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Abstract. We prove global subelliptic estimates for quadratic differential op-
erators. Quadratic differential operators are operators defined in the Weyl quan-
tization by complex-valued quadratic symbols. In a previous joint work with
M. Hitrik, we pointed out the existence of a particular linear subvector space
in the phase space intrinsically associated to their Weyl symbols, called singular
space, which rules spectral properties of non-elliptic quadratic operators. The
purpose of the present paper is to prove that quadratic operators whose singular
spaces are reduced to zero, are subelliptic with a loss of “derivatives” depending
directly on particular algebraic properties of the Hamilton maps of their Weyl
symbols. More generally, when singular spaces are symplectic spaces, we prove
that quadratic operators are subelliptic in any direction of the symplectic orthog-
onal complements of their singular spaces.

1. Introduction

1.1. Miscellaneous facts about quadratic differential operators. Since the
classical work by J. Sjöstrand [12], the study of spectral properties of quadratic
differential operators has played a basic rôle in the analysis of partial differential
operators with double characteristics. Roughly speaking, if we have, say, a clas-
sical pseudodifferential operator p(x, ξ)w on Rn with the Weyl symbol p(x, ξ) =
pm(x, ξ) + pm−1(x, ξ) + . . . of order m, and if X0 = (x0, ξ0) ∈ R2n is a point where

pm(X0) = dpm(X0) = 0,

then it is natural to consider the quadratic form q which begins the Taylor expansion
of pm at X0 in order to investigate the properties of the pseudodifferential operator
p(x, ξ)w. For example, the study of a priori estimates such as hypoelliptic estimates
of the form

||u ||m−1 ≤ CK (|| p(x, ξ)wu ||0 + ||u ||m−2) , u ∈ C∞0 (K), K ⊂⊂ Rn,

then often depends on the spectral analysis of the quadratic operator q(x, ξ)w. See
also [6], as well as Chapter 22 of [7] together with further references given there.
In [12], the spectrum of a general quadratic differential operator has been determined,
under the basic assumption of global ellipticity for the associated quadratic form.

In a recent joint work with M. Hitrik, we investigated spectral properties of non-
elliptic quadratic operators. Quadratic operators are pseudodifferential operators
defined in the Weyl quantization,

(1.1) q(x, ξ)wu(x) =
1

(2π)n

∫
R2n

ei(x−y).ξq
(x+ y

2
, ξ
)
u(y)dydξ,
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by some symbols q(x, ξ), where (x, ξ) ∈ Rn × Rn and n ∈ N∗, which are complex-
valued quadratic forms. Since these symbols are quadratic forms, the corresponding
operators in (1.1) are in fact differential operators. Indeed, the Weyl quantization
of the quadratic symbol xαξβ , with (α, β) ∈ N2n and |α + β| ≤ 2, is the differential
operator

xαDβ
x +Dβ

xx
α

2
, Dx = i−1∂x.

One can also notice that quadratic differential operators are a priori formally non-
selfadjoint since their Weyl symbols in (1.1) are complex-valued.

Considering quadratic operators whose Weyl symbols have real parts with a sign,
say here, Weyl symbols with non-negative real parts

(1.2) Re q ≥ 0,

we pointed out in [5] the existence of a particular linear subvector space S in the phase
space Rnx × Rnξ intrinsically associated to their Weyl symbols q(x, ξ), called singular
space, which seems to play a basic rôle in the understanding of the properties of these
non-elliptic quadratic operators. We first proved in [5] (Theorem 1.2.1) that when
the singular space S has a symplectic structure then the associated heat equation

(1.3)

{
∂u

∂t
(t, x) + q(x, ξ)wu(t, x) = 0

u(t, ·)|t=0 = u0 ∈ L2(Rn),

is smoothing in every direction of the orthogonal complement Sσ⊥ of S with respect
to the canonical symplectic form σ on R2n,

(1.4) σ
(
(x, ξ), (y, η)

)
= ξ.y − x.η, (x, ξ) ∈ R2n, (y, η) ∈ R2n,

that is, that, if (x′, ξ′) are some linear symplectic coordinates on the symplectic space
Sσ⊥ then we have for all t > 0, N ∈ N and u ∈ L2(Rn),

(1.5)
(
(1 + |x′|2 + |ξ′|2)N

)w
e−tq(x,ξ)

w

u ∈ L2(Rn).

