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Abstract: For a class of non-selfadjoint h–pseudodifferential operators with double
characteristics, we give a precise description of the spectrum and establish accurate
semiclassical resolvent estimates in a neighborhood of the origin. Specifically, assum-
ing that the quadratic approximations of the principal symbol of the operator along
the double characteristics enjoy a partial ellipticity property along a suitable sub-
space of the phase space, namely their singular space, we give a precise description
of the spectrum of the operator in an O(h)–neighborhood of the origin. Moreover,
when all the singular spaces are reduced to zero, we establish accurate semiclassical
resolvent estimates of subelliptic type, which depend directly on algebraic properties
of the Hamilton maps associated to the quadratic approximations of the principal
symbol.
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1 Introduction

In this work, we are concerned with the analysis of spectral properties for general
non-selfadjoint pseudodifferential operators with double characteristics. This study
was initiated in [11], and our purpose here is to complement the results of [11] on two
essential points, as we describe below. Assume that we are given a non-selfadjoint
semiclassical pseudodifferential operator

P = Pw(x, hDx;h), 0 < h ≤ 1;

defined by the semiclassical Weyl quantization of the symbol P (x, ξ;h),

Pw(x, hDx;h)u(x) =
1

(2π)n

∫
R2n

ei(x−y).ξP
(x+ y

2
, hξ;h

)
u(y)dydξ,

with a semiclassical asymptotic expansion

P (x, ξ;h) ∼
+∞∑
j=0

hjpj(x, ξ),

such that its principal symbol p0 has a non-negative real part

Re p0(X) ≥ 0, X = (x, ξ) ∈ R2n,
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and such that we have a finite number of doubly characteristic points X0 for the
operator,

p0(X0) = ∇p0(X0) = 0.

Our interest is in studying spectral properties and the resolvent growth of the opera-
tor P in a fixed neighborhood of the origin. In the previous work [11], we established
an accurate semiclassical a priori estimate

h||u ||L2 ≤ C0|| (P − hz)u ||L2 , |z| ≤ C, (1.1)

valid in an O(h)-neighborhood of the origin, when the quadratic approximations
q of the principal symbol p0 at the doubly characteristic points enjoy the partial
ellipticity property

(x, ξ) ∈ S, q(x, ξ) = 0 ⇒ (x, ξ) = 0. (1.2)

Here S is a suitable subspace of the phase space, namely the singular space associated
to q [10], and the spectral parameter z in (1.1) avoids a discrete set depending on the
values of the subprincipal symbol p1 and the spectra of the quadratic approximations
of the principal symbol p0 at the doubly characteristic points. The a priori estimate
(1.1) gives a first localization and bounds on the low lying eigenvalues of the operator
P , i.e., when restricting the attention to an O(h)-neighborhood of the origin in
the complex spectral plane. In the first part of the present work, we shall push
this analysis further and give a precise description of the spectrum of the operator
P in an O(h)-neighborhood of the origin, with complete semiclassical asymptotic
expansions for the eigenvalues. That such a study is planned by the authors was
mentioned in [11].

In the second part of this work, we shall be concerned with the behavior of the
resolvent norm of P in a sufficiently small but fixed neighborhood of the origin.
We shall actually show that this behavior is linked to subelliptic properties of the
quadratic approximations of the principal symbol p0 at the doubly characteristic
points, and that the positive integers k0 appearing in the resolvent estimates

h
2k0

2k0+1 |z|
1

2k0+1‖u‖L2 ≤ C0‖Pu− zu‖L2 ,

depend directly on the loss of derivatives associated to the subelliptic properties of
these quadratic operators. We shall show how the positive integers k0 are intrinsi-
cally associated to the structure of the doubly characteristic set, and how they are
completely characterized by algebraic properties of the Hamilton maps associated
to the quadratic approximations of the principal symbol.
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As in [11], the starting point for this work has been the general study of the Kramers-
Fokker-Planck type operators carried out by F. Hérau, J. Sjöstrand and C. Stolk
in [8]. This study has been a major breakthrough in the understanding of the
spectral properties of some general classes of pseudodifferential operators that are
neither selfadjoint nor elliptic. We draw our inspiration considerably from this
work and use many techniques developed in the analysis of [8]. By using some
of these techniques, together with the recent improvements in the understanding of
spectral and subelliptic properties of non-elliptic quadratic operators obtained in [10]
and [20], here we are able to extend to a large class of non-selfadjoint semiclassical
pseudodifferential operators with double characteristics the results proved in [8] for
the case of operators of Kramers-Fokker-Planck type.

1.1 Miscellaneous facts about quadratic differential opera-
tors

Before giving the precise statement of the main results contained in this article,
we shall recall miscellaneous facts and notation concerning quadratic differential
operators. Associated to a complex-valued quadratic form

q : Rn
x ×Rn

ξ → C

(x, ξ) 7→ q(x, ξ),

with n ∈ N∗, is the Hamilton map F ∈M2n(C) uniquely defined by the identity

q
(
(x, ξ); (y, η)

)
= σ

(
(x, ξ), F (y, η)

)
, (x, ξ) ∈ R2n, (y, η) ∈ R2n, (1.3)

where q
(
·; ·
)

stands for the polarized form associated to the quadratic form q and σ
is the canonical symplectic form on R2n,

σ
(
(x, ξ), (y, η)

)
= ξ.y − x.η, (x, ξ) ∈ R2n, (y, η) ∈ R2n. (1.4)

It follows directly from the definition of the Hamilton map F that its real and
imaginary parts, denoted respectively by Re F and Im F ,

Re F =
1

2
(F + F ), Im F =

1

2i
(F − F ),

with F being the complex conjugate of F , are the Hamilton maps associated to the
quadratic forms Re q and Im q, respectively; and that a Hamilton map is always
skew-symmetric with respect to σ. This fact is just a consequence of the properties
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of the skew-symmetry of the symplectic form and the symmetry of the polarized
form,

∀X, Y ∈ R2n, σ(X,FY ) = q(X;Y ) = q(Y ;X) = σ(Y, FX) = −σ(FX, Y ). (1.5)

We defined in [10] the singular space S associated to the quadratic symbol q as the
following intersection of kernels,

S =
( 2n−1⋂

j=0

Ker
[
Re F (Im F )j

])⋂
R2n, (1.6)

where F stands for the Hamilton map of q, and we proved in Theorem 1.2.2 in [10],
that when a quadratic symbol q with a non-negative real part is elliptic on its
singular space S,

(x, ξ) ∈ S, q(x, ξ) = 0 ⇒ (x, ξ) = 0, (1.7)

then the spectrum of the quadratic operator qw(x,Dx) is only composed of eigen-
values of finite multiplicity and is given by

σ
(
qw(x,Dx)

)
=
{ ∑

λ∈σ(F ),
−iλ∈C+∪(Σ(q|S)\{0})

(
rλ + 2kλ

)
(−iλ) : kλ ∈ N

}
. (1.8)

Here rλ is the dimension of the space of generalized eigenvectors of F in C2n be-
longing to the eigenvalue λ ∈ C, and

Σ(q|S) = q(S) and C+ = {z ∈ C : Re z > 0}.

It follows from (1.6) that the closure of the range of q along S, Σ(q|S), satisfies
Σ(q|S) ⊂ iR.

Remark. Equivalently, one can describe the singular space as the subset in the phase
space where all the Poisson brackets Hk

Im qRe q, k ∈ N, are vanishing,

S = {X ∈ R2n : Hk
Im qRe q(X) = 0, k ∈ N}.

The singular space is therefore exactly the set of points X0 in the phase space where
the real part of q under the flow generated by the Hamilton vector field associated
to its imaginary part Im q,

t 7→ Re q(etHIm qX0),
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vanishes to an infinite order at t = 0. We refer to Section 2 in [10] to find all
the arguments needed to establish this second equivalent description of the singular
space.

We shall finish this subsection by recalling that quadratic operators with a zero
singular space S = {0}, enjoy noticeable subelliptic properties. Specifically, when
qw(x,Dx) stands for a quadratic operator whose Weyl symbol q has a non-negative
real part Re q ≥ 0, and a zero singular space S = {0}, it was established in [20]
that it fulfills the subelliptic estimate∥∥(〈(x, ξ)〉2/(2k0+1)

)w
u
∥∥
L2 ≤ C

(
‖qw(x,Dx)u‖L2 + ‖u‖L2

)
, u ∈ S(Rn), (1.9)

with a loss of 2k0/(2k0 + 1) derivatives, where 〈(x, ξ)〉 = (1 + |x|2 + |ξ|2)1/2 and k0

stands for the smallest integer 0 ≤ k0 ≤ 2n− 1 such that( k0⋂
j=0

Ker
[
Re F (Im F )j

])⋂
R2n = {0}.

Such a non-negative integer k0 is well-defined since S = {0}.

1.2 Statement of the main results

Let us now state the main results contained in this paper. Let m ≥ 1 be a C∞ order
function on R2n fulfilling

∃C0 ≥ 1, N0 > 0, m(X) ≤ C0〈X − Y 〉N0m(Y ), X, Y ∈ R2n, (1.10)

where 〈X〉 = (1 + |X|2)
1
2 , and let S(m) be the symbol class

S(m) =
{
a ∈ C∞(R2n,C) : ∀α ∈ N2n,∃Cα > 0,∀X ∈ R2n, |∂αXa(X)| ≤ Cαm(X)

}
.

We shall assume in the following, as we may, that m belongs to its own symbol class
m ∈ S(m).

Considering a symbol P (x, ξ;h) with a semiclassical asymptotic expansion in the
symbol class S(m),

P (x, ξ;h) ∼
+∞∑
j=0

hjpj(x, ξ), (1.11)

with some pj ∈ S(m), j ∈ N, independent of the semiclassical parameter h, such
that its principal symbol p0 has a non-negative real part

Re p0(X) ≥ 0, X = (x, ξ) ∈ R2n, (1.12)
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we shall study the operator

P = Pw(x, hDx;h), 0 < h ≤ 1, (1.13)

defined by the h-Weyl quantization of the symbol P (x, ξ;h), that is, the Weyl quan-
tization of the symbol P (x, hξ;h),

Pw(x, hDx;h)u(x) =
1

(2π)n

∫
R2n

ei(x−y).ξP
(x+ y

2
, hξ;h

)
u(y)dydξ. (1.14)

We shall make the important assumption that Re p0 is elliptic at infinity in the sense
that for some C > 1, we have

Re p0(X) ≥ m(X)

C
, |X| ≥ C. (1.15)

The ellipticity assumption (1.15) implies that, for h > 0 small enough and when
equipped with the domain

D(P ) = H(m) := (mw(x, hD))−1 (L2(Rn)
)
,

the operator P becomes closed and densely defined on L2(Rn). Furthermore, another
basic consequence of (1.12) and (1.15) is that when z ∈ neigh(0,C), the analytic
family of operators

P − z : H(m)→ L2(Rn),

is Fredholm of index 0, for all h > 0 small enough — see, e.g., [2]. An application
of analytic Fredholm theory allows us then to conclude that the spectrum of P in
a small but fixed neighborhood of 0 ∈ C is discrete and consists of eigenvalues of
finite algebraic multiplicity.

We shall assume that the characteristic set of the real part of the principal
symbol p0,

(Re p0)−1(0) ⊂ R2n,

is finite, so that we may write it as

(Re p0)−1(0) = {X1, ..., XN}. (1.16)

The sign assumption (1.12) implies in particular that we have

dRe p0(Xj) = 0,
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for all 1 ≤ j ≤ N , and we shall actually assume that these points are all doubly
characteristic for the full principal symbol p0,

p0(Xj) = dp0(Xj) = 0, 1 ≤ j ≤ N, (1.17)

so that we may write
p0(Xj + Y ) = qj(Y ) +O(Y 3), (1.18)

when Y → 0. Here qj is the quadratic form which begins the Taylor expansion of
the principal symbol p0 at Xj. Notice that the sign assumption (1.12) implies that
the complex-valued quadratic forms qj have non-negative real parts,

Re qj ≥ 0, (1.19)

when 1 ≤ j ≤ N . We shall assume throughout the present work that when 1 ≤ j ≤
N , the quadratic form qj is elliptic along the associated singular space Sj introduced
in (1.6), in the sense of (1.2).

