2j + x′′2j ),

where λj > 0 for all j = 1, ..., n′′. This proves (iii) in Proposition 2.0.1.
Let us now study the properties of the quadratic form q1. We denote by F1 its

Hamilton map

(2.0.12) F1 = F |Sσ⊥ ,

and define the following quadratic form

(2.0.13) r(X ′) =
2n−1∑
j=0

Re q1

(
(Im F1)jX ′

)
, X ′ = (x′, ξ′) ∈ Sσ⊥.

Since from (1.2.1), (2.0.6) and (2.0.9), Re q1 is a non-positive quadratic form, we
already know that r is a non-positive quadratic form. We now prove that r is actually
a negative definite quadratic form. Let us consider X ′0 ∈ Sσ⊥ such that

r(X ′0) = 0.

The non-positivity of the quadratic form Re q1 induces that for all j = 0, ..., 2n− 1,

(2.0.14) Re q1

(
(Im F1)jX ′0

)
= 0.

Let us denote by Re q1(X ′;Y ′) the polarized form associated to Re q1. We deduce
from the Cauchy-Schwarz inequality, (1.1.8) and (2.0.14) that for all j = 0, ..., 2n− 1
and Y ′ ∈ Sσ⊥,

|Re q1

(
Y ′; (Im F1)jX ′0

)
|2 = |σ

(
Y ′,Re F1(Im F1)jX ′0

)
|2

≤ [−Re q1(Y ′)][−Re q1

(
(Im F1)jX ′0

)
] = 0.

It follows that for all j = 0, ..., 2n− 1 and Y ′ ∈ Sσ⊥,

σ
(
Y ′,Re F1(Im F1)jX ′0

)
= 0,

which implies that for all j = 0, ..., 2n− 1,

(2.0.15) Re F1(Im F1)jX ′0 = 0,

because from (2.0.4), (2.0.5) and (2.0.12), Re F1(Im F1)jX ′0 ∈ Sσ⊥ and Sσ⊥ is a
symplectic vector space. Since X ′0 ∈ Sσ⊥, we deduce from (1.1.15), (2.0.4), (2.0.5),
(2.0.12) and (2.0.15) that X ′0 ∈ S ∩ Sσ⊥ = {0}, which proves that r is a negative
definite quadratic form. This proves (ii) in Proposition 2.0.1.

Remark. According to the previous proof, let us notice that the property (ii) implies
that for all X ∈ R2n′ , X 6= 0, there exists j0 ∈ {0, ..., 2n− 1} such that

(2.0.16) ∀ 0 ≤ j ≤ j0 − 1, Re F1(Im F1)jX = 0, Re F1(Im F1)j0X 6= 0.



15

Let us now prove that for all T > 0, the average of the real part of the quadratic
form q1 by the flow defined by the Hamilton vector field of Im q1,

〈Re q1〉T (X ′) =
1

2T

∫ T

−T
Re q1(etHImq1X ′)dt,

is negative definite. Let us notice that this flow is globally defined since the symbol
Im q1 is quadratic. Let us consider X ′0 in R2n′ such that

(2.0.17) 〈Re q1〉T (X ′0) = 0.

Since Re q1 is a non-positive quadratic form, it follows from (2.0.17) that

Re q1(etHImq1X ′0) = 0,

for all −T ≤ t ≤ T . This implies in particular that for all k ∈ N,

(2.0.18)
dk

dtk
(
Re q1(etHImq1X ′0)

)∣∣
t=0

= Hk
Imq1Re q1(X ′0) = 0.

If X ′0 6= 0, we deduce from (ii) that there exists j0 ∈ {0, ..., 2n− 1} such that

(2.0.19) ∀ 0 ≤ j ≤ j0 − 1, Re q1

(
(Im F1)jX ′0

)
= 0, Re q1

(
(Im F1)j0X ′0

)
< 0.

Let us check that it would imply that

(2.0.20) H2j0
Imq1Re q1(X ′0) 6= 0,

and contradict (2.0.18). To prove (2.0.20), we use some arguments already used in
[11] together with the following lemma also proved in [11].

Lemma 2.0.1. If q1 and q2 are two complex-valued quadratic forms on R2n, then the
Hamilton map associated to the complex-valued quadratic form defined by the Poisson
bracket

{q1, q2} =
∂q1

∂ξ
.
∂q2

∂x
− ∂q1

∂x
.
∂q2

∂ξ
,

is −2[F1, F2] where [F1, F2] stands for the commutator of F1 and F2, the Hamilton
maps of q1 and q2.

We deduce from the previous lemma that the Hamilton map associated to the
quadratic form H2j0

Imq1Re q1 is

(2.0.21) 4j0 [Im F1, [Im F1, [..., [Im F1,Re F1]...],

with exactly 2j0 terms Im F1 appearing in the formula. We can write

4j0 [Im F1, [Im F1, [..., [Im F1,Re F1]...](2.0.22)

=
2j0∑
j=0

(−1)jcj(Im F1)jRe F1(Im F1)2j0−j ,

with cj > 0 for all j = 0, ..., 2j0. Indeed, by using the following identity

[P, [P,Q]] = P 2Q− 2PQP +QP 2,

we can prove by induction that for all n ∈ N∗, there exist some positive constants
dn,j , j = 0, ..., 2n such that

[P, [P, [..., [P,Q]...] =
2n∑
j=0

(−1)jdn,jP jQP 2n−j ,
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if there are exactly 2n terms P in the left-hand side of the previous identity. It follows
from (2.0.21) and (2.0.22) that

H2j0
Imq1Re q1(X ′0) = (−1)j0cj0σ

(
X ′0, (Im F1)j0Re F1(Im F1)j0X ′0

)
(2.0.23)

+
j0−1∑
j=0

(−1)jcjσ
(
X ′0, (Im F1)jRe F1(Im F1)2j0−jX ′0

)
+

j0−1∑
j=0

(−1)2j0−jc2j0−jσ
(
X ′0, (Im F1)2j0−jRe F1(Im F1)jX ′0

)
.

Now on the one hand,

σ
(
X ′0, (Im F1)j0Re F1(Im F1)j0X ′0

)
= (−1)j0σ

(
(Im F1)j0X ′0,Re F1(Im F1)j0X ′0

)
= (−1)j0Re q1

(
(Im F1)j0X ′0

)
,

by the skew-symmetry of the Hamilton map Im F1. On the other hand, using (1.1.8),
(2.0.19), and the Cauchy-Schwarz inequality, we get

|σ
(
X ′0, (Im F1)jRe F1(Im F1)2j0−jX ′0

)
|

= |σ
(
(Im F1)jX ′0,Re F1(Im F1)2j0−jX ′0

)
|

= − Re q1

(
(Im F1)jX ′0; (Im F1)2j0−jX ′0

)
≤ [−Re q1((Im F1)jX ′0)]

1
2 [−Re q1((Im F1)2j0−jX ′0)]

1
2 = 0

and

|σ
(
X ′0, (Im F1)2j0−jRe F1(Im F1)jX ′0

)
|

= |σ
(
(Im F1)2j0−jX ′0,Re F1(Im F1)jX ′0

)
|

= − Re q1

(
(Im F1)2j0−jX ′0; (Im F1)jX ′0

)
≤ [−Re q1((Im F1)2j0−jX ′0)]