We also proved in [5] (See Section 1.4.1 and Theorem 1.2.2) that when the Weyl
symbol q of a quadratic operator fulfills (1.2) and an assumption of partial ellipticity
on its singular space S in the sense that

(1.6) (x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0,

then this singular space always has a symplectic structure and the spectrum of the
operator q(x, ξ)w is only composed of a countable number of eigenvalues of finite mul-
tiplicity, with a structure similar to the one known in the case of global ellipticity [12].

In the present paper, we are interested in investigating the rôle played by the
singular space when studying subelliptic properties of quadratic operators. We shall
first prove that quadratic operators whose singular spaces are reduced to zero, fulfill
global subelliptic estimates

(1.7)
∥∥(〈(x, ξ)〉2(1−δ))wu∥∥

L2 . ‖q(x, ξ)wu‖L2 + ‖u‖L2 ,

where 〈(x, ξ)〉 = (1 + |x|2 + |ξ|2)1/2, with a loss of “derivatives” δ > 0 which can
be directly characterized by algebraic conditions on the Hamilton maps of their Weyl
symbols. More generally, when singular spaces S have a symplectic structure, we prove
that quadratic operators are subelliptic in any direction of the symplectic orthogonal
complements of their singular spaces Sσ⊥, in sense that, if (x′, ξ′) are some linear
symplectic coordinates on Sσ⊥ then

(1.8)
∥∥(〈(x′, ξ′)〉2(1−δ′))wu∥∥

L2 . ‖q(x, ξ)wu‖L2 + ‖u‖L2 ,
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where again, the loss of “derivatives” δ′ > 0 can be directly characterized by algebraic
conditions on the Hamilton maps of their Weyl symbols.

Before giving the precise statement of our main result, we shall recall miscellaneous
facts and notations about quadratic differential operators. In all the following, we
consider

q : Rnx × Rnξ → C
(x, ξ) 7→ q(x, ξ),

a complex-valued quadratic form with a non-negative real part

(1.9) Re q(x, ξ) ≥ 0, (x, ξ) ∈ R2n, n ∈ N∗.

We know from [8] (p.425) that the maximal closed realization of the operator q(x, ξ)w,
i.e., the operator on L2(Rn) with the domain

D(q) =
{
u ∈ L2(Rn) : q(x, ξ)wu ∈ L2(Rn)

}
,

coincides with the graph closure of its restriction to S(Rn),

q(x, ξ)w : S(Rn)→ S(Rn).

Associated to the quadratic symbol q is the numerical range Σ(q) defined as the
closure in the complex plane of all its values,

(1.10) Σ(q) = q(Rnx × Rnξ ).

We also recall from [7] that the Hamilton map F ∈M2n(C) associated to the quadratic
form q is the map uniquely defined by the identity

(1.11) q
(
(x, ξ); (y, η)

)
= σ

(
(x, ξ), F (y, η)

)
, (x, ξ) ∈ R2n, (y, η) ∈ R2n,

where q
(
·; ·
)
stands for the polarized form associated to the quadratic form q. It

directly follows from the definition of the Hamilton map F that its real part and its
imaginary part

Re F =
1
2

(F + F ) and Im F =
1
2i

(F − F ),

are the Hamilton maps associated to the quadratic forms Re q and Im q, respectively.
One can notice from (1.11) that a Hamilton map is always skew-symmetric with
respect to σ. This is just a consequence of the properties of skew-symmetry of the
symplectic form and symmetry of the polarized form,

(1.12) ∀X,Y ∈ R2n, σ(X,FY ) = q(X;Y ) = q(Y ;X) = σ(Y, FX) = −σ(FX, Y ).

Associated to the symbol q, we defined in [5] its singular space S as the following
intersection of kernels,

(1.13) S =
(+∞⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n,

where the notations Re F and Im F stand respectively for the real part and the
imaginary part of the Hamilton map associated to q. Notice that the Cayley-Hamilton
theorem applied to Im F shows that

(Im F )kX ∈ Vect
(
X, ..., (Im F )2n−1X

)
, X ∈ R2n, k ∈ N,

where Vect
(
X, ..., (Im F )2n−1X

)
is the vector space spanned by the vectors X, ...,

(Im F )2n−1X, and therefore the singular space is actually equal to the following finite
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intersection of the kernels,

(1.14) S =
( 2n−1⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n.