The following result was established in [11], under the assumptions above: let C > 1
and assume that z ∈ C with |z| ≤ C is such that for all 1 ≤ j ≤ N , we have
z − p1(Xj) /∈ Ωj, where Ωj ⊂ C is a fixed neighborhood of the spectrum of the
quadratic operator qwj (x,Dx). Then for all h > 0 small enough, the following a
priori estimate holds,

h||u || ≤ O(1)|| (P − hz)u ||, u ∈ S(Rn). (1.20)

Here || · || is the L2–norm on Rn. In view of the observations made above, we see
that the estimate (1.20) extends to all of D(P ) = H(m), since the Schwartz space
S(Rn) is dense in the latter. The operator P − hz : H(m) → L2(Rn) is therefore
injective with closed range, and thus invertible, thanks to the Fredholm property.
We conclude that when z ∈ C is as above, then hz is not an eigenvalue of P and
the resolvent estimate

(P − hz)−1 = O
(

1

h

)
: L2(Rn)→ L2(Rn) (1.21)

holds true.

The following is the first main result of this work.

Theorem 1.1 Let us make the assumptions (1.12), (1.15), (1.16), and (1.17). As-
sume furthermore that the quadratic form qj introduced in (1.18) is elliptic along the
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singular space Sj, when 1 ≤ j ≤ N . Let C > 0. Then there exists h0 > 0 such that
for all 0 < h ≤ h0, the spectrum of the operator P in the open disc in the complex
plane D(0, Ch) is given by the eigenvalues of the form,

zj,k ∼ h
(
λj,k + p1(Xj) + h1/Nj,kλj,k,1 + h2/Nj,kλj,k,2 + . . .

)
, 1 ≤ j ≤ N. (1.22)

Here λj,k are the eigenvalues in D(0, C) of qwj (x,Dx) given in (1.8), repeated ac-
cording to their algebraic multiplicity, and Nj,k is the dimension of the correspond-
ing generalized eigenspace. (Possibly after changing C > 0, we may assume that
|λj,k + p1(Xj)| 6= C for all k, 1 ≤ j ≤ N .)

We now come to state the second main result of this work. In doing so, let us
introduce the symbols

rj(Y ) = p0(Xj + Y )− qj(Y ), 1 ≤ j ≤ N. (1.23)

We shall assume that there exists a closed angular sector Γ with vertex at 0 and a
neighborhood V of the origin in R2n such that for all 1 ≤ j ≤ N ,

rj(V ) \ {0} ⊂ Γ \ {0} ⊂ {z ∈ C : Re z > 0}. (1.24)

Figure 1: The range of rj.

Im z

Re z0

Γ \ {0}

rj(V ) \ {0}
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By denoting Fj the Hamilton maps and Sj the singular spaces associated to the
quadratic forms qj, we shall also assume that all the singular spaces are reduced to
zero,

Sj = {0}, (1.25)

when 1 ≤ j ≤ N . According to the definition of the singular space (1.6), one can
therefore consider the smallest integers, 0 ≤ kj ≤ 2n− 1, such that

( kj⋂
l=0

Ker
[
Re Fj(Im Fj)

l
])⋂

R2n = {0}. (1.26)

Defining the integer
k0 = max

j=1,...,N
kj, (1.27)

in {0, ..., 2n− 1}, we shall establish the following result:

Theorem 1.2 Consider a symbol P (x, ξ;h) with a semiclassical expansion in the
class S(m) fulfilling the assumptions (1.12), (1.15), (1.16), (1.17) and (1.24). When
all the quadratic forms qj, 1 ≤ j ≤ N , defined in (1.18) have zero singular spaces
Sj = {0}, then for any constant C0 > 0 sufficiently small, there exist positive
constants 0 < h0 ≤ 1, C ≥ 1 and c0 > 0 such that for all 0 < h ≤ h0, u ∈ S(Rn)
and z ∈ Ωh,

h
2k0

2k0+1 |z|
1

2k0+1‖u‖L2 ≤ c0‖Pu− zu‖L2 , (1.28)

where P = Pw(x, hDx;h), k0 is the integer defined in (1.27) and Ωh denotes the set

Ωh =
{
z ∈ C : Re z ≤ 1

C
h

2k0
2k0+1 |z|

1
2k0+1 , Ch ≤ |z| ≤ C0

}
. (1.29)

The set Ωh defined in (1.29) is represented on Figure 2. We may also notice that
when z ∈ Ωh, then Theorem 1.2 implies that z is in the resolvent set of P , and the
resolvent estimate

(P − z)−1 = O
(
h
− 2k0

2k0+1 |z|−
1

2k0+1

)
: L2(Rn)→ L2(Rn)

holds.

Notice that the quantity h
2k0

2k0+1 |z|
1

2k0+1 , which appears in the estimate (1.28), when
Ch ≤ |z| ≤ C0, increases when the spectral parameter z moves away from the
origin at a rate, which depends on the maximal loss of derivatives 2k0/(2k0 + 1)
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Figure 2: Set Ωh.

Im z

Re z0

Ch

C0

Re z = 1
C
h

2k0
2k0+1 |z|

1
2k0+1

Ωh

appearing in the subelliptic estimates (1.9), fulfilled by the quadratic approxima-
tions of the principal symbol at the doubly characteristic points. When the spectral
parameter is of the order of magnitude of h, we recover the semiclassical hypoel-
liptic a priori estimate (1.20), proved in [11], with a loss of the full power of the
semiclassical parameter. Theorem 1.2 and Theorem 1 in [11], together with the
description of the spectrum of P , given in Theorem 1.1, give therefore an almost
complete picture of the spectral properties and the growth of the resolvent norm of a
non-selfadjoint semiclassical pseudodifferential operator with double characteristics
fulfilling the assumptions of Theorems 1.2 near the doubly characteristic set. These
results underline the basic rôle played by the singular space in the analysis of the
general structure of double characteristics.

Coming back to Theorem 1.2, we would like to stress the fact that the non-
negative integer k0 defined in (1.27), 0 ≤ k0 ≤ 2n− 1, measuring the maximal loss
of derivatives 2k0/(2k0 + 1) appearing in the subelliptic estimates (1.9) fulfilled by
the quadratic approximations of the principal symbol at doubly characteristic points
and the rate of growth of the resolvent norm when the spectral parameter z moves
away from the origin in the estimate (1.28); can actually take any value in the set
{0, ..., 2n− 1}, when n ≥ 1. Explicit local models for the quadratic approximations
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Figure 3: The estimate h
2k0

2k0+1 |z|
1

2k0+1‖u‖L2 ≤ c‖Pu−zu‖L2 is fulfilled when z belongs
to the dark grey region of the figure; whereas the estimate h‖u‖L2 ≤ ‖Pu − zu‖L2

is fulfilled in the light grey one.
Im z

Re z0

Ch

C0

of the principal symbol at doubly characteristic points for which the integer k0 can
take any value in the set {0, ..., 2n − 1} are given for example by the following
symbols:

- Case k0 = 0: According to the definition of the Hamilton map, this is the case
of any quadratic symbol q with a positive definite real part Re q > 0.

- Case k0 = 1: Consider a Fokker-Plank operator with a nondegenerate quadra-
tic potential tensorized with a harmonic oscillator in other symplectic variables

ξ2
2 + x2

2 + i(x2ξ1 − x1ξ2) +
n∑
j=3

(ξ2
j + x2

j).

- Case k0 = 2p, with 1 ≤ p ≤ n− 1: Consider

ξ2
1 + x2

1 + i(ξ2
1 + 2x2ξ1 + ξ2

2 + 2x3ξ2 + ....+ ξ2
p + 2xp+1ξp + ξ2

p+1)

+
n∑

j=p+2

(ξ2
j + x2

j).
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- Case k0 = 2p+ 1, with 1 ≤ p ≤ n− 1: Consider

x2
1 + i(ξ2

1 + 2x2ξ1 + ξ2
2 + 2x3ξ2 + ....+ ξ2

p + 2xp+1ξp + ξ2
p+1) +

n∑
j=p+2

(ξ2
j + x2

j).

We refer the reader to [20] for more details concerning those examples.

Remark. The basic rôle played by conditions of subelliptic type for the understand-
ing of resolvent estimates for non-selfadjoint operators of principal type was first
stressed in [2]. See also [18, 19] for specific cases. These results were recently im-
proved by W. Bordeaux Montrieux in a model situation [1] and in the general case
by J. Sjöstrand in [24].

In [8], the authors obtain a result analogous to Theorem 1.1 and a resolvent esti-
mate similar to (1.28), in the case when k0 = 1. These results are obtained using
assumptions of subelliptic type for the principal symbol of the operator, both locally
near the doubly characteristic points, and at infinity. Our analysis does not consider
such a general situation where the ellipticity may fail both locally and at infinity.
The purpose of the present work, as well as of [11], is to understand deeper the
phenomena occurring near the doubly characteristic set, and therefore we simplify
parts of the analysis of [8] by requiring a property of ellipticity at infinity (1.15)
for the real part of the principal symbol p0, whereas we weaken the assumptions of
subelliptic type at the doubly characteristic points. The assumption of subelliptic
type for the principal symbol p0 of the operator near a doubly characteristic point,
say here X0 = 0,

∃ε0 > 0, Re p0(X) + ε0H
2
Imp0

Re p0(X) ∼ |X|2,

made in [8], implies (See Section 4 in [11]) that the singular space S associated to
the quadratic approximation q of the principal symbol p0 at X0 = 0 is reduced to
{0}. More specifically, the singular space S is equal to zero after the intersection of
exactly two kernels,

S = Ker(Re F ) ∩Ker
[
Re F (Im F )

]⋂
R2n = {0}.

This explains why the integer k0 is equal to 1 in the case studied in [8].

In the proof of Theorem 1.1, we rely upon the techniques developed in [8], [10], [11],
and similarly to [8], the proof proceeds by solving a globally well-posed Grushin
problem for the operator P in a suitable microlocally weighted L2–space, introduced
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in [11]. The main technical tool in the first part of the paper is therefore a systematic
use of the FBI–Bargmann transformation as well as of the associated weighted spaces
of holomorphic functions.

The proof of Theorem 1.2 uses elements of the Wick calculus, whose main features
are recalled in the appendix (Section A). This proof also depends crucially on
the construction of weight functions performed in [20] (Proposition 2.0.1) for the
quadratic approximations of the principal symbol at the doubly characteristic points.
The method used in this proof, by starting with weights built for quadratic symbols
in order to deal with the general doubly characteristic case, largely accounts for
the assumption (1.24). We shall need this assumption in our proof of Theorem 1.2.
Nevertheless, this hypothesis may be relevant only technically.

The plan of the paper is as follows. In Section 2, we study quadratic differential op-
erators with quadratic symbols q, elliptic along the associated singular spaces, and
derive some Gaussian decay estimates for the generalized eigenfunctions, thereby
completing the corresponding discussion in [10]. This study is instrumental in Sec-
tion 3, devoted to the construction of a globally well-posed Grushin proof for the
operator P and to the proof of Theorem 1.1. Theorem 1.2 is established in Section
4. As alluded to above, the proof makes use of some elements of the Wick calculus,
and the relevant facts concerning those techniques are reviewed in the appendix.

Acknowledgments. The research of the first author is partially supported by the
National Science Foundation under grant DMS-0653275 and by the Alfred P. Sloan
Research Fellowship. Part of this projet was conducted when the two authors visited
Université de Rennes in June of 2009. It is a great pleasure for them to thank Francis
Nier for the invitation and for the inspiring discussions. The authors are also very
grateful to San Vũ Ngo.c for the generous hospitality in Rennes.

2 Gaussian decay of eigenfunctions in the quad-

ratic case

In this section we shall be concerned with a quadratic form q on R2n such that
Re q ≥ 0 and with q being elliptic along the associated singular space S, introduced
in (1.6). It follows then from [10] (Section 1.4.1) that the singular space S ⊂ R2n is
symplectic. We have the following decomposition,

R2n = Sσ⊥ ⊕ S, (2.1)

where Sσ⊥ is the orthogonal space of S with respect to the symplectic form σ in R2n,
and let us recall from [10] (Section 2) that we have linear symplectic coordinates
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(x′, ξ′) in Sσ⊥ and (x′′, ξ′′) in S, respectively, such that if

X = (x, ξ) = (X ′;X ′′) = (x′, ξ′;x′′, ξ′′) ∈ R2n = R2n′ ×R2n′′
, (2.2)

then
q(x, ξ) = q1(x′, ξ′) + iq2(x′′, ξ′′), q1 = q|Sσ⊥ , iq2 = q|S. (2.3)

We know furthermore from [10] (Proposition 2.0.1) that the symplectic coordinates
may be chosen such that the elliptic quadratic form q2 satisfies

q2(x′′, ξ′′) = ε0

n′′∑
j=1

λj
2

(
x′′j

2
+ ξ′′j

2
)
, λj > 0, ε0 ∈ {±1}, (2.4)

while q1 enjoys the following averaging property: for each T > 0, the quadratic form

〈Re q1〉T (x′, ξ′) =
1

T

∫ T

0

Re q1 (exp (tHIm q1)(x′, ξ′)) dt (2.5)

is positive definite in (x′, ξ′). In what follows, in order to fix the ideas, we take
ε0 = 1 in (2.4).