1
2 [−Re q1((Im F1)jX ′0)]

1
2 = 0

if j = 0, ..., j0 − 1. It follows from (2.0.19) and (2.0.23) that

H2j0
Imq1Re q1(X ′0) = cj0Re q1

(
(Im F1)j0X ′0

)
< 0,

because cj0 > 0. This proves (2.0.20) and ends the proof (i). �

Remark. Let us notice that we have actually proved that the symbol q1 has a finite
order τ ,

(2.0.24) 1 ≤ τ ≤ 4n− 2,

in every point of the set q1(R2n′) \ {0}. We recall that the order k(x0, ξ0) of a symbol
p(x, ξ) at a point (x0, ξ0) ∈ R2n (see section 27.2, Chapter 27 in [8]) is the element of
N ∪ {+∞} defined by

(2.0.25) k(x0, ξ0) = sup
{
j ∈ Z : pI(x0, ξ0) = 0, ∀ 1 ≤ |I| ≤ j

}
,

where I = (i1, i2, ..., ik) ∈ {1, 2}k, |I| = k and pI stands for the iterated Poisson
brackets

pI = Hpi1
Hpi2

...Hpik−1
pik ,

where p1 and p2 are respectively the real and the imaginary part of the symbol p,
p = p1 + ip2. The order of a symbol q at a point z is then defined as the maximal
order of the symbol p = q − z at every point (x0, ξ0) ∈ R2n verifying

p(x0, ξ0) = q(x0, ξ0)− z = 0.
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3. Proofs of the main results

3.1. Heat semigroup smoothing for non-elliptic quadratic operators. In this
section, we prove Theorem 1.2.1. Let us consider a complex-valued quadratic form

q : Rnx × Rnξ → C, n ∈ N∗,

with a non-positive real part
Re q ≤ 0,

such that its singular space S has a symplectic structure. We recall that this assump-
tion is actually fulfilled in the assumptions of Theorems 1.2.1, 1.2.2 and 1.2.3 since
this singular space is always symplectic when the symbol is elliptic on S.

We can then use the symplectic decomposition of the symbol obtained in section 2.
We deduce from (2.0.1) and (2.0.2) that there exists χ, a real linear symplectic trans-
formation of R2n, such that

(3.1.1) (q ◦ χ)(x, ξ) = q1(x′, ξ′) + iq2(x′′, ξ′′), (x, ξ) = (x′, x′′; ξ′, ξ′′) ∈ R2n,

where q1 is a complex-valued quadratic form on R2n′ with a non-positive real part

(3.1.2) Re q1 ≤ 0,

and q2 is a real-valued quadratic form verifying the properties stated in Proposi-
tion 2.0.1. The key point in our proof of Theorems 1.2.1, 1.2.2 and 1.2.3 is to prove
the following proposition.

Proposition 3.1.1. If n′ ≥ 1, then the spectrum of the quadratic differential operator
q1(x′, ξ′)w is only composed of eigenvalues with finite multiplicity

σ
(
q1(x′, ξ′)w

)
=
{ ∑

λ∈σ(F1),
Re(−iλ)<0

(
rλ + 2kλ

)
(−iλ) : kλ ∈ N

}
,

where F1 is the Hamilton map associated to the quadratic form q1 and rλ is the dimen-
sion of the space of generalized eigenvectors of F1 in C2n′ belonging to the eigenvalue
λ ∈ C. Moreover, the operator q1(x′, ξ′)w generates a contraction semigroup such that

etq1(x′,ξ′)wu ∈ S(Rn
′
),

for any t > 0 and u ∈ L2(Rn′).

Remark. It will be clear from the proof that Proposition 3.1.1 extends to the vector-
valued case, so that if H is a complex Hilbert space and u ∈ L2(Rn′ ;H) then for any
t > 0 we have etq1(x′,ξ′)wu ∈ S(Rn′ ;H).

Theorem 1.2.1 directly follows from Proposition 3.1.1 together with the preceding
remark. Indeed, by using the symplectic invariance of the Weyl quantization given
by the theorem 18.5.9 in [8], we can find a metaplectic operator U , which is a unitary
transformation on L2(Rn) and an automorphism of S(Rn) such that

(3.1.3) (q ◦ χ)(x, ξ)w = U−1q(x, ξ)wU.

This implies at the level of the generated semigroups that

(3.1.4) et(q◦χ)(x,ξ)w = U−1etq(x,ξ)
w

U, t ≥ 0.

Since from the tensorization of the variables (3.1.1),

et(q◦χ)(x,ξ)w = etq1(x′,ξ′)weitq2(x′′,ξ′′)w ,
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we directly deduce from (2.0.7), (3.1.4), Proposition 3.1.1 together with the following
remark, and the symplectic invariance of the Weyl quantization that if (x′, ξ′) are
some symplectic coordinates on the symplectic space Sσ⊥ then for all t > 0, N ∈ N
and u ∈ L2(Rn) = L2(Rn′ ;L2(Rn′′)), we have(

(1 + |x′|2 + |ξ′|2)N
)w
etq(x,ξ)

w

u ∈ L2(Rn),

which proves Theorem 1.2.1.
Let us now prove Proposition 3.1.1. For convenience, we drop the index and we

consider a complex-valued quadratic form

q : Rnx × Rnξ → C, n ∈ N∗,

with a non-positive real part

(3.1.5) Re q ≤ 0,

such that for all T > 0, the average of the real part of the quadratic form q by the
flow defined by the Hamilton vector field of Im q,

(3.1.6) 〈Re q〉T (X) =
1

2T

∫ T

−T
Re q(etHImqX)dt, X = (x, ξ) ∈ R2n,

is negative definite. We also know from (2.0.16) that for all X ∈ R2n, X 6= 0, there
exists j0 ∈ N verifying

(3.1.7) ∀ 0 ≤ j ≤ j0 − 1, Re F (Im F )jX = 0, Re F (Im F )j0X 6= 0,

if F stands for the Hamilton map of the quadratic form q.
Let us denote by

(3.1.8) Q = q(x, ξ)w,

the quadratic differential operator defined by the Weyl quantization of the symbol q.
When proving Proposition 3.1.1, we shall work with the metaplectic FBI-Bargmann
transform

(3.1.9) Tu(x) = C

∫
Rn
eiϕ(x,y)u(y) dy, x ∈ Cn, C > 0,

where we may choose

ϕ(x, y) =
i

2
(x− y)2,

as in the standard Bargmann transform. Other quadratic phase functions ϕ such that
Imϕ′′yy > 0 and detϕ′′xy 6= 0, are also possible (see section 1 of [15]). It is well known
that for a suitable choice of C > 0, T defines a unitary transformation

T : L2(Rn)→ HΦ0(Cn),

where

(3.1.10) HΦ0(Cn) = Hol(Cn) ∩ L2
(
Cn, e−2Φ0(x)L(dx)

)
,

with
Φ0(x) = sup

y∈Rn
−Imϕ(x, y) =

1
2

(Imx)2
,

and L(dx) being the Lebesgue measure in Cn.