1.2. Statement of the main results. In this paper, we shall first study the specific
case where the singular space S is reduced to {0}. By assuming that

(1.15) S = {0},

we can therefore consider the smallest integer 0 ≤ k0 ≤ 2n− 1 such that

(1.16)
( k0⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n = {0},

and state the following result:

Theorem 1.2.1. Consider a quadratic operator q(x, ξ)w whose Weyl symbol

q : Rnx × Rnξ → C
(x, ξ) 7→ q(x, ξ),

is a complex-valued quadratic form fulfilling (1.9) and (1.15) then the operator q(x, ξ)w
fulfills the following global subelliptic estimate

(1.17) ∃C > 0,∀u ∈ D(q),
∥∥(〈(x, ξ)〉2/(2k0+1)

)w
u
∥∥
L2 ≤ C

(
‖q(x, ξ)wu‖L2 + ‖u‖L2

)
,

where k0 stands for the smallest integer 0 ≤ k0 ≤ 2n− 1 such that (1.16) is fulfilled,
and 〈(x, ξ)〉 = (1 + |x|2 + |ξ|2)1/2.

We shall begin our few comments about the result of Theorem 1.2.1 by noticing
that the estimate (1.17) is easy to obtain in the case where k0 = 0. Indeed, we shall
check in the following, that in this case the operator q(x, ξ)w is necessarily elliptic,
and we recall from [12] that, when q(x, ξ)w is an elliptic quadratic operator whose
Weyl symbol fulfill (1.9) (one can actually only assume that Σ(q) 6= C, when n = 1,
See Lemma 3.1 in [12]), that is, an operator whose Weyl symbol q(x, ξ) is globally
elliptic on the phase space R2n,

(1.18) (x, ξ) ∈ R2n, q(x, ξ) = 0⇒ (x, ξ) = 0,

then one can construct a parametrixe inducing that this elliptic quadratic operator
defines a Fredholm operator of index 0 with discrete spectrum (Theorem 3.5 in [12]),

(1.19) q(x, ξ)w : B → L2(Rn),

where B is the Hilbert space

B =
{
u ∈ L2(Rn) : q(x, ξ)wu ∈ L2(Rn)

}
(1.20)

=
{
u ∈ L2(Rn) : xαDβ

xu ∈ L2(Rn) if |α+ β| ≤ 2
}
,

with the norm
‖u‖2B =

∑
|α+β|≤2

‖xαDβ
xu‖2L2(Rn).

We therefore have in this case the natural a priori estimate

(1.21) ∃C > 0,∀u ∈ B,
∥∥(〈(x, ξ)〉2)wu∥∥

L2 ≤ C
(
‖q(x, ξ)wu‖L2 + ‖u‖L2

)
,

which gives the estimate (1.17) of Theorem 1.2.1 when k0 = 0.
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A noticeable example of quadratic operator fulfilling the assumptions of Theo-
rem 1.2.1 is the Fokker-Planck operator

K = −∆v +
v2

4
− 1

2
+ v.∂x −

(
∂xV (x)

)
.∂v, (x, v) ∈ R2,

with a quadratic potential

V (x) =
1
2
ax2, a ∈ R∗.

Here, we consider this non-elliptic operator only in the one-dimensional case, but it is
of course just for convenience reasons. Considering this example, our Theorem 1.2.1
allows to recover the global subelliptic estimate proved by B. Helffer and F. Nier in
[2] (Proposition 5.22),

(1.22) ∃C > 0,∀u ∈ D(K), ‖Λ2/3
x u‖2L2 + ‖Λvu‖2L2 ≤ C

(
‖Ku‖2L2 + ‖u‖2L2

)
,

where
Λx = (−∆x + x2/4)1/2 and Λv = (−∆v + v2/4)1/2.