Following [11] (Section 2), let us introduce the quadratic weight function,

G0(X) = −
∫
J

(
− t

T

)
Re q (exp (tHIm q)(X)) dt, T > 0, (2.6)

where J is a compactly supported piecewise affine function satisfying

J ′(t) = δ(t)− 1[−1,0](t),

and 1[−1,0] the characteristic function of the set [0, 1]. It follows that

HIm qG0 = 〈Re q〉T,Im q − Re q, (2.7)

where

〈Re q〉T,Im q(X) =
1

T

∫ T

0

Re q(exp (tHIm q)(X)) dt.

From (2.3) and (2.4) we see that G0 is a function of X ′ only, so that G0 = G0(X ′),
X ′ = (x′, ξ′) ∈ R2n′

. Following [8] and [11], we shall therefore consider an IR-
deformation of the real phase space Sσ⊥ = R2n′

, associated to the quadratic weight
G0, viewed as a function on R2n′

. Let us set

Λδ = {X ′ + iδHG0(X ′); X ′ ∈ R2n′} ⊂ C2n′
, 0 ≤ δ ≤ 1. (2.8)
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We then know that for all δ > 0 small enough, Λδ is a linear IR-manifold, and, as
explained for instance in [9] (Section 4), there exists a linear canonical transformation

κδ : R2n′ → Λδ, (2.9)

such that
κδ(X

′) = X ′ + iδHG0(X ′) +O(δ2 |X ′|). (2.10)

We introduce next the standard FBI-Bargmann transformation along Sσ⊥ ' R2n′
,

T ′u(x′) = C̃h−3n′/4

∫
e
i
h
ϕ(x′,y′)u(y′) dy′, x′ ∈ Cn′

, C̃ > 0, (2.11)

where ϕ(x′, y′) = i
2
(x′ − y′)2. Associated to T ′ there is a complex linear canonical

transformation

κT ′ : C2n′ 3 (y′, η′) 7→ (x′, ξ′) = (y′ − iη′, η′) ∈ C2n′
, (2.12)

mapping the real phase space R2n′
onto the linear IR-manifold

ΛΦ0 =
{(
x′,

2

i

∂Φ0

∂x′
(x′)
)

: x′ ∈ Cn′
}
, (2.13)

where

Φ0(x′) =
1

2
(Imx′)

2
.

For a suitable choice of C̃ > 0 in (2.11), we know that the map T ′ takes L2(Rn′
)

unitarily onto HΦ0,h(C
n′

). Here and in what follows, when Φ ∈ C∞(Cn′
) is a

suitable smooth strictly plurisubharmonic weight function close to Φ0 in (2.13), we

shall let HΦ,h(C
n′

) stand for the closed subspace of L2(Cn′
; e−

2Φ
h L(dx′)), consisting

of functions that are entire holomorphic. The integration element L(dx′) stands here
for the Lebesgue measure on Cn′

.

Following [11] (Section 3), we write next

κT ′(Λδ) = ΛΦδ :=
{(
x′,

2

i

∂Φδ

∂x′
(x′)
)

;x′ ∈ Cn′
}
, (2.14)

for 0 ≤ δ ≤ δ0 with δ0 > 0 small enough, where Φδ(x
′) is a strictly plurisubharmonic

quadratic form on Cn′
, given by

Φδ(x
′) = v.c.(y′,η′)∈Cn′×Rn′ (−Imϕ(x′, y′)− (Im y′) · η′ + δG0(Re y′, η′)) . (2.15)
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The unique critical point (y′(x′), η(x′)) giving the corresponding critical value in
(2.15) satisfies

y′(x′) = Rex′ +O(δ |x′|), η′(x′) = −Imx′ +O(δ |x′|), (2.16)

and as in [10], [11], we obtain that

Φδ(x
′) = Φ0(x′) + δG0(Rex′,−Imx′) +O(δ2 |x′|2). (2.17)

Let us set Q1 = qw1 (x′, hDx′) and recall from [23] the exact Egorov property

T ′Q1u = Q̃1T
′u, u ∈ S(Rn′

), (2.18)

where Q̃1 is a semiclassical quadratic differential operator on Cn′
whose Weyl symbol

q̃1 satisfies
q̃1 ◦ κT ′ = q1, (2.19)

with κT ′ given in (2.12).

Continuing to follow [23], let us also recall that when realizing Q̃1 as an unbounded

operator on HΦ0,h(C
n′

), we may first use the contour integral representation

Q̃1u(x′) =
1

(2πh)n′

∫∫
θ′= 2

i
∂Φ0
∂x′

(
x′+y′

2

) e ih (x′−y′)·θ′ q̃1

(x′ + y′

2
, θ′
)
u(y′) dy′ dθ′,

and then, using that the symbol q̃1 is holomorphic, by a contour deformation we
obtain the following formula for Q̃1 as an unbounded operator on HΦ0,h(C

n′
),

Q̃1u(x′) =
1

(2πh)n′

∫∫
θ′= 2

i
∂Φ0
∂x′

(
x′+y′

2

)
+it(x′−y′)

e
i
h

(x′−y′)·θ′ q̃1

(x′ + y′

2
, θ′
)
u(y′) dy′ dθ′,

(2.20)

for any t > 0. Furthermore, the operator Q̃1 can also be viewed as an unbounded
operator

Q̃1 : HΦδ,h(C
n′

)→ HΦδ,h(C
n′

), (2.21)

defined for 0 < δ ≤ δ0, with δ0 > 0 sufficiently small. Indeed, when defining the
operator in (2.21), it suffices to make a contour deformation in (2.20) and set

Q̃1u(x′) =
1

(2πh)n′

∫∫
θ′= 2

i

∂Φδ
∂x′

(
x′+y′

2

)
+it(x′−y′)

e
i
h

(x′−y′)·θ′ q̃1

(x′ + y′

2
, θ
)
u(y′) dy′ dθ′,

(2.22)
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for any t > 0. We then know from the general theory [17], [22], that the operator
in (2.21) is unitarily equivalent to the quadratic operator on L2(Rn′

), whose Weyl
symbol is given by the quadratic form

X ′ 7→ q1 (κδ(X
′)) , X ′ ∈ R2n′

, (2.23)

with κδ introduced in (2.9), (2.10). In particular, using (2.5), (2.7), and (2.10), we
see as in [10] (p.827) that the real part of the quadratic form in (2.23) is positive

definite, and from [10] (p.828) we also know that the spectrum of Q̃1 acting on

HΦ0,h(C
n′

) agrees with the spectrum of Q̃1 acting on HΦδ,h(C
n′

), for all 0 < δ ≤ δ0,
δ0 > 0 small enough, including the multiplicities. For future reference, let us recall
from [10] the explicit description of the spectrum of Q̃1, which is given by

Spec(Q̃1) =

h
∑

λ∈σ(F1)

Imλ>0

(rλ + 2kλ)
λ

i
, kλ ∈ N

 . (2.24)

Here, F1 is the Hamilton map associated to the quadratic form q1 and rλ is the
dimension of the generalized eigenspace of F1 in C2n′

corresponding to the eigenvalue
λ ∈ C of the Hamilton map F1.

In the remainder of this section, we shall be concerned exclusively with the case
of (h = 1) quantization, and we shall then write HΦ0(Cn′

) = HΦ0,h=1(Cn′
), and

similarly for HΦδ(C
n′

). The following result is a slight generalization of the corre-
sponding statement from [10].

Proposition 2.1 There exists η > 0 and δ0 > 0 small enough, such that the gener-
alized eigenvectors u of the operators

Q̃1(x′, Dx′) : HΦ0(Cn′
)→ HΦ0(Cn′

)

and

Q̃1(x′, Dx′) : HΦδ(C
n′

)→ HΦδ(C
n′

), 0 < δ ≤ δ0,

agree and satisfy

u ∈ HΦ0−η|x′|2(Cn′
). (2.25)

Proof: The statement of the proposition was established in the work [10], in the case

when u is an eigenvector of Q̃1. When treating the case of generalized eigenvectors,
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we may argue in a way similar to [10] (p.829-831), and consider the restriction of
the heat semigroup, viewed as a bounded operator,

e−tQ̃1 : HΦ0(Cn′
)→ HΦt(C

n′
), 0 < t ≤ t0, (2.26)

t0 > 0 small enough, to a generalized eigenspace Eλ0 ⊂ HΦ0(Cn′
) of Q̃1, associated

to an eigenvalue λ0. The space Eλ0 is finite-dimensional, and the restriction of

Q̃1 − λ0 to Eλ0 is nilpotent. It was shown in [10] (Lemma 3.1.2) that for each t > 0
small enough, there exists α = α(t) > 0 such that the quadratic form Φt satisfies

Φt(x
′) ≤ Φ0(x′)− α |x′|2 , x′ ∈ Cn′

.

Notice that the map e−tQ̃1 : Eλ0 → Eλ0 is bijective for any t ≥ 0. Indeed, the

generalized eigenspace Eλ0 is stable under the action of the operator Q̃1 and its
restriction to this finite-dimensional space

Q̃1|Eλ0
: Eλ0 → Eλ0 ,

is a bounded operator. This implies that the restriction of the semigroup to the
space (e−tQ̃1)|Eλ0

coincides with the exponential of the bounded operator −tQ̃1|Eλ0
,

which is always bijective. It follows therefore that the generalized eigenvectors u ∈
HΦ0(Cn′

) of Q̃1 acting on HΦ0(Cn′
), belong to HΦδ(C

n′
), for δ > 0 small enough, and

satisfy (2.25). Considering the action of the heat semigroup on the corresponding

generalized eigenspace of the operator Q̃1 acting on HΦδ(C
n′

) and repeating the
arguments following the statement of Lemma 3.1.2 in [10], we obtain the statement
of the proposition. 2

Having obtained the exponential decay properties of the generalized eigenvectors of
Q̃1, we return to the full quadratic operator Q = qw(x,Dx) in (2.3), and introduce

the corresponding quadratic differential operator Q̃ on the FBI transform side, given
by

TQu = Q̃Tu, u ∈ S(Rn).

Here the full FBI-Bargmann transformation T is given by

T = T ′ ⊗ T ′′ : L2(Rn) = L2(Rn′
)⊗ L2(Rn′′

)→ HΦ0(Cn′
)⊗HΦ0(Cn′′

) = HΦ0(Cn),

with the partial transform T
′′

along the singular space S being defined similarly to
(2.11). Associated to T ′′ and to T , we have the linear canonical transformations
κT ′′ and κT , with κT = κT ′ ⊗ κT ′′ , so that κT (y, η) = (y − iη, η). The splitting of
the coordinates (2.2) induces, by means of κT , the corresponding splitting of the
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coordinates in Cn, so that we can write x = (x′, x′′) ∈ Cn = Cn′ ×Cn′′
. We have,

in view of (2.3),

Q̃(x,Dx) = Q̃1(x′, Dx′) + iQ̃2(x′′, Dx′′), (2.27)

where the symbol q̃2 of the quadratic operator Q̃2(x′′, Dx′′) is given by q̃2 = q2 ◦κ−1
T ′′ .

We shall be concerned with the generalized eigenfunctions of the operator Q̃(x,Dx)
in (2.27) acting on the weighted space

HΦδ(C
n) = HΦδ(C

n′
)⊗HΦ0(Cn′′

),

with δ > 0 small enough fixed. Here in the left hand side,

Φδ(x) = Φδ(x
′) + Φ0(x′′),

and an application of (2.13) and (2.17) shows that

Φδ(x) = Φ0(x) + δG0(Rex′,−Imx′) +O(δ2 |x′|2).

Let us recall from [10] (p.843) that the spectrum of Q̃(x,Dx) is given by

σ(Q̃(x,Dx)) = σ(Q̃1(x′, Dx′)) + iσ(Q̃2(x′′, Dx′′)),

with the spectrum of Q̃1(x′, Dx′) given in (2.24), and furthermore, from (2.4), we

know that the spectrum of Q̃2(x′′, Dx′′) consists of the eigenvalues of the form

µα′′ =
n′′∑
j=1

λj
2

(
2α′′j + 1

)
, α′′ ∈ Nn′′

.