Remark. Let us recall (see, e.g. section 3 of [16]) that the same definitions apply in
the vector-valued case, so that we have a unitary operator

T : L2(Rn;H)→ HΦ0(Cn;H),

where H is a complex Hilbert space.
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We recall next from [15] that

(3.1.11) TQu = Q0Tu, u ∈ S(Rn),

where Q0 is a quadratic differential operator on Cn whose Weyl symbol q0 satisfies

(3.1.12) q0 ◦ κT = q.

Here

(3.1.13) κT : C2n 3
(
y,−ϕ′y(x, y)

)
7→
(
x, ϕ′x(x, y)

)
∈ C2n,

is the complex linear canonical transformation associated to T . From [15], we recall
next that if we define

(3.1.14) ΛΦ0 =
{(
x,

2
i

∂Φ0

∂x
(x)
)

: x ∈ Cn
}
,

then we have

(3.1.15) ΛΦ0 = κT (R2n).

When

σ =
n∑
j=1

dξj ∧ dxj ,

is the complex symplectic (2,0)-form on C2n = Cnx ×Cnξ , then the restriction σΛΦ0
of

σ to ΛΦ0 is real and nondegenerate. The map κT in (3.1.13) can therefore be viewed
as a canonical transformation between the real symplectic spaces R2n and ΛΦ0 .

Continuing to follow [15], let us recall next that when realizing Q0 as an unbounded
operator on HΦ0(Cn), we may use first the contour integral representation

Q0u(x) =
1

(2π)n

∫
θ= 2

i
∂Φ0
∂x ( x+y

2 )
ei(x−y)·θq0

(x+ y

2
, θ
)
u(y) dy dθ,

and then, using that the symbol q0 is holomorphic, by a contour deformation we
obtain the following formula for Q0 as an unbounded operator on HΦ0(Cn),

(3.1.16) Q0u(x) =
1

(2π)n

∫
θ= 2

i
∂Φ0
∂x ( x+y

2 )+it(x−y)

ei(x−y)·θq0

(x+ y

2
, θ
)
u(y) dy dθ,

for any t > 0.
We shall now discuss certain IR-deformations of the real phase space R2n, where

the averaging procedure along the flow defined by the Hamilton vector field of Im q
(see (3.1.6)) plays an important rôle. To that end, let G = GT be a real-valued
quadratic form on R2n such that

(3.1.17) HImqG = −Re q + 〈Re q〉T .

As in [6], we solve (3.1.17) by setting

(3.1.18) G(X) =
∫

R
kT (t)Re q(etHImqX)dt,

where kT (t) = k(t/2T ) and k ∈ C(R\{0}) is the odd function given by

k(t) = 0 for |t| ≥ 1
2
and k′(t) = −1 for 0 < |t| < 1

2
.

Let us notice that k and kT have a jump of size 1 at the origin. Associated with G
there is a linear IR-manifold, defined for 0 ≤ ε ≤ ε0, with ε0 > 0 small enough,

(3.1.19) ΛεG = eiεHG(R2n) ⊂ C2n,
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where eiεHG stands for the flow generated by the linear Hamilton vector field iεHG

taken at the time 1. It is then well-known and easily checked (see, for instance,
sections 3 and 5 in [5]), that

(3.1.20) κT (ΛεG) = ΛΦ̃ε
:=
{(
x,

2
i

∂Φ̃ε
∂x

(x)
)

: x ∈ Cn
}
,

where Φ̃ε is a strictly plurisubharmonic quadratic form on Cn, such that

(3.1.21) Φ̃ε(x) = Φ0(x) + εG(Rex,−Imx) +O(ε2 |x|2).

Associated with the function Φ̃ε is the weighted space of holomorphic functions
HΦ̃ε

(Cn) defined as in (3.1.10). The operator Q0 can also be defined as an unbounded
operator

Q0 : HΦ̃ε
(Cn)→ HΦ̃ε

(Cn),
if we make a new contour deformation in (3.1.16) and set

(3.1.22) Q0u(x) =
1

(2π)n

∫
θ= 2

i
∂Φ̃ε
∂x ( x+y

2 )+it(x−y)

ei(x−y)·θq0

(x+ y

2
, θ
)
u(y) dy dθ,

for any t > 0. By coming back to the real side by the FBI-Bargmann transform,
the operator Q0 can be viewed as an unbounded operator on L2(Rn) with the Weyl
symbol

(3.1.23) q̃(X) = q
(
eiεHGX

)
,

and here the real part of this expression is easily seen to be equal to

Re q̃(X) = Re q(X) + εHImqG(X) +O(ε2 |X|2).

It follows therefore from (3.1.5), (3.1.17) and the assumption that the quadratic form
(3.1.6) is negative definite, that

(3.1.24) −Re q̃(X) ≥ ε

C
|X|2 , C > 1, X ∈ R2n,

for 0 < ε� 1. We may therefore apply Theorem 3.5 of [12] to the operator Q0 viewed
as an unbounded operator on HΦ̃ε

(Cn).

Lemma 3.1.1. Let us consider Q0 as an unbounded operator on HΦ̃ε
(Cn), for 0 <

ε ≤ ε0, with ε0 > 0 sufficiently small. The spectrum of the operator Q0 is only
composed of eigenvalues with finite multiplicity

(3.1.25) σ(Q0) =
{ ∑

λ∈σ(F ),
Re(−iλ)<0

(rλ + 2kλ) (−iλ) : kλ ∈ N
}
,

where F is the Hamilton map associated to the quadratic form q and rλ is the dimen-
sion of the space of generalized eigenvectors of F in C2n belonging to the eigenvalue
λ ∈ C.

To get the statement of this lemma, it suffices to combine Theorem 3.5 of [12]
together with the observation that the Hamilton maps F and F̃ of the quadratic
forms q and q̃, respectively, are isospectral since from (3.1.23) the symbols q and q̃
are related by a canonical transformation.

Having determined the spectrum of Q0 in the weighted space HΦ̃ε
(Cn), 0 < ε� 1,

we now come to the proof of Proposition 3.1.1. In doing so, we shall study the spectral
properties of the holomorphic quadratic differential operator Q0 acting on HΦ0(Cn).

We shall consider the heat evolution equation associated to the operator Q0. Let
us notice explicitly that we got this idea by studying Remark 11.7 in [5], and indeed,
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the following argument can be seen as a natural continuation of some ideas sketched
in that remark. Using Fourier integral operators with quadratic phase in the complex
domain, we may describe the heat semigroup etQ0 for 0 ≤ t ≤ t0, when t0 > 0 is small
enough. More precisely, we are interested in solving{

∂u

∂t
(t, x)−Q0u(t, x) = 0

u(t, ·)|t=0 = u0 ∈ HΦ0(Cn).

Let ϕ(t, x, η) be the quadratic form in the variables x, η, depending smoothly on t,
0 ≤ t ≤ t0 � 1, and solving the Hamilton-Jacobi equation{

i
∂ϕ

∂t
(t, x, η)− q0

(
x,
∂ϕ

∂x
(t, x, η)

)
= 0

ϕ(t, x, η)|t=0 = x · η.

We know that for 0 ≤ t ≤ t0 � 1, ϕ(t, x, η) can be obtained as a generating function
of the complex canonical transformation

eitHq0 :
(
ϕ′η(t, x, η), η

)
7→
(
x, ϕ′x(t, x, η)

)
.