The Fokker-Planck operator with a quadratic potential can indeed be expressed as

K = q(x, v, ξ, η)w − 1
2
,

with a Weyl symbol

q(x, v, ξ, η) = η2 +
1
4
v2 + i(vξ − axη),

which is a non-elliptic complex-valued quadratic form whose real part is non-negative.
By checking that the associated Hamilton map

q(x, v, ξ, η) = σ
(
(x, v, ξ, η), F (x, v, ξ, η)

)
,

is given by

F =


0 1

2 i 0 0
− 1

2ai 0 0 1
0 0 0 1

2ai
0 − 1

4 − 1
2 i 0

 ,

and that the singular space

S = Ker(Re F ) ∩Ker(Re F Im F ) ∩ R4,

is equal to {0}, we therefore deduce from Theorem 1.2.1 the global subelliptic estimate

(1.23) ∃C > 0,∀u ∈ D(K),
∥∥(〈(x, v, ξ, η)〉2/3

)w
u
∥∥
L2 ≤ C(‖Ku‖L2 + ‖u‖L2).

Notice that the improvement in the variables (v, η) appearing in the estimate (1.22)
is easily obtained by using the Cauchy-Schwarz inequality in the following estimate

2‖Λvu‖2L2 − ‖u‖2L2 = 2Re(Ku, u) ≤ 2‖Ku‖L2‖u‖L2 ≤ ‖Ku‖2L2 + ‖u‖2L2 .

The work of B. Helffer and F. Nier in [2] about this particular example of the
Fokker-Planck operator with a quadratic potential has been the starting point of our
investigation of subelliptic properties for quadratic differential operators. Neverthe-
less, the reader will notice that our proof of Theorem 1.2.1 will not use the same
approach as the one followed by B. Helffer and F. Nier. Indeed, the proof of (1.22) in
[2] really takes advantage of the very specific structure of the Fokker-Planck operator
and seems difficult to adapt in a general setting. For our proof, we shall rather use a
multiplier method inspired from the work of F. Hérau, J. Sjöstrand and C. Stolk in [4],
once we will have achieved the construction of a weight function (Proposition 2.0.1).

One can explain the loss of “derivatives” (See (1.7)), δ = 2k0/(2k0 +1) appearing in
the estimate (1.17) by the following informal discussion. There are two different types
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of points X0 = (x0, ξ0) in the phase space R2n: those for which Re q(X0) > 0 and
those for which Re q(X0) = 0. Difficulties will come from the presence of this second
type of points, and the fact that the set ∂Σ(q) ∩ Σ∞(q), where (See Theorem 1.4
in [1]),

Σ∞(q) =
{
z ∈ C : z = lim

j→+∞
q(xj , ξj), |(xj , ξj)| → +∞ when j → +∞

}
,

may not be empty in general. In order to deal with that kind of points, we shall take
advantage from the noticeable property that the average of the real part of q,

(1.24) 〈Re q〉T (X) =
1

2T

∫ T

−T
Re q(etHImqX)dt� |X|2,

by the flow generated by the Hamilton vector field of its imaginary part

HImq =
∂Im q

∂ξ
.
∂

∂x
− ∂Im q

∂x
.
∂

∂ξ
,

is always a positive definite quadratic form when its singular space S = 0. This
particular property (See Section 1.3 in [5]) ensures that the operator q(x, ξ)w is of
principal-type

dIm q(X0) 6= 0,
in any non-zero point X0 ∈ R2n for which Re q(X0) = 0. We also noticed in [5] (See
Section 2) that the property (1.24) induces that one can find for any non-zero point
X0 ∈ R2n such that Re q(X0) = 0, a positive integer 1 ≤ k ≤ 2n− 1 such that

(1.25) ∀ 0 ≤ j ≤ 2k − 1, Hj
ImqRe q(X0) = 0 and H2k

ImqRe q(X0) 6= 0.