The corresponding eigenfunctions are given by

Φα′′(x′′) = (T ′′ϕα′′)(x′′), (2.28)

where
ϕα′′(y′′) = Hα′′(y′′)e−(y′′)2/2

are the Hermite functions, with Hα′′(y′′) being the Hermite polynomials on Rn′′
. It

is clear that the eigenfunctions Φα′′(x′′) form an orthonormal basis of HΦ0(Cn′′
), and

a straightforward computation shows that the functions Φα′′(x′′) are of the form

Φα′′(x′′) = pα′′(x′′)e−(x′′)2/4,
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where pα′′(x′′) is a holomorphic polynomial on Cn′′
. In particular, we have

Φα′′ ∈ HΦ0−η|x′′|2(Cn′′
), (2.29)

for some fixed η > 0.

Let u ∈ HΦδ(C
n), and let us write

u(x′, x′′) =
∑

α′′∈Nn′′

uα′′(x′)Φα′′(x′′).

Using that(
Q̃(x,Dx)− λ

)
u =

∑
α′′∈Nn′′

[
(Q̃1(x′, Dx′) + iµα′′ − λ)uα′′(x′)

]
Φα′′(x′′), (2.30)

we see that u is a generalized eigenvector of Q̃(x,Dx) corresponding to an eigenvalue
λ ∈ C, precisely when u is of the form

u(x′, x′′) =
∑
α′′

uα′′(x′)Φα′′(x′′), (2.31)

where the summation extends over all α′′ ∈ Nn′′
for which

λ− iµα′′ ∈ σ(Q̃1(x′, Dx′)),

and uα′′(x′) ∈ HΦδ(C
n′

) is a generalized eigenvector of Q̃1(x′, Dx′) associated to

the eigenvalue λ − iµα′′ . Since, according to (2.24), σ(Q̃1) is contained in a proper
closed cone in C of the form |Im z| ≤ CRe z, C > 0, it follows that the sum
in (2.31) contains a fixed finite number of terms, when |λ| = O(1). Combining
Proposition 2.1, (2.29), and (2.31), we obtain the following result, which summarizes
the discussion pursued in this section.

Proposition 2.2 There exists η > 0 such that for all 0 ≤ δ ≤ δ0, with δ0 > 0 small
enough, the generalized eigenvectors u of the quadratic operator Q̃(x,Dx) acting on
HΦδ(C

n), satisfy
u ∈ HΦ0−η|x|2(Cn).

Remark. The discussion in this section, together with the corresponding analysis
in Section 3 in [10], can be considered as a natural generalization of Remark 11.7
in [8]. For future reference, let us also remark that from [8], [9], [21], we know that
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the generalized eigenfunctions u of the operator Q̃(x,Dx) are such that the inverse
FBI transform T−1u ∈ L2(Rn) is of the form

T−1u = p(x)eiΦ(x), (2.32)

where p is a polynomial on Rn and Φ(x) is a complex quadratic form, and accord-
ing to Proposition 2.2), we have Im Φ > 0. Furthermore, the positive Lagrangian
subspace {(x,Φ′(x)); x ∈ Cn} is the stable outgoing manifold for the Hamilton flow
of the quadratic form

(x, ξ) 7→ 1

i
e−iθq(x, ξ), (x, ξ) ∈ R2n,

where θ > 0 is sufficiently small but fixed.

3 Global Grushin problem

Throughout this section, we shall make the simplifying assumption that the integer
N introduced in (1.16) satisfies N = 1, and that the corresponding doubly charac-
teristic point is X1 = (0, 0) ∈ R2n. This assumption serves merely to simplify the
notation in the proofs and does not cause any loss of generality. In particular, we
write

p0(X) = q(X) +O(X3),

where q is a quadratic form, to which Proposition 2.2 applies.

When proving Theorem 1.1, it will be convenient to work with symbols in the class
S(1), bounded together with all of their derivatives, similarly to what was done
in [11]. Let us begin this section by describing therefore a reduction to the case
when m = 1. When doing so, we notice that for all h > 0 sufficiently small, the
operator

P + 1 : H(m)→ L2(Rn)

is bijective, and by an application of Beals’s lemma, we know that (P + 1)−1 ∈
Oph(S(

(
1
m

)
)), see [3], p.99-100. Let

P̃ = (P + 1)−1P ∈ Oph (S(1)) ,

with the leading symbol given by

p̃0 =
p0

p0 + 1
. (3.1)
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Furthermore, by holomorphic functional calculus [6], or by an explicit calculation
using the Weyl calculus [3] (use formula (8.11) p.100), we see that the subprincipal

symbol of P̃ is given by

p̃1 =
p1

(p0 + 1)2
. (3.2)

It follows from (3.1) that the leading symbol p̃0 of the bounded h-pseudodifferential

operator P̃ satisfies Re p̃0 ≥ 0, and that Re p̃0 is elliptic near infinity in the class
S(1). Furthermore, p̃0 vanishes precisely at the origin, with

p̃0(X) = q(X) +O(X3), p̃1(0) = p1(0).

In order to deduce the asymptotic description of the eigenvalues for the operator P
from the corresponding description for the operator P̃ , we notice that the resolvents
of P and P̃ are related as follows, for z ∈ neigh(0,C),(

P̃ − z
)−1

= (1− z)−1

(
P − z

1− z

)−1

(P + 1).

Hence, z ∈ neigh(0,C) is an eigenvalue of P̃ precisely when z/(1−z) is an eigenvalue
of P , and the multiplicities agree. In what follows, we shall therefore be concerned
exclusively with the case when m = 1.

3.1 Grushin problem in the quadratic case

In this subsection, we shall describe a well-posed Grushin problem for the ellip-
tic quadratic operator Q̃(x,Dx) defined in (2.27), acting on the weighted space
HΦδ(C

n), for δ > 0 small enough but fixed. Let λ0 ∈ C be an eigenvalue of

Q̃(x,Dx), and let Eλ0 ⊂ HΦδ(C
n) be the corresponding finite-dimensional general-

ized eigenspace. According to Proposition 2.2, we have

Eλ0 ⊂ HΦ0−η|x|2(Cn), η > 0.

Let e1, . . . , eN0 be a basis for Eλ0 . We shall now introduce a suitable dual basis.

When doing so, let Q̃∗ = Q̃∗(x,Dx) be the adjoint of the operator Q̃ = Q̃(x,Dx)
acting on the space HΦ0(Cn). Here the closed densely defined quadratic operator

Q̃ is equipped with the domain {u ∈ HΦ0(Cn); Q̃u ∈ HΦ0(Cn)}. According to

the discussion in [13], p.426, we have Q̃∗ = TqwT−1. Here the Weyl symbol of qw

is the quadratic form X 7→ q(X), which has a non-negative real part, and whose
restriction to the corresponding singular space, which is equal to S, is elliptic. Let
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f1, . . . , fN0 , fj ∈ HΦ0(Cn), be the basis for the generalized eigenspace of the adjoint

operator Q̃∗ : HΦ0(Cn) → HΦ0(Cn), associated to the eigenvalue λ0, which is dual
to e1, . . . eN0 . An application of Proposition 2.2 shows that the functions fj, 1 ≤
j ≤ N0, satisfy

fj ∈ HΦ0−η|x|2(Cn), η > 0. (3.3)

In particular, fj ∈ HΦδ(C
n), for δ > 0 small enough, and we have

det ((ej, fk)) 6= 0, 0 ≤ δ ≤ δ0, (3.4)

for some δ0 > 0 sufficiently small. Here the scalar product in (3.4) is taken in the
space HΦδ(C

n).

Let us introduce the operators

R− : CN0 → HΦδ(C
n)

and
R+ : HΦδ(C

n)→ CN0 ,

given by R−u− =
∑N0

j=1 u−(j)ej and (R+u)(j) = (u, fj), with the scalar product
taken in the space HΦδ(C

n). Arguing as in Section 11 of [8], we obtain that for
z ∈ neigh(λ0,C), the Grushin operator(

Q̃− z R−
R+ 0

)
: D(Q̃)×CN0 → HΦδ(C

n)×CN0 (3.5)

is bijective. Here D(Q̃) = {u ∈ HΦδ(C
n); (1 + |x|2)u ∈ L2

Φδ
(Cn)}.

Continuing to follow [8], we shall now restore the semiclassical parameter h > 0 and
consider the operators

R−,h = O(1) : CN0 → HΦδ,h(C
n), R+,h = O(1) : HΦδ,h → CN0 , (3.6)

given by

R−,hu− =

N0∑
j=1

u−(j)ej,h, (R+,hu) (j) = (u, fj,h). (3.7)

Here the scalar product in the definition of R+,h is taken in the space HΦδ,h(C
n),

and

ej,h(x) = h−n/2ej

(
x√
h

)
, fj,h(x) = h−n/2fj

(
x√
h

)
.
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With Q̃ = Q̃(x, hDx), we shall now consider the semiclassical Grushin problem,
given by (

Q̃− hz
)
u+R−,hu− = v, R+,hv = v+. (3.8)

Here z varies in a sufficiently small but fixed neighborhood of the eigenvalue λ0.
At this point, we are exactly in the same situation as described in Section 11
of [8] (Proposition 11.5), and arguing exactly as in that paper, we see that for
each (v, v+) ∈ HΦδ,h(C

n) ×CN0 , the problem (3.8) has a unique solution (u, u−) ∈
HΦδ,h(C

n)×CN0 such that (1 + |x|2)u ∈ L2
Φδ,h

(Cn). Furthermore, for every k ∈ R
fixed, the following a priori estimate holds,

|| (h+ |x|2)1−ku ||+ h−k |u−| ≤ O(1)
(
|| (h+ |x|2)−kv ||+ h1−k |v+|

)
. (3.9)

Here the norms are taken in the space L2
Φδ,h

(Cn).

The estimate (3.9) can subsequently be localized, and we see that the result of
Proposition 11.6 of [8] can be applied to our situation as it stands, since the proof

of Proposition 11.6 in [8] only relies on the ellipticity of the quadratic operator Q̃
acting on HΦδ,h(C

n), for δ > 0 small enough but fixed, together with the decay
estimates given in Proposition 2.2 and in (3.3). We therefore obtain the following
result, which summarizes the discussion in this section.

Proposition 3.1 Let χ0 ∈ C∞0 (Cn) be fixed, such that χ0 = 1 near x = 0, and let
k ∈ R be fixed. Then for z ∈ neigh(λ0,C), we have the following estimate for the
problem (3.8), valid for all h > 0 sufficiently small,

|| (h+ |x|2)1−kχ0u ||+ h−k |u−|
≤ O(1)

(
|| (h+ |x|2)−kχ0v ||+ h1−k |v+|+ h1/2|| 1Ku ||

)
. (3.10)

Here K is a fixed neighborhood of supp(∇χ0) and 1K stands for the characteris-
tic function of this set. The norms in the estimate (3.10) are taken in the space
L2

Φδ,h
(Cn).

Remark. When deriving the estimate (3.10), following [8], we replace the functions
fj,h in the definition of R+,h by χ(x/R

√
h)fj,h(x), where χ ∈ C∞0 (Cn), and R > 0 is

sufficiently large fixed.
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3.2 Localization and exterior estimates

The purpose of this subsection is to study a globally well-posed Grushin problem for
the operator P introduced in (1.13). When doing so, we shall be concerned with the
action of P , after an FBI-Bargmann transformation, on a suitable weighted space of
holomorphic functions on Cn. We shall therefore first proceed to recall the definition
and properties of this space, constructed and introduced in [11].

In Proposition 2 of [11], it was shown that for all 0 < ε ≤ ε0, 0 < δ ≤ δ0, with
ε0 > 0, δ0 > 0 sufficiently small, there exists a function Gε ∈ C∞0 (R2n,R), supported
in a sufficiently small but fixed neighborhood of the origin, such that Gε = O(ε),

∇2Gε = O(1), and such that for some C > 1, C̃ > 1, we have

|p0 (X + iδHGε(X))| ≥ δ

C̃
min

(
|X|2 , ε

)
,

in the region where |X| ≤ 1/C. Furthermore, in the region where |X| ≥ ε1/2, we
have

Re

((
1− icδε

|X|2
)
p0 (X + iδHGε(X))

)
≥ δε

C̃
, c > 0. (3.11)

Here we have also written p0 for an almost analytic extension of the leading symbol p0

of P to a tubular neighborhood of R2n, bounded together with all of its derivatives.