Then for t ≥ 0 small enough, the operator etQ0 acting on HΦ0(Cn) has the form

etQ0u =
1

(2π)n

∫
Γx

ei(ϕ(t,x,η)−y·η)a(t, x, y, η)u(y)dy dη,

where a(t, x, y, η) is a suitable amplitude which we need not specify here, and, follow-
ing the general theory of [13], we take Γx to be a suitable contour passing through
the critical point of the function

(y, η) 7→ −Im
(
ϕ(t, x, η)− y · η

)
+ Φ0(y).

We then know from the general theory that the operator etQ0 is bounded

(3.1.26) etQ0 : HΦ0(Cn)→ HΦt(Cn),

where Φt is a strictly plurisubharmonic quadratic form on Cn, depending smoothly
on t, such that if

(3.1.27) ΛΦt =
{(
x,

2
i

∂Φt
∂x

(x)
)

: x ∈ Cn
}
,

then

(3.1.28) ΛΦt = exp
(
tĤ− 1

i q0

)
(ΛΦ0) .

Here, when f is a holomorphic function on C2n = Cnx × Cnξ , Hf is the standard
Hamilton field of f , of type (1,0), given by the usual formula

Hf =
n∑
j=1

( ∂f
∂ξj

∂

∂xj
− ∂f

∂xj

∂

∂ξj

)
,

and Ĥf = Hf +Hf is the corresponding real vector field.
It follows from the classical Hamilton-Jacobi theory applied with respect to the

real symplectic form Imσ, where

σ =
n∑
j=1

dξj ∧ dxj ,



22

is the complex symplectic (2,0)-form on C2n, that the quadratic form Φ(t, x) = Φt(x)
introduced in (3.1.26), satisfies the eikonal equation

(3.1.29)

{
∂Φ
∂t

(t, x)− Re
[
q0

(
x,

2
i

∂Φ
∂x

(t, x)
)]

= 0

Φ(t, ·)|t=0 = Φ0.

See also [14] for a detailed (and much more general) discussion of this point.

Instrumental in the proof of Proposition 3.1.1 is the following result.

Lemma 3.1.2. For each T0 > 0 small enough, there exists α = α(T0) > 0 such that

(3.1.30) ΦT0(x) ≤ Φ0(x)− α |x|2 , x ∈ Cn.

Once Lemma 3.1.2 has been established, it is easy to finish the proof of the first
result in Proposition 3.1.1. Indeed, elementary arguments together with (3.1.10) and
(3.1.30) show that the natural embedding HΦt(Cn)→ HΦ0(Cn) is compact for t > 0
small, and hence by using the semigroup property, we deduce that the semigroup

(3.1.31) etQ0 : HΦ0(Cn)→ HΦ0(Cn),

is compact for each t > 0. An application of Theorem 2.20 in [2] then shows that the
spectrum of the operator Q0 acting on HΦ0(Cn) consists of a countable discrete set
of eigenvalues each of finite multiplicity.

When deriving the explicit description of the spectrum of Q0 on HΦ0(Cn), we argue
in the following way. Let us assume that λ ∈ C is an eigenvalue of Q0 on HΦ0(Cn)
and let u0 ∈ HΦ0(Cn) be a corresponding eigenvector,

Q0u0 = λu0.

We deduce from (3.1.26) that

etQ0u0 ∈ HΦt(Cn),

and since
etQ0u0 = etλu0,

it follows from Lemma 3.1.2 that

u0 ∈ HΦ0−δ|x|2(Cn),

for some δ > 0. In particular, we obtain from (3.1.21) that u0 ∈ HΦ̃ε
(Cn) for ε > 0

small enough, and hence that λ is in the spectrum of the operator Q0 acting on
HΦ̃ε

(Cn), which has been described in Lemma 3.1.1.
On the other hand, if λ is in the spectrum of Q0 acting on HΦ̃ε

(Cn) and u0 ∈
HΦ̃ε

(Cn) is a corresponding eigenvector, with ε > 0 sufficiently small, then we have

etQ0u0 = etλu0 ∈ HeΦε,t(Cn),

where Φ̃ε,t is a quadratic form on Cn depending smoothly on t ≥ 0 and ε ≥ 0, for ε
sufficiently small, which satisfies the eikonal equation (3.1.29) along with the initial
condition

Φ̃ε,t(x)|t=0 = Φ̃ε(x).

It follows from (3.1.21) and (3.1.29) that

Φ̃ε,t(x) = Φt(x) +O(ε |x|2),
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where the implicit constant is uniform in 0 ≤ t ≤ t0, for t0 > 0 small enough. By
taking T0 > 0 small enough but fixed such that 0 < T0 ≤ t0 and (3.1.30) holds, we
get

u0 = e−T0λeT0Qu0 ∈ HΦ̃ε,T0
(Cn) = HΦT0+O(ε|x|2)(Cn).

In view of (3.1.30), we can choose ε0 > 0 small enough such that for all 0 < ε ≤ ε0,

u0 ∈ HΦ0−δ̃|x|2(Cn) ⊂ HΦ0(Cn),

where δ̃ is a positive constant. It follows that λ is also in the spectrum of the operator
Q0 acting on HΦ0(Cn). Altogether, this shows that the spectrum of Q0 acting on
HΦ0(Cn) is equal to the spectrum of Q0 acting on HeΦε(Cn), for ε > 0 sufficiently
small, and furthermore, that the algebraic multiplicities agree. We have therefore
identified the spectrum of Q0 on HΦ0(Cn) and also the spectrum of the operator Q
on L2(Rn) by coming back to the real side.

Remark. In the argument above we have worked with the eigenfunctions of the op-
erator Q0 acting on HeΦε(Cn) for some sufficiently small but fixed ε > 0. It may be
interesting to notice that the (generalized) eigenfunctions of the operator Q0 do not
depend on ε > 0, for 0 < ε ≤ ε0, with ε0 > 0 small enough. See also Remark 11.7
in [5]. While refraining from providing a detailed proof of this statement, let us men-
tion that its validity relies crucially upon the fact that the quadratic symbol q0 is
elliptic on ΛeΦε , 0 < ε ≤ ε0. In the terminology of [13], this is an instance of the
principle of non-characteristic deformations.

We shall now prove Lemma 3.1.2. Integrating (3.1.29) for t = 0 to t = T , we obtain

ΦT (x)− Φ0(x) =
∫ T

0

Re
[
q0

(
x,

2
i

∂Φ
∂x

(t, x)
)]
dt, T > 0.

Here the integral in the right hand side is a real-valued quadratic form on Cn, and
Lemma 3.1.2 is implied by the claim that it is negative definite. When proving the
claim, we shall use the following general relation, explained for instance in [10],

(3.1.32) Ĥif = H−Imσ
−Ref ,

valid for a holomorphic function f on C2n.
It follows from (3.1.32) that Re q0 is constant along the flow of the Hamilton vector

field
Ĥ− 1

i q0
= H−Imσ

−Re q0 .

We therefore deduce from (3.1.5), (3.1.12), (3.1.15) and (3.1.28) that

(3.1.33) Re
[
q0|ΛΦt

]
≤ 0.