All the points are therefore of finite type. Since moreover the condition (P ) holds
because of the sign property of Re q, one can microlocalize the operator q(x, ξ)w in
a neighborhood of a point X0 ∈ R2n such that (1.25) holds, to the subelliptic model
operator with large parameter Λ ≥ 1,

Dt + iΛ2t2k,

where roughly speaking, Λ ∼ (x2 + ξ2)1/2; for which the classical a priori estimate
(See for example Section 1.4 in [10]),

(1.26) ‖Dtu+ iΛ2t2ku‖L2 & (Λ2)
1

2k+1 ‖u‖L2 ,

is fulfilled. This informal discussion allows to understand from (1.26) from where the
loss of “derivatives” appearing in (1.17) comes. Indeed, the integer k0 in Theorem 1.2.1
that we characterize there by other algebraic properties on the Hamilton map, can
also be characterized as the smallest integer 0 ≤ k0 ≤ 2n − 1 such that for any
X ∈ R2n, X 6= 0,

∃ 0 ≤ k ≤ k0,∀ 0 ≤ j ≤ 2k − 1, Hj
ImqRe q(X) = 0 and H2k

ImqRe q(X) 6= 0.

Let us now consider the more general case where the singular space S defined in
(1.14) has a symplectic structure, that is, that the restriction of the symplectic form
σ to S is non-degenerate. We recall (See Section 1.4.1 in [5]) that this assumption is
always fulfilled when the symbol q fulfills an assumption of partial ellipticity on its
singular space S,

(x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0.
By denoting now k0 the smallest integer 0 ≤ k0 ≤ 2n− 1, such that

(1.27) S =
( k0⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n,
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one can generalize Theorem 1.2.1 as follows:

Theorem 1.2.2. Consider a quadratic operator q(x, ξ)w whose Weyl symbol

q : Rnx × Rnξ → C
(x, ξ) 7→ q(x, ξ),

is a complex-valued quadratic form fulfilling (1.9). When its singular space S has a
symplectic structure then the operator q(x, ξ)w is subelliptic in any direction of Sσ⊥
in the sense that, if (x′, ξ′) are some linear symplectic coordinates on Sσ⊥ then we
have

(1.28) ∃C > 0,∀u ∈ D(q),
∥∥(〈(x′, ξ′)〉2/(2k0+1)

)w
u
∥∥
L2 ≤ C

(
‖q(x, ξ)wu‖L2 + ‖u‖L2

)
,

where k0 stands for the smallest integer 0 ≤ k0 ≤ 2n− 1 such that (1.27) is fulfilled,
and 〈(x′, ξ′)〉 = (1 + |x′|2 + |ξ′|2)1/2.

As we will see in the following, Theorem 1.2.2 will be deduced from a simple
adaptation of the analysis led in the proof of Theorem 1.2.1.

1.3. Examples of subelliptic quadratic differential operators. The following
examples of subelliptic quadratic differential operators show that the integer

0 ≤ k0 ≤ 2n− 1,

which measures the loss of “derivatives”, δ = 2k0/(2k0 + 1), in the global subelliptic
estimate ∥∥(〈(x, ξ)〉2/(2k0+1)

)w
u
∥∥
L2 . ‖q(x, ξ)wu‖L2 + ‖u‖L2 ,

proved in Theorem 1.2.1, can actually take any value in the set {0, ..., 2n− 1}, when
n ≥ 1.

- Case k0 = 0: According to the definition of Hamilton map, this is the case
for example for any quadratic symbol q with a positive definite real part
Re q � 0.

- Case k0 = 1: Consider a Fokker-Plank operator with a non-degenerate qua-
dratic potentiel tensorized with an imaginary harmonic oscillator in other
symplectic variables

ξ2
2 + x2

2 + i(x2ξ1 − x1ξ2) + i

n∑
j=3

(ξ2
j + x2

j ).

- Case k0 = 2p, with 1 ≤ p ≤ n− 1: Consider

ξ2
1 + x2

1 + i(ξ2
1 + 2x2ξ1 + ξ2

2 + 2x3ξ2 + ....+ ξ2
p + 2xp+1ξp + ξ2

p+1) +
n∑

j=p+2

(ξ2
j + x2

j ).

- Case k0 = 2p+ 1, with 1 ≤ p ≤ n− 1: Consider

x2
1 + i(ξ2

1 + 2x2ξ1 + ξ2
2 + 2x3ξ2 + ....+ ξ2

p + 2xp+1ξp + ξ2
p+1) +

n∑
j=p+2

(ξ2
j + x2

j ).