Remark. For future reference, we may remark that it follows from the construction
of the weight function Gε in [11], that in the region where |X|2 ≤ ε/2, we have

Gε(X) = G0(X ′) +O(X3), (3.12)

where the quadratic form G0 is defined in (2.6), see remark p.1002 in [11].

Associated with the weight function Gε there is an IR-manifold

Λδ,ε =
{
X + iδHGε(X);X ∈ R2n

}
, (3.13)

and arguing as in [11] (Section 3), we obtain that

κT (Λδ,ε) = ΛΦδ,ε :=

{
(x, ξ) ∈ C2n; ξ =

2

i

∂Φδ,ε

∂x
(x)

}
. (3.14)

Here Φδ,ε ∈ C∞(Cn) is a strictly plurisubharmonic function given by

Φδ,ε(x) = v.c.(y,η)∈Cn×Rn (−Imϕ(x, y)− (Im y) · η + δGε(Re y, η)) . (3.15)
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Uniformly on Cn, we have

Φδ,ε(x) = Φ0(x) + δGε(Rex,−Imx) +O(δ2ε), (3.16)

and in particular,

Φδ,ε − Φ0 = O(δε). (3.17)

We furthermore know that Φδ,ε agrees with Φ0 outside a bounded set and that

∇ (Φδ,ε − Φ0) = O(δε1/2), (3.18)

with ∇2Φδ,ε ∈ L∞(Cn), uniformly in δ and ε.

In what follows, similarly to [11] (Section 3), we shall be concerned with the case
when

ε = Ah, (3.19)

when A ≥ 1 is sufficiently large but fixed, to be chosen in what follows. As explained
in [11] (Section 3), following [8], the h–pseudodifferential operator on the FBI–

Bargmann transform side, P̃ := TPT−1, can therefore be defined as a uniformly
bounded operator

P̃ = O(1) : HΦδ,ε,h(C
n)→ HΦδ,ε,h(C

n),

given, when u ∈ HΦδ,ε,h(C
n), by

P̃ u(x) =
1

(2πh)n

∫∫
Γδ,ε(x)

e
i
h

(x−y)·θψ(x− y)P̃

(
x+ y

2
, θ

)
u(y) dy dθ +Ru. (3.20)

Here ψ ∈ C∞0 (Cn) is such that ψ = 1 near 0 and Γδ,ε(x) is the contour given by

θ =
2

i

∂Φδ,ε

∂x

(
x+ y

2

)
+ it0(x− y), t0 > 0.

The remainder R in (3.20) satisfies

R = OA(h∞) : L2(Cn; e−
2Φδ,ε
h L(dx))→ L2(Cn; e−

2Φδ,ε
h L(dx)).

Also, in (3.20) we continue to write P̃ for an almost holomorphic extension of the

full symbol P̃ ∈ S(ΛΦ0 , 1) of P̃ , P̃ = P ◦ κ−1
T , to a tubular neighborhood of ΛΦ0 ,

bounded together with all of its derivatives.
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We shall be concerned with a global Grushin problem for the operator P̃ in the
weighted space HΦδ,ε,h(C

n). In order to exploit the quadratic Grushin problem for

Q̃, described in subsection 3.1, we shall make use of the observation that there exists
a constant C > 0 such that in the region of Cn, where

|x| ≤
√
ε

C
, (3.21)

the weight function Φδ,ε is independent of ε, and furthermore, in this region, we have

Φδ,ε = Φδ(x) +O(δ |x|3). (3.22)

The equality (3.22) is obtained by a straightforward computation, using (2.15), its
analogue for the weight Φδ,ε, given by (3.15), as well as (3.12).

By making a rescaling in ε, we may and will assume in the following that we have
C = 1 in (3.21). It follows that in the region where |x| ≤ √ε, the L2–norm associated
to the quadratic weight function Φδ can be replaced by the L2–norm associated to
the full weight Φδ,ε, at the expense of a loss which is

exp (O(1)A3/2h1/2) = O(1),

provided that A ≥ 1 is taken large but fixed, and h ∈ (0, h0], with h0 > 0 small
enough depending on A. We shall therefore replace the fixed cut-off function χ0 in
Proposition 3.1 by χ0(x/

√
ε), and following Section 11 of [8], this can be achieved

by a rescaling argument using the change of variables x =
√
εx̃. This argument is

carried out in detail, see (11.33), in Section 11.3 of [8], and for future reference, we
shall record it here.

Lemma 3.2 Let χ0 ∈ C∞0 (Cn) be fixed, such that χ0 = 1 near x = 0, and let k ∈ R
be fixed. Then for z ∈ neigh(λ0,C), we have the following estimate for the Grushin
problem (3.8), valid for h > 0 sufficiently small, with ε = Ah,

|| (h+ |x|2)1−kχ0

(
x√
ε

)
u ||+ h−k |u−| ≤ O(1)|| (h+ |x|2)−kχ0

(
x√
ε

)
v ||

+O(1)

(
h1−k |v+|+

√
h

ε
|| (h+ |x|2)1−k1K

(
x√
ε

)
u ||
)
. (3.23)

Here K is a fixed neighborhood of supp(∇χ0) and 1K stands for the characteris-
tic function of this set. The norms in the estimate (3.23) are taken in the space
L2

Φδ,h
(Cn). According to (3.22), all the norms in the estimate (3.23) can be replaced

by the norms in the space L2
Φδ,ε,h

(Cn), for each fixed A� 1, provided that h ∈ (0, h0],
with h0 > 0 small enough, depending on A.
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We now come to study the global Grushin problem for the operator P̃ − hz, for
z ∈ neigh(λ0 + p1(0),C), in the weighted space HΦδ,ε,h(C

n). Here p1(0) is the value
of the subprincipal symbol p1(x, ξ) of P at the unique doubly characteristic point,
(0, 0) ∈ R2n. With the operators R−,h and R+,h introduced in (3.7), let us consider

(P̃ − hz)u+R−,hu− = v, R+,hu = v+, (3.24)

when (v, v+) ∈ HΦδ,ε,h(C
n)×CN0 . Writing the first equation in (3.24) in the form

(Q̃− h(z − p1(0)))u+R−,hu− = v + (Q̃+ hp1(0)− P̃ )u,

and applying Lemma 3.2 with k = 1/2, we get, with some constant C > 0,

|| (h+ |x|2)1/2χ0

(
x√
ε

)
u ||+ h−1/2 |u−|

≤ C|| (h+ |x|2)−1/2χ0

(
x√
ε

)
v ||+ C|| (h+ |x|2)−1/2χ0

(
x√
ε

)
(P̃ − Q̃− hp1(0))u ||

+O(h1/2) |v+|+ C

√
h

ε
|| (h+ |x|2)1/21K

(
x√
ε

)
u ||. (3.25)

Here the norms are taken in the space L2
Φδ,ε,h

(Cn), as explained in Lemma 3.2. Now,

as was already observed and exploited in [11], see (5.7) in Section 5, we have

|| (h+ |x|2)−1/2χ0

(
x√
ε

)
(P̃ − Q̃− hp1(0))u || = OA(h)||u ||,

and therefore, using also that h+ |x|2 ≤ O(ε) in the support of the function

x 7→ 1K(x/
√
ε),

we get

h1/2||χ0

(
x√
ε

)
u ||+ h−1/2 |u−|

≤ O(h−1/2)|| v ||+OA(h)||u ||+O(h1/2) |v+|+O(h1/2)|| 1K
(
x√
ε

)
u ||. (3.26)

It follows from (3.26) upon squaring that

h||χ0

(
x√
ε

)
u ||2 + h−1 |u−|2

≤ O(1)

h
|| v ||2 +OA(h2)||u ||2 +O(h) |v+|2 +O(h)|| 1K

(
x√
ε

)
u ||2. (3.27)
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The estimate (3.27) will be instrumental in obtaining the global well-posedness of
the Grushin problem (3.24).

When deriving an a priori estimate for the problem (3.24) away from an O(
√
ε)–

neighborhood of the doubly characteristic point x = 0 ∈ Cn, we shall proceed
very much in the spirit of Section 6 in [11]. Let p̃0 be an almost holomorphic

continuation of the leading symbol of P̃ , bounded together with all of its derivatives
in a tubular neighborhood of ΛΦ0 . To simplify the notation, we shall write here
p := p̃0. According to (3.11), we know that

Re

((
1− ic δε

|x|2
)
p

(
x,

2

i

∂Φδ,ε(x)

∂x

))
≥ δε

C̃
, |x| ≥ √ε. (3.28)

Following Section 6 of [11], we shall now switch to rescaled variables. Set

x =
√
εx̃. (3.29)

In the new coordinates, the IR-manifold ΛΦδ,ε in (3.14) becomes replaced by the
manifold

ΛΦ̃δ,ε
=
{(
x̃,

2

i

∂Φ̃δ,ε(x̃)

∂x̃

)
: x̃ ∈ Cn

}
, (3.30)

with

Φ̃δ,ε(x̃) =
1

ε
Φδ,ε(
√
εx̃).

We notice that ∇2Φ̃δ,ε ∈ L∞(Cn) uniformly in ε ∈ (0, ε0], δ ∈ (0, δ0], and that along
ΛΦ̃δ,ε

, we have

ξ̃ = −Im x̃+O(δ).

Let us consider the h̃–pseudodifferential operator,

Pε :=
1

ε
pw(x, hDx) =

1

ε
pw
(√

ε
(
x̃, h̃Dx̃

))
, h̃ =

h

ε
=

1

A
, (3.31)

with the Weyl symbol given by

pε(x̃, ξ̃) =
1

ε
p
(√

ε(x̃, ξ̃)
)
. (3.32)

It follows from (3.28) that along the manifold ΛΦ̃δ,ε
, the symbol (3.32) satisfies the

following estimate,

Re

((
1− ic δ

|x̃2|

)
pε

(
x̃,

2

i

∂Φ̃δ,ε(x̃)

∂x̃

))
≥ δ

C̃
, (3.33)
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in the region where |x̃| ≥ 1.

Associated with the IR-manifold ΛΦ̃δ,ε
is the weighted space HΦ̃δ,ε,h̃

(Cn), where we

notice that
Φ̃δ,ε(x̃)

h̃
=

Φδ,ε(x)

h
.

The map u(x) 7→ ũ(x̃) = εn/2u(
√
εx̃) then takes the space HΦδ,ε,h(C

n) unitarily onto
the space HΦ̃δ,ε,h̃

(Cn).

Let now χ(x̃) ∈ C∞b (Cn; [0, 1]) be such that χ = 1 for large |x̃|, and with suppχ
contained in the set where |x̃| ≥ 1. Let us set

m(x̃) = 1− ic δ

|x̃|2
.

Assume also that the spectral parameter z ∈ C satisfies |z| ≤ C, for some fixed
C > 0. An application of Proposition 3 of [11], as in (6.15) in [11], shows that the
scalar product (

χm(Pε − h̃z)ũ, ũ
)

Φ̃δ,ε,h̃
(3.34)

is equal to∫
χ(x̃)m(x̃)pε

(
x̃,

2

i

∂Φ̃δ,ε(x̃)

∂x̃

)
|ũ(x̃)|2 e−2Φ̃δ,ε(x̃)/h̃ L(dx̃) +O(h̃)|| ũ ||2

Φ̃δ,ε,h̃
.

Thus,

Re
(
χm(Pε − h̃z)ũ, ũ

)
Φ̃δ,ε,h̃

=

∫
χ(x̃)Re

(
m(x̃)pε

(
x̃,

2

i

∂Φ̃δ,ε(x̃)

∂x̃

))
|ũ(x̃)|2 e−2Φ̃δ,ε(x̃)/h̃ L(dx̃)

+O(h̃)|| ũ ||2
Φ̃δ,ε,h̃

,

and using that (3.33) holds near the support of χ, we get, by an application of the
Cauchy-Schwarz inequality,∫

χ(x̃) |ũ(x̃)|2 e−2Φ̃δ,ε(x̃)/h̃ L(dx̃)

≤ O(1)||χ(Pε − h̃z)ũ ||Φ̃δ,ε,h̃ || ũ ||Φ̃δ,ε,h̃ +O(h̃)|| ũ ||2
Φ̃δ,ε,h̃

.
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Coming back to the original variable x =
√
εx̃ and using that

||χ(Pε − h̃z)ũ ||Φ̃δ,ε,h̃ =
1

ε
||χ
( ·√

ε

)
(pw(x, hDx)− hz)u ||Φδ,ε,h,

we obtain that

ε

∫
χ

(
x√
ε

)
|u(x)|2 e−2Φδ,ε(x)/h L(dx)

≤ O(1)||χ
( ·√

ε

)
(pw(x, hDx)− hz)u ||Φδ,ε,h ||u ||Φδ,ε,h +O(h)||u ||2Φδ,ε,h.