According to (3.1.27), the equation (3.1.29) implies therefore that

∂Φ
∂t

(t, x) ≤ 0,

so that the function
t 7→ Φt(x),

is decreasing. Let us assume that there exists x0 ∈ Cn, x0 6= 0, such that∫ T

0

Re
[
q0

(
x0,

2
i

∂Φ
∂x

(t, x0)
)]
dt = 0.
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Since from (3.1.27) and (3.1.33), the integrand is non-positive, it follows that for all
0 ≤ t ≤ T ,

(3.1.34) Re
[
q0

(
x0,

2
i

∂Φ
∂x

(t, x0)
)]

= 0.

Therefore, in view of (3.1.29), we get

∂Φ
∂t

(t, x0) = 0,

for all 0 ≤ t ≤ T . Here, the quadratic form

ft(x) =
∂Φ
∂t

(t, x) = Re
[
q0

(
x,

2
i

∂Φ
∂x

(t, x)
)]
≤ 0,

is non-positive and such that ft(x0) = 0 for all 0 ≤ t ≤ T . It follows that

∇Rex,Imxft(x0) = 0,

for all 0 ≤ t ≤ T, and therefore

∂ft
∂x

(x0) =
∂2Φ
∂x∂t

(t, x0) = 0,

for all 0 ≤ t ≤ T . Hence the function

t 7→ ∂Φ
∂x

(t, x0),

does not depend on t for 0 ≤ t ≤ T , so that

(3.1.35)
∂Φ
∂x

(t, x0) =
∂Φ
∂x

(0, x0) =
∂Φ0

∂x
(x0),

for all 0 ≤ t ≤ T . Since from (3.1.27), the point

(3.1.36)
(
x0,

2
i

∂Φ
∂x

(t, x0)
)

=
(
x0,

2
i

∂Φ0

∂x
(x0)

)
,

belongs to ΛΦt for all 0 ≤ t ≤ T , we obtain from (3.1.14) and (3.1.28) that there
exists y0(t) ∈ Cn such that

(3.1.37)
(
x0,

2
i

∂Φ
∂x

(t, x0)
)

= exp (tĤ− 1
i q0

)
(
y0(t),

2
i

∂Φ0

∂x

(
y0(t)

))
.

It follows from (3.1.34) that for all 0 ≤ t ≤ T ,

(3.1.38) Re
[
q0

(
x0,

2
i

∂Φ
∂x

(t, x0)
)]

= Re
[
q0

(
y0(t),

2
i

∂Φ0

∂x

(
y0(t)

))]
= 0,

because Re q0 is constant along the flow of the Hamilton vector field

Ĥ− 1
i q0

= H−Imσ
−Req0 .

Let us now set

(3.1.39) L0 =
{
X̃ ∈ ΛΦ0 : Re[q0(X̃)] = 0

}
.

We can notice by using similar arguments as in (2.0.14) and (2.0.15) that

{X ∈ R2n,Re q̃(X) = 0} = Ker(Re F̃ ) ∩ R2n,

for any complex-valued quadratic form q̃ with a non-positive real part if Re F̃ is the
Hamilton map of the quadratic form Re q̃. We therefore deduce from (3.1.12) and
(3.1.15) that

(3.1.40) L0 = κT
(
Ker(ReF ) ∩ R2n

)
.



25

We get from (3.1.14), (3.1.36), (3.1.37), (3.1.38), (3.1.39) and (3.1.40) that

(3.1.41)
(
y0(t),

2
i

∂Φ0

∂x

(
y0(t)

))
= exp (tĤ 1

i q0
)
(
x0,

2
i

∂Φ0

∂x
(x0)

)
∈ L0,

for all 0 ≤ t ≤ T , and therefore

(3.1.42) ReF
(
κ−1
T

(
exp (tĤ 1

i q0
)
(
x0,

2
i

∂Φ0

∂x
(x0)

)))
= 0,

for all 0 ≤ t ≤ T . In view of (3.1.14) and (3.1.15), we may write

(3.1.43)
(
x0,

2
i

∂Φ0

∂x
(x0)

)
= κT (X0),

for some X0 ∈ R2n, X0 6= 0 because x0 6= 0. We can now deduce from (3.1.7) that
there exists an integer m ∈ N such that

(3.1.44) ReF (ImF )j X0 = 0, 0 ≤ j < m,

while

(3.1.45) ReF (ImF )mX0 6= 0.

On the other hand, we get from (3.1.42) and (3.1.43) that

(3.1.46) ReF
(
κ−1
T

(
Ĥ 1

i q0

)j
κT (X0)

)
= 0,

for all j ∈ N because q0 is a quadratic form. We shall establish the following result.

Lemma 3.1.3. For all 0 ≤ j ≤ m, we have(
Ĥ 1

i q0

)j
κT (X0) =

(
H
σΛΦ0
Im q0

)j
κT (X0).

Proof. When proving this lemma, we shall argue by induction with respect to j, and
start with the case j = 0, which is of course fulfilled. Let us recall from (3.1.41)
and (3.1.43) that κT (X0) ∈ L0, and notice that, as recalled for example in section 11
(Remark 11.7) in [5] (see also [10]), we have at the points of L0,

(3.1.47) Ĥ 1
i q0

= H
σΛΦ0
Im q0

.

Let us now check that for all 0 ≤ j ≤ m− 1,

(3.1.48)
(
H
σΛΦ0
Im q0

)j
κT (X0) ∈ L0.

Let us consider 0 ≤ j ≤ m− 1 and notice from (3.1.12) that

(3.1.49) κT (HIm q)κ−1
T = H

σΛΦ0
Im q0

.

Since a direct computation using (1.1.8) shows that

(3.1.50) HIm q = 2Im F,

we obtain by using (1.1.8), (3.1.12), (3.1.44) and (3.1.49) that

Re
[
q0

(
(H

σΛΦ0
Im q0

)jκT (X0)
)]

= Re
[
q0

(
κTH

j
Im q(X0)

)]
= Re q

(
2j(ImF )jX0

)
= 22jσ

(
(Im F )jX0,Re F (Im F )jX0

)
= 0,

for any 0 ≤ j ≤ m − 1. Thus we have verified (3.1.48), and by an application of
(3.1.47), we get that for all 0 ≤ j ≤ m− 1,

Ĥ 1
i q0

(
(Ĥ 1

i q0
)jκT (X0)

)
= H

σΛΦ0
Im q0

(
(Ĥ 1

i q0
)jκT (X0)

)
= (H

σΛΦ0
Im q0

)j+1κT (X0),
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if
(Ĥ 1

i q0
)jκT (X0) = (H

σΛΦ0
Im q0

)jκT (X0).

This proves by induction Lemma 3.1.3. �

It is now easy to finish the proof of Lemma 3.1.2. By using (3.1.46) when j = m,
(3.1.49), (3.1.50) and applying Lemma 3.1.3, we get

0 = ReF
(
κ−1
T (H

σΛΦ0
Im q0

)mκT (X0)
)

= ReF (Hm
Im qX0) = 2mReF (ImF )mX0,

which contradicts (3.1.45) and completes the proof of Lemma 3.1.2.
Let us finally notice that the semigroup etQ, t > 0, is strongly regularizing on

L2(Rn). We actually deduce from (3.1.26), (3.1.30) and the fundamental property of
semigroups that for all t > 0, there exists δ > 0 such that

∀u ∈ HΦ0(Cn), etQ0u ∈ HΦ0−δ|x|2(Cn),

on the FBI transform side. By using the fact that a holomorphic function U on Cn
is of the form Tu for some u ∈ S(Rn), if and only if

∀N ∈ N,
∫

Cn
|U(x)|2 e−2Φ0(x)〈x〉N L(dx) < +∞,

(see for instance [15]) we finally obtain that

∀t > 0,∀u ∈ L2(Rn), etQu ∈ S(Rn),

which ends the proof of Proposition 3.1.1.