The fact that, in each case, k0 is the smallest integer 0 ≤ k ≤ 2n− 1 such that( k⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n = {0},

can easily be checked from a direct computation on the explicit expressions of the
Hamilton maps of these symbols which are respectively given by
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- Case k0 = 1:

(y1, ..., yn; η1, ..., ηn) = F (x1, ..., xn; ξ1, ..., ξn),

with y1 = ix2/2; y2 = −ix1/2 + ξ2; yj = iξj for 3 ≤ j ≤ n; η1 = iξ2/2;
η2 = −x2 − iξ1/2; ηj = −ixj for 3 ≤ j ≤ n.

- Case k0 = 2p, with 1 ≤ p ≤ n− 1:

(y1, ..., yn; η1, ..., ηn) = F (x1, ..., xn; ξ1, ..., ξn),

with y1 = ξ1 + i(ξ1 + x2); yj = i(ξj + xj+1) for 2 ≤ j ≤ p; yp+1 = iξp+1;
yj = ξj for p+ 2 ≤ j ≤ n; η1 = −x1; ηj = −iξj−1 for 2 ≤ j ≤ p+ 1; ηj = −xj
for p+ 2 ≤ j ≤ n.

- Case k0 = 2p+ 1, with 1 ≤ p ≤ n− 1:

(y1, ..., yn; η1, ..., ηn) = F (x1, ..., xn; ξ1, ..., ξn),

with y1 = i(ξ1 + x2); yj = i(ξj + xj+1) for 2 ≤ j ≤ p; yp+1 = iξp+1; yj = ξj
for p + 2 ≤ j ≤ n; η1 = −x1; ηj = −iξj−1 for 2 ≤ j ≤ p + 1; ηj = −xj for
p+ 2 ≤ j ≤ n.

Let us underline that the global subelliptic estimate∥∥(〈(x, ξ)〉2/(4n−1)
)w
u
∥∥
L2 . ‖q(x, ξ)wu‖L2 + ‖u‖L2 ,

fulfilled for example by the operator q(x, ξ)w whose symbol

q(x, ξ) = x2
1 + i(ξ2

1 + 2x2ξ1 + ξ2
2 + 2x3ξ2 + ....+ ξ2

n−1 + 2xnξn−1 + ξ2
n),

has a very degenerate real part, emphasizes the non-trivial interaction phenomena
between the selfdjoint and skew-selfadjoint parts of the operator q(x, ξ)w highlighted
by Theorem 1.2.1. Indeed, a naive approach based on the non-negativity of the real
part Re q only allows to get a control in the direction of the variable x1,

‖x1u‖2L2 = Re
(
q(x, ξ)wu, u

)
≤ ‖q(x, ξ)wu‖L2‖u‖L2 ≤ ‖q(x, ξ)wu‖2L2 + ‖u‖2L2 .

Starting from any of the previous examples of quadratic forms q(x, ξ) with a non-
negative real part and a zero singular space, we may construct examples of quadratic
forms with non-negative real parts, for which their singular spaces S are non-trivial
symplectic spaces, and therefore fulfill the assumptions of Theorem 1.2.2, by adding
to q a purely imaginary-valued quadratic form iq̃(x̃, ξ̃) in other symplectic variables
(x̃, ξ̃),

q(x, ξ) + iq̃(x̃, ξ̃).
It is then easy to see that the singular space associated to this quadratic form is given
by S = {(x, x̃, ξ, ξ̃) : x = ξ = 0}.

2. Proof of Theorem 1.2.1

In the following, we shall use the notation SΩ

(
m(X)r,m(X)−2sdX2

)
, where Ω is

an open set in R2n, r, s ∈ R and m ∈ C∞(Ω,R∗+), to stand for the class of symbols a
verifying

a ∈ C∞(Ω), ∀α ∈ N2n,∃Cα > 0, |∂αXa(X)| ≤ Cαm(X)r−s|α|, X ∈ Ω.

In the case where Ω = R2n, we shall drop for simplicity the index Ω in the notation.
We shall also use the notations f . g and f ∼ g, on Ω, for respectively the estimates
∃C > 0, f ≤ Cg and, f . g and g . f , on Ω.