An application of (3.24) then gives,

ε

∫
χ

(
x√
ε

)
|u(x)|2 e−2Φδ,ε(x)/h L(dx) ≤ O(1)|| v ||Φδ,ε,h ||u ||Φδ,ε,h

+O(1)||χ
( ·√

ε

)
R−,hu− ||Φδ,ε,h ||u ||Φδ,ε,h +O(h)||u ||2Φδ,ε,h.

Using Proposition 2.2, together with (3.7) and (3.17), we easily see that

||χ
( ·√

ε

)
R−,hu− ||Φδ,ε,h = O

((
h

ε

)∞)
|u−| . (3.35)

Recalling that ε = Ah, we obtain the following exterior estimate,

h

∫
χ

(
x√
Ah

)
|u(x)|2 e−2Φδ,ε(x)/h L(dx) ≤ O(1)|| v ||Φδ,ε,h ||u ||Φδ,ε,h

+O(A−∞) |u−| ||u ||Φδ,ε,h +O
(
h

A

)
||u ||2Φδ,ε,h. (3.36)

The estimates (3.27) and (3.36) are the main results established in this subsection.

3.3 End of the proof of Theorem 1.1

In this subsection, we shall glue together the estimates (3.27) and (3.36), in order to
show the well-posedness of the global Grushin problem (3.24). Applying the exterior
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estimate (3.36) to estimate the last term occurring in the right hand side of (3.27)
and adding the estimates (3.27) and (3.36), we obtain that

h||u ||2 + h−1 |u−|2 ≤
O(1)

h
|| v ||2 +O(1)|| v || ||u ||

+O(h) |v+|2 +O(A−∞) |u−| ||u ||+
(
OA(h2) +O

(
h

A

))
||u ||2. (3.37)

Here we have also used that we arrange, as we may, that χ+ χ2
0 ≥ 1 on Cn. Now

O(1)|| v || ||u ||+O(A−∞) |u−| ||u || ≤
O(1)

h
|| v ||2 +O(A−∞)h−1 |u−|2 +

h

2
||u ||2,

and it follows that

h2

2
||u ||2 + |u−|2 ≤ O(1)|| v ||2 +O(h2) |v+|2

+O(A−∞) |u−|2 +

(
OA(h3) +O

(
h2

A

))
||u ||2.

Taking the parameter A sufficiently large but fixed, and then restricting the attention
to the interval h ∈ (0, h0], for some h0 > 0 small enough depending on A, we obtain
that

h||u ||+ |u−| ≤ O(1)|| v ||+O(h) |v+| . (3.38)

Here the norms throughout are taken in the space HΦδ,ε,h(C
n), and according to

(3.17), the weight function Φδ,ε can be replaced by the standard quadratic weight
Φ0, at the expense of an O(1)–loss. The Grushin operator

P̃(z;h) =

(
P̃ − hz R−,h
R+,h 0

)
: HΦ0,h(C

n)×CN0 → HΦ0,h(C
n)×CN0 (3.39)

is therefore injective. On the other hand, being a finite rank perturbation of the
Fredholm operator(

P̃ − hz 0
0 0

)
: HΦ0,h(C

n)×CN0 → HΦ0,h(C
n)×CN0 ,

the operator in (3.39) is also Fredholm, and furthermore, as observed in the intro-
duction, the index is zero. It follows that the Grushin operator in (3.39) is invertible,
so that the problem (3.24) is well-posed, for z ∈ neigh(λ0 + p1(0),C).
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The inverse of the operator in (3.39) is of the form

Ẽ(z;h) =

(
E(z;h) E+(z;h)
E−(z;h) E−+(z;h)

)
: HΦ0,h(C

n)×CN0 → HΦ0,h(C
n)×CN0 , (3.40)

and it follows from (3.38) that

E(z;h) = O
(

1

h

)
: HΦ0,h(C

n)→ HΦ0,h(C
n),

with

E+(z;h) = O(1) : CN0 → HΦ0,h(C
n), E−(z;h) = O(1) : HΦ0,h(C

n)→ CN0 ,

and
E−+(z;h) = O(h) : CN0 → CN0 .

Furthermore, let us recall from [25] that hz, with z ∈ neigh(λ0 + p1(0),C), is an
eigenvalue of P precisely when the determinant of E−+(z;h) vanishes.

In Section 11.5 of [8], the action of the Grushin operator in (3.39), after applying the
inverse FBI–Bargmann transformation, was studied in detail, on spaces of functions
of the form (

a(x;h)eiΦ(x)/h, u−
)
,

where a(x;h) is a symbol and the quadratic form Φ has been introduced in (2.32).
It was deduced there that E−+(z;h) has an asymptotic expansion in half–integer
powers of h, with a certain additional structure. A complete asymptotic expansion
for the determinant of E−+(z;h) was subsequently obtained and it was shown that
it is a classical symbol of order 0, and complete asymptotic expansions for the
zeros of the determinant were obtained using Puiseux series. That discussion goes
through without any changes in the present situation, and therefore, repeating the
arguments of Section 11.5 of [8] as they stand, we obtain that the eigenvalues of
h−1P in a sufficiently small but fixed neighborhood of λ0 + p1(0) have complete
asymptotic expansions in powers of h1/N0 , of the form

λ(h) = λ0 + p1(0) + c1h
1/N0 + c2h

2/N0 + . . . .

On the other hand, from the main result of [11] and the discussion in the intro-
duction, we know that for all h > 0 small enough, the spectrum of P in the disc
D(0, Ch), is contained in the union of the regions

D

(
h(λ0 + p1(0)),

h

C̃

)
,
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where λ0 is an eigenvalue of q(x,Dx) with |λ0 + p1(0)| < C, and C̃ > 0 is a suf-
ficiently large constant. The statement of Theorem 1.1 follows and this completes
the proof.

4 Proof of Theorem 1.2

We shall begin this section by explaining that it is actually sufficient to establish
Theorem 1.2 in the special case when m = 1. Indeed, when assuming that Theo-
rem 1.2 has already been proved when m = 1, we may consider an order function
m ≥ 1 as in (1.10) such that m ∈ S(m); and a symbol P (x, ξ;h) satisfying the
associated assumptions of Theorem 1.2. Then, one can choose a symbol p̃0 ∈ S(1)
with a non-negative real part Re p̃0 ≥ 0 which is elliptic near infinity in the symbol
class S(1); and such that p̃0 = p0 on a large compact set containing p−1

0 (0) where
p0 stands for the principal symbol of P (x, ξ;h). This is for instance the case when
taking χ0 ∈ C∞0 (R2n; [0, 1]) such that χ0 = 1 near p−1

0 (0) and setting

p̃0 = χ0p0 + (1− χ0).

Defining also the symbols

p̃j = χ0pj + (1− χ0) ∈ S(1),

when j ≥ 1, we may choose χ ∈ C∞0 (R2n, [0, 1]) such that χ = 1 near p−1
0 (0) and

χ0 = 1 near suppχ. By setting P = Pw(x, hDx;h) and P̃ = P̃w(x, hDx;h), where

P̃ (x, ξ;h) ∼
+∞∑
j=0

p̃j(x, ξ)h
j,

in the symbol class S(1); and using L2–norms throughout, we deduce from the
semiclassical elliptic regularity that

h
2k0

2k0+1 |z|
1

2k0+1‖u‖
≤ h

2k0
2k0+1 |z|

1
2k0+1‖χw(x, hDx)u‖+ h

2k0
2k0+1 |z|

1
2k0+1‖(1− χ)w(x, hDx)u‖

≤ h
2k0

2k0+1 |z|
1

2k0+1‖χw(x, hDx)u‖+O(h
2k0

2k0+1 |z|
1

2k0+1 )‖(P − z)u‖+O(h∞)‖u‖,

when |z| ≤ C0, for 0 < C0 � 1, since the principal symbol p0 of the operator P is
elliptic near the support of the function 1− χ. By using that Theorem 1.2 is valid
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when m = 1, we may apply it to the operator P̃ to get that if z is as in Theorem 1.2,

h
2k0

2k0+1 |z|
1

2k0+1‖χw(x, hDx)u‖ ≤ O(1)‖(P̃ − z)χw(x, hDx)u‖ (4.1)

≤ O(1)‖(P − z)χw(x, hDx)u‖+O(h∞)‖u‖,

since (P̃ − P )χw(x, hDx) = O(h∞) in L(L2) when h→ 0+. We get that

h
2k0

2k0+1 |z|
1

2k0+1‖χw(x, hDx)u‖ ≤ O(1)‖(P − z)u‖+O(1)‖[P, χw(x, hDx)]u‖
+O(h∞)‖u‖. (4.2)

When estimating the commutator term in the right hand side of (4.2), we take
χ̃ ∈ C∞0 (R2n, [0, 1]) such that χ̃ = 1 near p−1

0 (0) and χ = 1 near supp χ̃. Then, by
using that

[P, χw(x, hDx)]χ̃
w(x, hDx) = O(h∞),

in L(L2), together with the fact that p0 is elliptic near the support of 1− χ̃, we get
that

h
2k0

2k0+1 |z|
1

2k0+1‖χw(x, hDx)u‖ ≤ O(1)‖(P − z)u‖+O(h∞)‖u‖, (4.3)

which in view of previous estimates completes the proof of the reduction to the case
when m = 1. In what follows, we shall therefore be concerned exclusively with the
case when m = 1.

Consider p0 a symbol in the class S(1) independent of the semiclassical parameter
with a non-negative real part

Re p0 ≥ 0.

We assume that all the hypothesis (1.15), (1.16), (1.17), (1.24) and (1.25) are ful-
filled; and study the operator pw0 (x, hDx) defined by the h-Weyl quantization of the
symbol p0(x, ξ) with the following choice for the normalization of the Weyl quanti-
zation

pw0 (x, hDx)u(x) =

∫
R2n

e2πi(x−y).ξp0

(x+ y

2
, hξ
)
u(y)dydξ. (4.4)

This normalization differs from the one considered in (1.14); but, of course, it is
completely equivalent, after a rescaling of the semiclassical parameter, to prove
Theorem 1.2 with the normalizations (1.14) or (4.4). This choice is for convenience
only. Writing

p0(Xj + Y ) = qj(Y ) +O(Y 3),

when Y → 0; where qj denotes the quadratic approximation which begins the Taylor
expansion of the symbol p0 at the doubly characteristic point Xj and recalling (1.26)
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and (1.27); we notice that the following intersections of kernels are zero

( k0⋂
l=0

Ker
[
Re Fj(Im Fj)

l
])
∩R2n = {0}, (4.5)

for any 1 ≤ j ≤ N . One can deduce, as in [20], that these properties imply that the
following sums of k0 + 1 non-negative quadratic forms

k0∑
l=0

Re qj
(
(Im Fj)

lX
)
, (4.6)

when 1 ≤ j ≤ N , are all positive definite. Indeed, let X0 ∈ R2n be such that

k0∑
l=0

Re qj
(
(Im Fj)

lX0

)
= 0.

The non-negativity of the quadratic form Re qj implies that for all l = 0, ..., k0,

Re qj
(
(Im Fj)

lX0

)
= 0. (4.7)

By denoting Re qj(X;Y ) the polar form associated to Re qj, we deduce from the
Cauchy-Schwarz inequality, (1.3) and (4.7) that for all l = 0, ..., k0 and Y ∈ R2n,∣∣Re qj

(
Y ; (Im Fj)

lX0

)∣∣2 =
∣∣σ(Y,Re Fj(Im Fj)

lX0

)∣∣2
≤ Re qj(Y )Re qj

(
(Im Fj)

lX0

)
= 0.