3.2. Large time behavior of contraction semigroups. In this section, we prove
Theorem 1.2.3. Let us consider a complex-valued quadratic form

q : Rnx × Rnξ → C, n ∈ N∗,

with a non-positive real part
Re q ≤ 0,

such that its singular space S has a symplectic structure.
Let us assume that the real part of the symbol q is a non-zero quadratic form

∃X0 ∈ R2n, Re q(X0) 6= 0.

This implies that the singular space is distinct from the whole phase space S 6= R2n

because from (1.1.8) and (1.1.14),

∀X ∈ S, Re q(X) = σ(X,Re FX) = 0.

It proves that (ii) implies (iii) in Theorem 1.2.3.
Let us now assume that S 6= R2n and prove (i). We deduce from (2.0.1) and (2.0.7)

that there exists χ, a real linear symplectic transformation of R2n, such that

(3.2.1) (q ◦ χ)(x, ξ) = q1(x′, ξ′) + iq2(x′′, ξ′′), (x, ξ) = (x′, x′′; ξ′, ξ′′) ∈ R2n,

where q1 is a complex-valued quadratic form on R2n′ , n′ ≥ 1, with a non-positive
real part and q2 is a real-valued quadratic form verifying the properties stated in
Proposition 2.0.1. By using the symplectic invariance of the Weyl quantization given
by the theorem 18.5.9 in [8], we can find a metaplectic operator U , which is a unitary
transformation on L2(Rn) and an automorphism of S(Rn) such that

(q ◦ χ)(x, ξ)w = U−1q(x, ξ)wU.

This implies at the level of the generated semigroups that

et(q◦χ)(x,ξ)w = U−1etq(x,ξ)
w

U, t ≥ 0
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and

(3.2.2) ‖et(q◦χ)(x,ξ)w‖L(L2) = ‖etq(x,ξ)
w

‖L(L2), t ≥ 0,

because U is a unitary operator on L2(Rn). Since both operators iq2(x′′, ξ′′)w and
−iq2(x′′, ξ′′)w generate contraction semigroups verifying(

etiq2(x′′,ξ′′)w
)−1 = et(−iq2(x′′,ξ′′)w), t ≥ 0,

the semigroup eitq2(x′′,ξ′′)w is unitary for all t ≥ 0. It follows from the tensorization
of the variables (3.2.1),

et(q◦χ)(x,ξ)w = etq1(x′,ξ′)weitq2(x′′,ξ′′)w ,

and (3.2.2) that
‖etq(x,ξ)

w

‖L(L2) = ‖etq1(x′,ξ′)w‖L(L2), t ≥ 0.

For proving (i), it is therefore sufficient to prove the exponential decay in time for
the norm of the contraction semigroup generated by the operator q1(x′, ξ′)w. We
have proved in Proposition 3.1.1 (see also (2.0.7)) that the spectrum of the operator
q1(x′, ξ′)w is only composed of the following eigenvalues

(3.2.3) σ
(
q1(x′, ξ′)w

)
=
{ ∑

λ∈σ(F1),
Re(−iλ)<0

(
rλ + 2kλ

)
(−iλ) : kλ ∈ N

}
,

where F1 = F |Sσ⊥ is the Hamilton map associated to the quadratic form q1 and rλ
is the dimension of the space of generalized eigenvectors of F1 in C2n′ belonging to
the eigenvalue λ ∈ C. We have also seen in the proof of Proposition 3.1.1 that the
contraction semigroup generated by the operator q1(x′, ξ′)w is compact for all t > 0.
We proved this fact in (3.1.31) on the FBI transform side. This allows us to apply
Theorem 2.20 in [2] to obtain the following description of the spectrum,

σ(etq1(x′,ξ′)w) = {0} ∪
{
etµ : µ ∈ σ

(
q1(x′, ξ′)w

)}
.

Its spectral radius is therefore given by

(3.2.4) rad
(
etq1(x′,ξ′)w

)
= e−at,

where

(3.2.5) a = inf
{ ∑

λ∈σ(F1),
Re(−iλ)<0

(
rλ + 2kλ

)(
− Re(−iλ)

)
: kλ ∈ N

}
.

It follows that the constant a is positive. Since from Theorem 1.22 in [2], we have

−a = lim
t→+∞

1
t

log ‖etq1(x′,ξ′)w‖L(L2),

we obtain that there exists M > 0 such that

(3.2.6) ‖etq1(x′,ξ′)w‖L(L2) ≤Me−
a
2 t,

for all t ≥ 0. This proves that (iii) implies (i). Finally, the fact that (i) implies (ii) is
a consequence of a property that we have already mentioned, namely, when the real
part of the symbol q is identically equal to zero then the contraction semigroup

etq(x,ξ)
w

,

is unitary for all t ≥ 0. This ends the proof of Theorem 1.2.3. �
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3.3. Spectra of non-elliptic quadratic operators. In this section, we prove The-
orem 1.2.2. Let us consider a complex-valued quadratic form

q : Rnx × Rnξ → C, n ∈ N∗,

with a non-positive real part
Re q ≤ 0,

which is elliptic on its singular space S,

(3.3.1) (x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0.

Let us recall that this assumption of partial ellipticity on the singular space ensures
that the singular space has a symplectic structure. We can therefore resume the
beginning of our reasoning explained in section 3.1:

By using the symplectic decomposition of the symbol obtained in section 2, we
deduce from (2.0.1) and (2.0.2) that there exists χ, a real linear symplectic transfor-
mation of R2n, such that

(3.3.2) (q ◦ χ)(x, ξ) = q1(x′, ξ′) + iq2(x′′, ξ′′), (x, ξ) = (x′, x′′; ξ′, ξ′′) ∈ R2n,

where q1 is a complex-valued quadratic form on R2n′ with a non-positive real part

(3.3.3) Re q1 ≤ 0,

and q2 is a real-valued quadratic form verifying the properties stated in Proposi-
tions 2.0.1 and 3.1.1.

To obtain the result of Theorem 1.2.2, let us notice from Proposition 2.0.1 that
when the symbol q is elliptic on S, we can assume that

(3.3.4) q2(x′′, ξ′′) = ε

n′′∑
j=1

λj(ξ′′2j + x′′2j ),

where ε ∈ {±1} and λj > 0 for all j = 1, ..., n′′.
By using again the symplectic invariance of the Weyl quantization given by the

theorem 18.5.9 in [8], we can find a metaplectic operator U , which is a unitary trans-
formation on L2(Rn) and an automorphism of S(Rn) such that

(3.3.5) (q ◦ χ)(x, ξ)w = U−1q(x, ξ)wU.