The proof of Theorem 1.2.1 will rely on the following key proposition. Considering

q : Rnx × Rnξ → C
(x, ξ) 7→ q(x, ξ),
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a complex-valued quadratic form with a non-negative real part

(2.1) Re q(x, ξ) ≥ 0, (x, ξ) ∈ R2n, n ∈ N∗,

we assume that there exist a positive integer m ∈ N∗ and an open set Ω0 in R2n such
that the following sum of m+ 1 non-negative quadratic forms satisfies

(2.2) ∃c0 > 0,∀X ∈ Ω0,

m∑
j=0

Re q
(
(Im F )jX

)
≥ c0|X|2,

where the notation Im F stands for the imaginary part of the Hamilton map F as-
sociated to the quadratic form q, then one can build a bounded weight function with
the following properties:

Proposition 2.0.1. If q is a complex-valued quadratic form on R2n verifying (2.1)
and (2.2) then there exists a real-valued weight function

g ∈ SΩ0

(
1, 〈X〉−

2
2m+1 dX2

)
,

such that

(2.3) ∃c1, c2 > 0,∀X ∈ Ω0, Re q(X) + c1HImq g(X) + 1 ≥ c2〈X〉
2

2m+1 ,

where the notation HImq stands for the Hamilton vector field of the imaginary part
of q.

The construction of this weight function will really be the core of this paper. Its
proof, which is technical, is given in Section 4. Let us mention that because of
its simple properties, this weight function may also be of further interest for future
studies of doubly characteristic pseudodifferential operators with principal symbols
whose Hessians at critical points fulfill (1.9) and (1.15).

Before proving this proposition, we shall explain how we can deduce Theorem 1.2.1
from it. In doing so, we shall use as previously mentioned a multiplier method in-
spired from the work [4] of F. Hérau, J. Sjöstrand and C. Stolk about Fokker-Planck
operators. In their analysis, they are led to establish a similar estimate as (1.17) in
the case where the non-negative integer k0 in Theorem 1.2.1 is equal to 1. One can
indeed check that their subelliptic assumption for their symbols at critical points, say
here X0 = 0,

∃ε0 > 0, Re p(X) + ε0H
2
ImpRe p(X) ∼ |X|2,

is equivalent to the fact that their Hessians in these points fulfill (2.2) with m = 1 and
Ω0 = R2n. In order to define our multiplier, we shall use the Wick quantization of the
weight function given by Proposition 2.0.1. The definition of the Wick quantization
and some elements of Wick calculus, we need here, are recalled in the appendix
(Section 5.1).

To check that we can actually deduce Theorem 1.2.1 from Proposition 2.0.1, we
begin by considering a complex-valued quadratic form q on R2n, n ≥ 1, with a non-
negative real part and a zero singular space S = {0}. We know from (1.16) that one
can find a smallest integer 0 ≤ k0 ≤ 2n− 1 such that

(2.4)
( k0⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n = {0}.
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We then notice, as in [5] and [11], that (2.4) induces that the following sum of k0 + 1
non-negative quadratic forms

(2.5) ∃c0 > 0,∀X ∈ R2n, r(X) =
k0∑
j=0

Re q
(
(Im F )jX

)
≥ c0|X|2,

is a positive definite quadratic form. Let us indeed consider X0 ∈ R2n such that
r(X0) = 0. Then, the non-negativity of the quadratic form Re q induces that for all
j = 0, ..., k0,

(2.6) Re q
(
(Im F )jX0

)
= 0.

By denoting by Re q(X;Y ) the polar form associated to Re q, we deduce from the
Cauchy-Schwarz inequality, (1.11) and (2.6) that for all j = 0, ..., k0 and Y ∈ R2n,∣∣Re q(Y ; (Im F )jX0

)∣∣2 =
∣∣σ(Y,Re F (Im F )jX0

)∣∣2
≤ Re q(Y ) Re q

(
(Im F )jX0

)
= 0.

It follows that for all j = 0, ..., k0 and Y ∈ R2n,

σ
(
Y,Re F (Im F )jX0

)
= 0,

which implies that for all j = 0, ..., k0,

(2.7) Re F (Im F )jX0 = 0,

since σ is non-degenerate. We finally deduce (2.5) from (2.4).
In the case where k0 = 0, the quadratic form Re q is positive definite. This

implies that the quadratic form q is elliptic. As previously mentioned, the result of
Theorem 1.2.1 is in this case a straightforward consequence of classical results about
elliptic quadratic differential operators recalled in (1.21).