It follows that for all l = 0, ..., k0 and Y ∈ R2n,

σ
(
Y,Re Fj(Im Fj)

lX0

)
= 0,

which implies that for all l = 0, ..., k0,

Re Fj(Im Fj)
lX0 = 0,

since σ is non-degenerate. We finally obtain from (4.5) that X0 = 0, which proves
that the quadratic forms (4.6) are positive definite. We then deduce from Proposi-
tion 2.0.1 in [20] that there exist real-valued weight functions

gj ∈ S
(
1, 〈X〉−

2
2k0+1dX2

)
, (4.8)
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and positive constants c1,j and c2,j such that for all X ∈ R2n,

Re qj(X) + c1,jHImqj gj(X) + 1 ≥ c2,j〈X〉
2

2k0+1 ≥ c2,j|X|
2

2k0+1 , (4.9)

where HImqj denotes the Hamilton vector field of Im qj. We use here the usual

notation S
(
m̃h, M̃

−2
h dX2

)
, where m̃h and M̃h are positive functions depending on

the semiclassical parameter h, to stand for the symbol class

S
(
m̃h, M̃

−2
h dX2

)
=
{
ah ∈ C∞(R2n,C) : ∀α ∈ N2n, ∃Cα > 0,

∀X ∈ R2n,∀ 0 < h ≤ 1, |∂αXah(X)| ≤ Cαm̃h(X)M̃h(X)−|α|
}
.

Setting

gj,h(X) = gj

( X√
h

)
, (4.10)

for 0 < h ≤ 1; it follows from (4.9) and the homogeneity properties of the quadratic
form qj that for all X ∈ R2n and 0 < h ≤ 1,

hRe qj

( X√
h

)
+ c1,jh(HImqj gj)

( X√
h

)
+ h = Re qj(X)

+ c1,jh(HImqj gj,h)(X) + h ≥ c2,jh
2k0

2k0+1 |X|
2

2k0+1 , (4.11)

since

(HImqj gj,h)(X) =
{

Im qj(X), gj

( X√
h

)}
=
{
hIm qj

( X√
h

)
, gj

( X√
h

)}
= h

{
Im qj

( X√
h

)
, gj

( X√
h

)}
= {Im qj, gj}

( X√
h

)
= (HImqj gj)

( X√
h

)
,

where {p, q} stands for the Poisson bracket

{p, q} =
∂p

∂ξ
.
∂q

∂x
− ∂p

∂x
.
∂q

∂ξ
.

Since p0 ∈ S(1), it follows from (1.17) that there exists c3 ≥ 1 such that for all
1 ≤ j ≤ N and X ∈ R2n,

|p0(X)| ≤ c3|X −Xj|2 (4.12)

and

|p0(X)− z| ≥ |z|
2

when |X −Xj|2 ≤
|z|
2c3

. (4.13)
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Recalling the assumption (1.24), one can find a positive constant c4 > 0 such that
for all 1 ≤ j ≤ N and |X| ≤ c4,

rj(X) ∈ Γ, (4.14)

where rj are the symbols defined in (1.23), and Γ is a closed angular sector with
vertex at 0 included in the right open half-plane

Γ \ {0} ⊂
{
z ∈ C : Re z > 0

}
.

One may assume that
0 < c4 < inf

j,k=1,...,N
j 6=k

|Xj −Xk|. (4.15)

One can therefore find a positive constant c5 such that

∀ 1 ≤ j ≤ N, ∀|X| ≤ c4, |Im rj(X)| ≤ c5Re rj(X). (4.16)

Let ψ be a C∞0 (R2n, [0, 1]) function such that

ψ(X) = 1, when |X| ≤ c4

2
; and supp ψ ⊂

{
X ∈ R2n : |X| ≤ c4

}
. (4.17)

Setting
r̃j = ψrj, (4.18)

and recalling the well-known inequality

|f ′(x)|2 ≤ 2f(x)‖f ′′‖L∞(R), (4.19)

fulfilled by any non-negative smooth function f with a bounded second derivative,
we deduce from (4.16) and (4.17) that there exists a positive constant c6 such that
for all 1 ≤ j ≤ N and X ∈ R2n,

|∇Re r̃j(X)| ≤ c6

√
Re r̃j(X) (4.20)

and

|c5∇Re r̃j(X)−∇Im r̃j(X)| ≤ c6

√
c5Re r̃j(X)− Im r̃j(X).

It follows that

|∇Im r̃j(X)| ≤ |c5∇Re r̃j(X)−∇Im r̃j(X)|+ c5|∇Re r̃j(X)|

≤ c6

√
c5Re r̃j(X)− Im r̃j(X) + c5c6

√
Re r̃j(X), (4.21)
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for all X ∈ R2n. We deduce from (1.23), (4.11), (4.17) and (4.18) that for all
|Y | ≤ c4

2
and 0 < h ≤ 1,

Re p0(Xj + Y ) + c1,jh
{

Im p0(Xj + Y ), gj,h(Y )
}
− Re r̃j(Y )

− c1,jh(HImr̃j gj,h)(Y ) + h ≥ c2,jh
2k0

2k0+1 |Y |
2

2k0+1 . (4.22)

Since from (4.8), (4.10) and (4.21),

h|(HImr̃j gj,h)(X)| . h|∇Im r̃j(X)||∇gj,h(X)| .
√
h|∇Im r̃j(X)|

. c6

√
h
√
c5Re r̃j(X)− Im r̃j(X) + c5c6

√
h
√

Re r̃j(X),

it follows from (4.22) that there exists a positive constant c7 such that for all |Y | ≤ c4
2

and 0 < h ≤ 1,

Re p0(Xj + Y ) + c1,jh
{

Im p0(Xj + Y ), gj,h(Y )
}

+ 2h+ c7Re r̃j(Y )

+ c7

(
c5Re r̃j(Y )− Im r̃j(Y )

)
≥ c2,jh

2k0
2k0+1 |Y |

2
2k0+1 . (4.23)

Notice from (1.19), (1.23), (4.16), (4.17) and (4.18), that for all |Y | ≤ c4
2

,

c7Re r̃j(Y ) + c7

(
c5Re r̃j(Y )− Im r̃j(Y )

)
≤ (2c5 + 1)c7Re r̃j(Y )

≤ (2c5 + 1)c7

(
Re qj(Y ) + Re r̃j(Y )

)
= (2c5 + 1)c7Re p0(Xj + Y ).

It follows that for all |Y | ≤ c4
2

and 0 < h ≤ 1,(
1 + (2c5 + 1)c7

)
Re p0(Xj + Y ) + c1,jh

{
Im p0(Xj + Y ), gj,h(Y )

}
+ 2h

≥ c2,jh
2k0

2k0+1 |Y |
2

2k0+1 . (4.24)

Let C0 ≥ 1 be a fixed constant. Then, by introducing the real-valued weight function

gh(X) =
N∑
j=1

c1,jψ
(
2(X −Xj)

)
gj,h(X −Xj), (4.25)

where ψ is the function defined in (4.17); and noticing from (4.8) and (4.10) that

h
( N∑
j=1

c1,jgj,h(X −Xj)
)
HImp0

[
ψ
(
2(X −Xj)

)]
= O(h),
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we deduce from (1.15), (1.16), (4.15) and (4.24) that there exist some positive con-
stant c8, c9 and h0 such that for all X ∈ R2n and 0 < h ≤ h0,

Re p0(X) + h(HImp0 gh)(X) + c8h ≥ c9h
2k0

2k0+1 min
[
C

1
2
0 , (4c3)

1
2 δ(X)

] 2
2k0+1 , (4.26)

where δ stands for the distance to the set (Re p0)−1(0). Since Re p0 ≥ 0, we may
also assume according to (4.8), (4.9), (4.10) and (4.25) that

sup
X∈R2n

|gh(X)| ≤ 3

4π
, (4.27)

for all 0 < h ≤ h0. Let z be in C and 0 < h ≤ h0. We shall use a multiplier method
inspired by the one used by F. Hérau, J. Sjöstrand and C. Stolk in [8]. By using
the Wick quantization whose definition and properties are recalled in Section A, one
can write that

Re
(
[p0(
√
hX)− z]Wicku, [2− gh(

√
hX)]Wicku

)
(4.28)

= Re
(
[2− gh(

√
hX)]Wick[p0(

√
hX)− z]Wicku, u

)
=
(
Re
(
[2− gh(

√
hX)]Wick[p0(

√
hX)− z]Wick

)
u, u
)
.

since real Hamiltonians get quantized in the Wick quantization by formally selfad-
joint operators on L2(Rn). Notice also from (4.8), (4.10) and (4.25) that

gh(
√
hX) ∈ S(1, dX2), (4.29)

uniformly with respect to the parameter 0 < h ≤ h0. We deduce from symbolic
calculus in the Wick quantization (A.10) that

Re
(
[2− gh(

√
hX)]Wick[p0(

√
hX)− z]Wick

)
(4.30)

=
[(

2− gh(
√
hX)

)(
Re p0(

√
hX)− Re z

)
+

√
h

4π
∇
(
gh(
√
hX)

)
.(∇Re p0)(

√
hX)

+
1

4π
h(HImp0 gh)(

√
hX)

]Wick

+ Sh,

with ‖Sh‖L(L2) = O(h). Since from (4.19) and (4.29), we have

∣∣∣√h
4π
∇
(
gh(
√
hX)

)
.(∇Re p0)(

√
hX)

∣∣∣ . √h√Re p0(
√
hX) ≤ Re p0(

√
hX) +O(h),
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it follows from (4.27) that there exists a positive constant c10 such that for all
X ∈ R2n and 0 < h ≤ h0,

(
2− gh(

√
hX)

)(
Re p0(

√
hX)− Re z

)
+

√
h

4π
∇
(
gh(
√
hX)

)
.(∇Re p0)(

√
hX)

+
1

4π
h(HImp0 gh)(

√
hX) ≥

1

4π
Re p0(

√
hX) +

1

4π
h(HImp0 gh)(

√
hX)− c10h−

9

4
max(0,Re z).

It follows from (4.26) that for all X ∈ R2n and 0 < h ≤ h0,

(
2− gh(

√
hX)

)(
Re p0(

√
hX)− Re z

)
+

√
h

4π
∇
(
gh(
√
hX)

)
.(∇Re p0)(

√
hX)

+
1

4π
h(HImp0 gh)(

√
hX) ≥ −

( 1

4π
c8 + c10

)
h− 9

4
max(0,Re z)

+
1

4π
c9h

2k0
2k0+1 min

[
C

1
2
0 , (4c3)

1
2 δ(
√
hX)

] 2
2k0+1 .

We then obtain that for all X ∈ R2n and 0 < h ≤ h0,

(
2− gh(

√
hX)

)(
Re p0(

√
hX)− Re z

)
+

√
h

4π
∇
(
gh(
√
hX)

)
.(∇Re p0)(

√
hX)

+
1

4π
h(HImp0 gh)(

√
hX) ≥ 1

8π
c9h

2k0
2k0+1 |z|

1
2k0+1

+
1

4π
c9h

2k0
2k0+1

(
min

[
C

1
2
0 , (4c3)

1
2 δ(
√
hX)

] 2
2k0+1 − |z|

1
2k0+1

)
+

9

4

( 1

18π
c9h

2k0
2k0+1 |z|

1
2k0+1 −max(0,Re z)

)
−
( 1

4π
c8 + c10

)
h.

Considering the set

ΩC,h =
{
z ∈ C : Re z ≤ 1

18π
c9h

2k0
2k0+1 |z|

1
2k0+1 , Ch ≤ |z| ≤ C0

}
, (4.31)

where C � 1 is a large constant whose value will be chosen later, and ϕ ∈
C∞0 (R, [0, 1]) such that

ϕ(X) = 1 when |X| ≤ 1

4c3

, and supp ϕ ⊂
{
X ∈ R : |X| ≤ 1

3c3

}
, (4.32)
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we notice that for all X ∈ R2n, 0 < h ≤ h0, C ≥ 1 and z ∈ ΩC,h,

1

4π
c9h

2k0
2k0+1

(
min

[
C

1
2
0 , (4c3)

1
2 δ(
√
hX)

] 2
2k0+1 − |z|

1
2k0+1

)
+

9

4

( 1

18π
c9h

2k0
2k0+1 |z|

1
2k0+1 −max(0,Re z)

)
≥ − 1

4π
c9h

2k0
2k0+1 |z|

1
2k0+1ϕ

(δ(√hX)2

|z|
)
.