Since the quadratic form q2 is elliptic on R2n′′ , we deduce from the theorem 3.5 in
[12] that the spectrum of the operator iq2(x′′, ξ′′)w is only composed of eigenvalues
with finite multiplicity

(3.3.6) σ
(
iq2(x′′, ξ′′)w

)
=
{ ∑

λ∈σ(iF2),
−iλ∈Σ(iq2)\{0}

(
r′′λ + 2kλ

)
(−iλ) : kλ ∈ N

}
,

where F2 is the Hamilton map associated to the quadratic form q2 and r′′λ is the
dimension of the space of generalized eigenvectors of iF2 in C2n′′ belonging to the
eigenvalue λ ∈ C. We notice from (2.0.6), (2.0.7), (2.0.8) and (2.0.9) that

(3.3.7) F1 = F |Sσ⊥ and F2 =
1
i
F |S .

Let us notice that if λ is an eigenvalue of F1, such that Re(−iλ) ≤ 0, then we
necessarily have

Re(−iλ) < 0,
because if we had Re(−iλ) = 0, it would imply that the Hamilton map F1 has a real
eigenvalue and induce, as we saw in (1.4.8), that the singular space of the symbol q1
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is not reduced to {0}. However, this singular space is trivial by construction (see (ii)
in Proposition 2.0.1). This proves that

Re(−iλ) < 0.

By using now that when the numerical range of a quadratic form q̃ is contained in a
closed angular sector Γ with a vertex in 0 and an aperture strictly less than π then λ
is an eigenvalue of its Hamilton map F̃ if and only if −λ is an eigenvalue of F̃ , and

−iλ ∈ Γ or iλ ∈ Γ,

(see section 3 in [7]), we obtain from (2.0.6), (2.0.7), (2.0.8) and (2.0.9) that

{
λ ∈ C : λ ∈ σ(F ),−iλ ∈ C− ∪ (Σ(q|S) \ {0})

}(3.3.8)

=
{
λ ∈ C : λ ∈ σ(F1),Re(−iλ) < 0

}
t
{
λ ∈ C : λ ∈ σ(iF2),−iλ ∈ Σ(iq2) \ {0}

}
,

where F is the Hamilton map associated to the quadratic form q,

Σ(q|S) = q(S) and C− = {z ∈ C : Re z < 0}.

We shall now deduce from the tensorization of the variables (3.3.2), (3.3.5) and
(3.3.7) that the spectrum of the quadratic differential operator q(x, ξ)w is only com-
posed of eigenvalues with finite multiplicity

(3.3.9) σ
(
q(x, ξ)w

)
=
{ ∑

λ∈σ(F ),
−iλ∈C−∪(Σ(q|S)\{0})

(
rλ + 2kλ

)
(−iλ) : kλ ∈ N

}
,

where rλ is the dimension of the space of generalized eigenvectors of F in C2n belong-
ing to the eigenvalue λ ∈ C. This result is trivial when the singular space is equal to
the whole phase space because in that case the quadratic form q1 is identically equal
to 0 and n′′ = n. We therefore assume in the following that

(3.3.10) S 6= R2n.

Let us begin by recalling that we know from (3.2.3) that the spectrum of the operator
q1(x′, ξ′)w is only composed of eigenvalues with finite multiplicity

(3.3.11) σ
(
q1(x′, ξ′)w

)
=
{ ∑

λ∈σ(F1),
Re(−iλ)<0

(
r′λ + 2kλ

)
(−iλ) : kλ ∈ N

}
,

where r′λ is the dimension of the space of generalized eigenvectors of F1 in C2n′

belonging to the eigenvalue λ ∈ C. It follows from (3.3.11) that when a positive
constant a verifies

(3.3.12) σ
(
q1(x′, ξ′)w

)
∩ {z ∈ C : Re z = −a} = ∅,

the operator q1(x′, ξ′)w only has a finite number of eigenvalues in the half-plane

(3.3.13) {z ∈ C : −a ≤ Re z}.

In the following, we besides assume that the singular space is not reduced to zero

(3.3.14) S 6= {0},

because the description (3.3.9) is then a direct consequence of (3.3.11). We now need
some estimates for the resolvent of the operator q1(x′, ξ′)w to obtain the description
(3.3.9) for the spectrum of the operator q(x, ξ)w.
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Proposition 3.3.1. For all a > 0 such that

σ
(
q1(x′, ξ′)w

)
∩ {z ∈ C : Re z = −a} = ∅,

there exists Ca > 0 such that

(3.3.15)
∥∥(z − q1(x′, ξ′)w

)−1∥∥ ≤ Ca,
for all z ∈ C with −a < Re z and |Im z| ≥ Ca. Here the norm is the operator norm
on L2.

Proof. When proving Proposition 3.3.1, we first recall from (3.2.6) and (3.3.10) that
there exist ã > 0 and M > 0 such that

(3.3.16) || etq1(x′,ξ′)w || ≤Me−ãt, t ≥ 0.

By using Theorem 2.8 in [2], we can write that for all z ∈ C such that Re z > −ã,(
z − q1(x′, ξ′)w

)−1 =
∫ +∞

0

e−zt etq1(x′,ξ′)wdt,

and we deduce from (3.3.16) that

(3.3.17)
∥∥(z − q1(x′, ξ′)w

)−1∥∥ ≤ M

ã+ Re z
,

for all z ∈ C, −ã < Re z. This proves the estimate (3.3.15) when the positive constant
a is small enough. To prove the result in the general case, we shall follow an argument
used by L.S. Boulton in [1]. Let us consider a positive constant a verifying (3.3.12). We
have already seen that the operator q1(x′, ξ′)w has only a finite number of eigenvalues
with finite multiplicity in the half-plane

{z ∈ C : −a ≤ Re z}.
We can therefore consider Πa, the finite-rank spectral projection associated to the
eigenvalues

σ
(
q1(x′, ξ′)w

)
∩ {z ∈ C : −a ≤ Re z},

and write for all z ∈ C with z 6∈ σ
(
q1(x′, ξ′)w

)
that

(3.3.18)
(
z − q1(x′, ξ′)w

)−1 =
(
z − q1(x′, ξ′)w

)−1Πa +
(
z − q1(x′, ξ′)w

)−1(1−Πa).

Here

(3.3.19)
(
z − q1(x′, ξ′)w

)−1(1−Πa) =
(
z − q1(x′, ξ′)w|Ran(1−Πa)

)−1(1−Πa),

and we can write by using Theorems 1.22 and 2.8 in [2] that

(3.3.20)
(
z − q1(x′, ξ′)w|Ran(1−Πa)

)−1 =
∫ +∞

0

e−ztetq1(x′,ξ′)w|Ran(1−Πa)dt,

for all z ∈ C with −b < Re z if we set

(3.3.21) −b = lim
t→+∞

1
t

log ‖etq1(x′,ξ′)w|Ran(1−Πa)‖.

Let us now notice that the contraction semigroup

etq1(x′,ξ′)w|Ran(1−Πa) = etq1(x′,ξ′)w(1−Πa),

is compact for any t > 0 since we have seen in section 3.2 that the contraction
semigroup generated by the operator q1(x′, ξ′)w is compact for any t > 0. Since on
the other hand the spectrum of the operator q1(x′, ξ′)w|Ran(1−Πa) is equal to

σ
(
q1(x′, ξ′)w

)
∩ {z ∈ C : Re z ≤ −a},
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we deduce from Theorems 1.22 and 2.20 in [2] that −b < −a, which implies in view
of (3.3.21) that there exists M̃ > 0 such that

(3.3.22) ‖etq1(x′,ξ′)w|Ran(1−Πa)‖ ≤ M̃e−at, t ≥ 0.