By noticing now that one can find a C∞0 (R2n, [0, 1]) function Φ such that

Φ(X) = 1 when |X| ≤ 1√
4c3

, and supp Φ ⊂
{
X ∈ R2n : |X| ≤ 1√

3c3

}
; (4.33)

verifying for all X ∈ R2n, 0 < h ≤ h0 and z ∈ ΩC,h,

ϕ
(δ(√hX)2

|z|
)
≤

N∑
j=1

Φ
(√hX −Xj√

|z|
)
,

we get that for all X ∈ R2n, 0 < h ≤ h0, C ≥ 1 and z ∈ ΩC,h,(
2− gh(

√
hX)

)(
Re p0(

√
hX)− Re z

)
+

√
h

4π
∇
(
gh(
√
hX)

)
.(∇Re p0)(

√
hX) +

1

4π
h(HImp0 gh)(

√
hX)

≥ 1

8π
c9h

2k0
2k0+1 |z|

1
2k0+1 −

( 1

4π
c8 + c10

)
h− 1

4π
c9h

2k0
2k0+1 |z|

1
2k0+1

N∑
j=1

Φ
(√hX −Xj√

|z|
)
.

It follows from (4.28), (4.30) and (A.4) that there exist some positive constants c11

and c12 such that for all 0 < h ≤ h0, C ≥ 1, z ∈ ΩC,h and u ∈ S(Rn),

Re
(
[p0(
√
hX)− z]Wicku, [2− gh(

√
hX)]Wicku

)
+ c11h‖u‖2

L2

+ c11h
2k0

2k0+1 |z|
1

2k0+1

N∑
j=1

(
Φ
(√hX −Xj√

|z|
)Wick

u, u
)
≥ c12h

2k0
2k0+1 |z|

1
2k0+1‖u‖2

L2 . (4.34)

Recalling (4.29) and (4.31), we deduce from the Cauchy-Schwarz inequality and
(A.5) that there exist some positive constants c13, c14 and c15 such that for all
0 < h ≤ h0, C ≥ c13, z ∈ ΩC,h and u ∈ S(Rn),

c15h
2k0

2k0+1 |z|
1

2k0+1

N∑
j=1

∥∥∥Φ
(√hX −Xj√

|z|
)Wick

u
∥∥∥
L2

+
∥∥p0(
√
hX)Wicku− zu‖L2 ≥ c14h

2k0
2k0+1 |z|

1
2k0+1‖u‖L2 . (4.35)

43



Since from (4.33), we have

Φ
(√hX −Xj√

|z|
)
∈ S

(
1,
|z|
h
dX2

)
, (4.36)

when 1 ≤ j ≤ N , we notice from (4.31), (A.8) and (A.9) that∥∥∥Φ
(√hX −Xj√

|z|
)Wick

u
∥∥∥
L2

=
∥∥∥Φ
(√hX −Xj√

|z|
)w
u
∥∥∥
L2

+O
( 1

C

)
‖u‖L2

and ∥∥p0(
√
hX)Wicku− zu‖L2 =

∥∥p0(
√
hX)wu− zu‖L2 +O(h)‖u‖L2 .

We deduce from (4.35) that there exist some positive constants c16 and c17 such that
for all 0 < h ≤ h0, C ≥ c17, z ∈ ΩC,h and u ∈ S(Rn),

c15h
2k0

2k0+1 |z|
1

2k0+1

N∑
j=1

∥∥∥Φ
(√hX −Xj√

|z|
)w
u
∥∥∥
L2

+
∥∥p0(
√
hX)wu− zu‖L2

≥ c16h
2k0

2k0+1 |z|
1

2k0+1‖u‖L2 . (4.37)

We shall now study the quantity

N∑
j=1

∥∥∥Φ
(√hX −Xj√

|z|
)w
u
∥∥∥
L2
.

To do so, we shall establish an a priori estimate similar to the one proved in [8]
(Proposition 4.1), namely that for all 0 < h ≤ h0, C ≥ c17, z ∈ ΩC,h and u ∈ S(Rn),

1

|z|‖p0(
√
hX)wu− zu‖L2 +O

(√ h

|z|
)
‖u‖L2 &

N∑
j=1

∥∥∥Φ
(√hX −Xj√

|z|
)w
u
∥∥∥
L2
. (4.38)

In [8], this estimate is proved on the FBI transform side. By using similar arguments,
namely a second microlocalization, we shall prove this estimate directly without any
use of the FBI transform.

Let Ψ be a C∞0 (R2n, [0, 1]) function such that

Ψ = 1 when |Y | ≤ 1√
3c3

; and supp Ψ ⊂
{
Y ∈ R2n : |Y | ≤ 1√

2c3

}
.
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We notice from (4.12) and (4.13) that the symbols

1

|z|p0(
√
|z|Y +Xj)Ψ(Y ),

where 1 ≤ j ≤ N , are uniformly bounded together with all their derivatives with
respect to the parameter z when z belongs to ΩC,h; and that these symbols are
elliptic ∣∣∣ 1

|z|p0(
√
|z|Y +Xj)Ψ(Y )− z

|z|
∣∣∣ ≥ 1

2
,

on the set {
Y ∈ R2n : |Y | ≤ 1√

3c3

}
.

When quantizing these symbols in the h̃-Weyl quantization with the new semiclas-
sical parameter

h̃ =
h

|z| , (4.39)

we deduce from (4.33) and this ellipticity property that for all 0 < h ≤ h0, C ≥ c17,
z ∈ ΩC,h and u ∈ S(Rn),∥∥Φ(

√
h̃Y )wu

∥∥
L2 ≤ O(1)

∥∥∥ 1

|z|p0(
√
|z|
√
h̃Y +Xj)

wu− z

|z|u
∥∥∥
L2

+O(h̃)‖u‖L2 .

We recall from (4.31) that

h̃ =
h

|z| ≤
1

C
� 1,

where the large constant C � 1 appearing in (4.31) remains to be chosen. One
can then deduce from (4.39) and the symplectic invariance property of the Weyl
quantization (Theorem 18.5.9 in [12]) while using the following affine symplectic
transformation

X 7→ X − 1√
h
Xj,

that for all 0 < h ≤ h0, C ≥ c18, z ∈ ΩC,h and u ∈ S(Rn),∥∥∥Φ
(√hX −Xj√

|z|
)w
u
∥∥∥
L2
≤ O(1)

1

|z|‖p0(
√
hX)wu− zu‖L2 +O

( h
|z|
)
‖u‖L2 ,

where c18 is a large positive constant and h0 a new positive constant with 0 < h0 � 1.
This proves the estimate (4.38). We can next conclude as follows. Noticing from
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(4.31) that

O
(√ h

|z|
)

= O
( 1√

C

)
and

h
2k0

2k0+1 |z|
1

2k0+1O
( 1

|z|
)

= O
( 1

C
2k0

2k0+1

)
,

we deduce from (4.37) and (4.38) that there exist some positive constants c0 and c̃0

such that for all 0 < h ≤ h0, C ≥ c0, z ∈ ΩC,h and u ∈ S(Rn),∥∥p0(
√
hX)wu− zu‖L2 ≥ c̃0h

2k0
2k0+1 |z|

1
2k0+1‖u‖L2 . (4.40)

Finally, we deduce from the symplectic invariance property of the Weyl quantization
(Theorem 18.5.9 in [12]) while using the linear symplectic transformation

(x, ξ) 7→ (h−
1
2x, h

1
2 ξ),

that we have for all 0 < h ≤ h0, C ≥ c0, z ∈ ΩC,h and u ∈ S(Rn),∥∥pw0 (x, hDx)u− zu‖L2 ≥ c̃0h
2k0

2k0+1 |z|
1

2k0+1‖u‖L2 . (4.41)

Recalling that m = 1 and noticing from the asymptotic expansion (1.11) and the
Calderón-Vaillancourt Theorem that

‖Pw(x, hDx;h)− pw0 (x, hDx)‖L(L2) = O(h),

when h → 0, we finally obtain by possibly increasing the value of the positive
constant c0 > 0 that for all 0 < h ≤ h0, C ≥ c0, z ∈ ΩC,h and u ∈ S(Rn),

∥∥Pw(x, hDx;h)u− zu‖L2 ≥ c̃0

2
h

2k0
2k0+1 |z|

1
2k0+1‖u‖L2 , (4.42)

where h0 is a new positive constant such that 0 < h0 � 1. This ends the proof of
Theorem 1.2.

A Appendix on Wick calculus

The purpose of this section is to recall the definition and basic properties of the
Wick quantization that we need for the proof of Theorem 1.2. We follow here the
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presentation of the Wick quantization given by N. Lerner in [14, 15, 16] and refer
the reader to his works for the proofs of the results recalled below.

The main property of the Wick quantization is its property of positivity, i.e.,
that non-negative Hamiltonians define non-negative operators

a ≥ 0⇒ aWick ≥ 0.

We recall that this is not the case for the Weyl quantization and refer to [14] for an
example of non-negative Hamiltonian defining an operator which is not non-negative.

Before defining properly the Wick quantization, we first need to recall the defi-
nition of the wave packets transform of a function u ∈ S(Rn),

Wu(y, η) = (u, ϕy,η)L2(Rn) = 2n/4
∫
Rn

u(x)e−π(x−y)2

e−2iπ(x−y).ηdx, (y, η) ∈ R2n.

where
ϕy,η(x) = 2n/4e−π(x−y)2

e2iπ(x−y).η, x ∈ Rn,

and x2 = x2
1 + ...+ x2

n. With this definition, one can check (See Lemma 2.1 in [14])
that the mapping u 7→ Wu is continuous from S(Rn) to S(R2n), isometric from
L2(Rn) to L2(R2n) and that we have the reconstruction formula

∀u ∈ S(Rn),∀x ∈ Rn, u(x) =

∫
R2n

Wu(y, η)ϕy,η(x)dydη. (A.1)

We denote by ΣY the operator defined in the Weyl quantization by the symbol

pY (X) = 2ne−2π|X−Y |2 , Y = (y, η) ∈ R2n,

by using the same normalization

(awu)(x) =

∫
R2n

e2iπ(x−y).ξa
(x+ y

2
, ξ
)
u(y)dydξ, (A.2)

as in [14]. This operator is a rank-one orthogonal projection(
ΣY u

)
(x) = Wu(Y )ϕY (x) = (u, ϕY )L2(Rn)ϕY (x),

and we define the Wick quantization of any L∞(R2n) symbol a as

aWick =

∫
R2n

a(Y )ΣY dY . (A.3)
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More generally, one can extend this definition when the symbol a belongs to S ′(R2n)
by defining the operator aWick for any u and v in S(Rn) by

< aWicku, v >S′(Rn),S(Rn)=< a(Y ), (ΣY u, v)L2(Rn) >S′(R2n),S(R2n),

where < ·, · >S′(Rn),S(Rn) denotes the duality bracket between the spaces S ′(Rn) and
S(Rn). The Wick quantization is a positive quantization

a ≥ 0⇒ aWick ≥ 0. (A.4)

In particular, real Hamiltonians get quantized in this quantization by formally self-
adjoint operators and one has (See Proposition 3.2 in [14]) that L∞(R2n) symbols
define bounded operators on L2(Rn) such that

‖aWick‖L(L2(Rn)) ≤ ‖a‖L∞(R2n). (A.5)

According to Proposition 3.3 in [14], the Wick and Weyl quantizations of a symbol
a are linked by the following identities

aWick = ãw, (A.6)

with

ã(X) =

∫
R2n

a(X + Y )e−2π|Y |22ndY , X ∈ R2n, (A.7)

and
aWick = aw + r(a)w, (A.8)

where r(a) stands for the symbol

r(a)(X) =

∫ 1

0

∫
R2n

(1− θ)a′′(X + θY )Y 2e−2π|Y |22ndY dθ, X ∈ R2n. (A.9)

We also recall the following composition formula obtained in the proof of Proposi-
tion 3.4 in [14],

aWickbWick =
[
ab− 1

4π
a′.b′ +

1

4iπ
{a, b}

]Wick

+ S, (A.10)

with ‖S‖L(L2(Rn)) ≤ dn‖a‖L∞γ2(b), when a ∈ L∞(R2n) and b is a smooth symbol
satisfying

γ2(b) = sup
X∈R2n,

T∈R2n,|T |=1

|b(2)(X)T 2| < +∞.

The term dn appearing in the previous estimate stands for a positive constant de-
pending only on the dimension n; and the notation {a, b} denotes the Poisson bracket

{a, b} =
∂a

∂ξ
.
∂b

∂x
− ∂a

∂x
.
∂b

∂ξ
.
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[23] J. Sjöstrand, Function spaces associated to global I-Lagrangian manifolds, Struc-
ture of solutions of differential equations, Katata/Kyoto, 1995, World Sci. Publ.,
River Edge, NJ (1996).
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