We then deduce from (3.3.20) and (3.3.22) that

(3.3.23)
∥∥(z − q1(x′, ξ′)w|Ran(1−Πa)

)−1(1−Πa)
∥∥ ≤ M̃

a+ Re z
‖1−Πa‖,

for all z ∈ C with −a < Re z. Since on the other hand(
z − q1(x′, ξ′)w

)−1Πa =
(
z − q1(x′, ξ′)w|Ran Πa

)−1Πa,

and the vector space Ran Πa is finite-dimensional, we therefore have

(3.3.24)
∥∥(z − q1(x′, ξ′)w

)−1Πa

∥∥ = Oa(1),

for any z ∈ C when |Im z| is large enough depending on a. We finally deduce the
result of Proposition 3.3.1 from (3.3.18), (3.3.19), (3.3.23) and (3.3.24). �

Remark. Let us notice that the previous proof actually shows that when q is a
complex-valued quadratic form on R2n, n ≥ 1, with non-positive real part and a zero
singular space

S = {0},
then

etq(x,ξ)
w

= etq(x,ξ)
w

Πa +Oa(e−at), t ≥ 0,
in L(L2) for any a > 0 such that

σ
(
q(x, ξ)w

)
∩ {z ∈ C : Re z = −a} = ∅.

We can now resume our proof of Theorem 1.2.2. In doing so, we recall that any
quadratic differential operator q̃(x, ξ)w whose symbol has a non-positive real part, is
defined by the maximal closed realization on L2(Rn) with the domain

{u ∈ L2(Rn) : q̃(x, ξ)wu ∈ L2(Rn)},
which coincides with the graph closure of its restriction to S(Rn),

q̃(x, ξ)w : S(Rn)→ S(Rn).

By noticing from (3.3.5) that

(3.3.25) σ
(
(q ◦ χ)(x, ξ)w

)
= σ

(
q(x, ξ)w

)
,

we deduce from (3.3.2), (3.3.6), (3.3.8) and (3.3.11) that it is sufficient for obtaining
(3.3.9) and ending the proof of Theorem 1.2.2 to establish that

(3.3.26) σ
(
q(x, ξ)w

)
= σ

(
q1(x′, ξ′)w

)
+ σ

(
iq2(x′′, ξ′′)w

)
.

We then notice that since the spectra of the operators q1(x′, ξ′)w and q2(x′′, ξ′′)w

are only composed of eigenvalues, we directly get the first inclusion

σ
(
q1(x′, ξ′)w

)
+ σ

(
iq2(x′′, ξ′′)w

)
⊂ σ

(
q(x, ξ)w

)
,

by considering the functions

u(x′, x′′) = u1(x′)u2(x′′) ∈ L2(Rn),

where u1 and u2 are respectively some eigenvectors of the operators q1(x′, ξ′)w and
q2(x′′, ξ′′)w, since these functions are eigenvectors for the operator q(x, ξ)w. We shall
now prove the opposite inclusion. Let us consider z ∈ C such that

(3.3.27) z 6∈ σ
(
q1(x′, ξ′)w

)
+ σ

(
iq2(x′′, ξ′′)w

)
.
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In view of (3.3.25), it is sufficient to prove that the map

(q ◦ χ)(x, ξ)w − z : {u ∈ L2(Rn) : (q ◦ χ)(x, ξ)wu ∈ L2(Rn)} → L2(Rn),

is bijective to obtain the second inclusion. We denote by

ϕα(x) = Hα(x)e−x
2/2, α ∈ Nn,

the orthonormal basis of L2(Rn) composed by Hermite functions. Here the Hermite
polynomials Hα(x) satisfy

Hα(x) =
n∏
j=1

Hαj (xj),

and therefore we write

(3.3.28) ϕα(x) = ϕα′(x′)ϕα′′(x′′), α′ ∈ Nn
′
, α′′ ∈ Nn

′′
.

Let us consider the following equation with u and v in L2(Rn),

(3.3.29) (q ◦ χ)(x, ξ)wu− zu = v.

We can write

(3.3.30) u(x) =
∑
α′,α′′

aα′α′′ϕα′(x′)ϕα′′(x′′), v(x) =
∑
α′,α′′

bα′α′′ϕα′(x′)ϕα′′(x′′),

where the two sums are taken for (α′, α′′) ∈ Nn′ × Nn′′ . By using from (3.3.2) that

(q ◦ χ)(x, ξ)w = q1(x′, ξ′)w + iq2(x′′, ξ′′)w,

we obtain from (3.3.4) that

(q ◦ χ)(x, ξ)wu− zu

=
∑
α′,α′′

aα′α′′
[
q1(x′, ξ′)wϕα′(x′) + iµα′′ϕα′(x′)− zϕα′(x′)

]
ϕα′′(x′′),(3.3.31)

with

µα′′ = ε

n′′∑
j=1

λj
(
2α′′j + 1

)
,

since
q2(x′′, ξ′′)wϕα′′(x′′) = µα′′ϕα′′(x′′).

By setting for any α′′ ∈ Nn′′ ,

vα′′(x′) =
∑

α′∈Nn′
bα′α′′ϕα′(x′) ∈ L2(Rn

′
),

so that according to (3.3.30),

(3.3.32) v(x) =
∑

α′′∈Nn′′
vα′′(x′)ϕα′′(x′′),

we deduce from (3.3.31) that for solving the equation (3.3.29), we have to solve all
the equations

(3.3.33)
(
q1(x′, ξ′)w + iµα′′ − z

)
uα′′(x′) = vα′′(x′), α′′ ∈ Nn

′′
,

where
uα′′(x′) =

∑
α′∈Nn′

aα′α′′ϕα′(x′) ∈ L2(Rn
′
).

We deduce from (3.3.27) that there is a unique solution uα′′(x′) in L2(Rn′) for each
of the equations (3.3.33). This proves that for every v ∈ L2(Rn), there is at most one



33

solution to the equation (3.3.29). Let us denote by uα′′ the solutions to the equations
(3.3.33) and

(3.3.34) u =
∑

α′′∈Nn′′
uα′′(x′)ϕα′′(x′′).

The equation (3.3.29) will have a unique solution in L2(Rn) for every v ∈ L2(Rn) if
we prove that the function u defined in (3.3.34) actually belongs to L2(Rn). This is
the case. Indeed, we obtain from (3.3.32) and (3.3.33) that

‖u‖2L2(Rn) =
∑

α′′∈Nn′′
‖uα′′‖2L2(Rn′ ) =

∑
α′′∈Nn′′

∥∥(q1(x′, ξ′)w + iµα′′ − z
)−1

vα′′
∥∥2

L2(Rn′ )

≤ C
∑

α′′∈Nn′′
‖vα′′‖2L2(Rn′ ) = C‖v‖2L2(Rn) < +∞,

because we deduce from Proposition 3.3.1 and (3.3.27) that the quantities∥∥(q1(x′, ξ′)w + iµα′′ − z
)−1∥∥,

are bounded with respect to the parameter α′′ in Nn′′ . This ends our proof of Theorem
1.2.2.
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