We can therefore assume in the following that k0 ≥ 1 and find from Proposi-
tion 2.0.1 a real-valued weight function

(2.8) g ∈ S
(
1, 〈X〉−

2
2k0+1 dX2

)
,

such that

(2.9) ∃c1, c2 > 0,∀X ∈ R2n, Re q(X) + c1HImq g(X) + 1 ≥ c2〈X〉
2

2k0+1 .

For 0 < ε ≤ 1, we consider the multiplier defined in the Wick quantization by the
symbol 1 − εg. We recall that the definition of the Wick quantization and some
elements of Wick calculus are recalled in Section 5.1. It follows from (2.8), (5.4),
(5.7), (5.8) and the Cauchy-Schwarz inequality that

(2.10) Re
(
qWicku, (1− εg)Wicku

)
=
(
Re
(
(1− εg)WickqWick)u, u)

≤ ‖1− εg‖L∞(R2n)‖qWicku‖L2‖u‖L2 . ‖qWicku‖2L2 + ‖u‖2L2 . ‖q̃wu‖2L2 + ‖u‖2L2 ,

where

(2.11) q̃(x, ξ) = q
(
x,

ξ

2π

)
,

because the operator (1− εg)Wick whose Wick symbol is real-valued, is formally self-
adjoint. Indeed, the symbol r(q) defined in (5.8) is here just constant since q is a
quadratic form. The factor 2π in (2.11) comes from the difference of normalizations
chosen between (1.1) and (5.9) (See remark in Section 5.1). Since from (5.10),

(1− εg)WickqWick =
[
(1− εg)q +

ε

4π
∇g.∇q − ε

4iπ
{g, q}

]Wick
+ S,
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with ‖S‖L(L2(Rn)) . 1, we obtain from the fact real Hamiltonians get quantized in
the Wick quantization by formally selfadjoint operators that

Re
(
(1− εg)WickqWick) =

[
(1− εg)Re q +

ε

4π
∇g.∇Re q +

ε

4π
HImq g

]Wick
+ Re S,

because g is a real-valued symbol. Since Re q ≥ 0 and g ∈ L∞(Rn), we can choose
the positive parameter ε sufficiently small such that

∀X ∈ R2n, 1− εg(X) ≥ 1
2
,

in order to deduce from (2.9), (2.10) and (5.3) that

(2.12)
(
(〈X〉

2
2k0+1 )Wicku, u

)
. ‖q̃wu‖2L2 + ‖u‖2L2 +

∣∣((∇g.∇Re q)Wicku, u
)∣∣,

because from (5.1) and (5.2), 1Wick = Id.
By denoting X̃ =

(
x, ξ/(2π)

)
and Opw

(
S(1, dX2)

)
the operators obtained by the

Weyl quantization of symbols in the class S(1, dX2), it follows from (5.7), (5.8) and
usual results of symbolic calculus that

(2.13)
(
〈X〉

2
2k0+1

)Wick −
(
〈X̃〉

2
2k0+1

)w ∈ Opw
(
S(1, dX2)

)
and

(2.14)
(
〈X̃〉

1
2k0+1

)w(〈X̃〉 1
2k0+1

)w − (〈X̃〉 2
2k0+1

)w ∈ Opw
(
S(1, dX2)

)
,

since k0 ≥ 0. By using that((
〈X̃〉

1
2k0+1

)w(〈X̃〉 1
2k0+1

)w
u, u

)
=
∥∥(〈X̃〉 1

2k0+1
)w
u
∥∥2

L2 ,

we therefore deduce from (2.12) and the Calderón-Vaillancourt theorem that

(2.15)
∥∥(〈X̃〉 1

2k0+1
)w
u
∥∥2

L2 . ‖q̃wu‖2L2 + ‖u‖2L2 +
∣∣((∇g.∇Re q)Wicku, u

)∣∣.
Then, we get from (2.8) and (5.3) that

(2.16)
∣∣((∇g.∇Re q)Wicku, u

)∣∣ . (|∇Re q|Wicku, u
)
.

Recalling now the well-known inequality

(2.17) |f ′(x)|2 ≤ 2f(x)‖f ′′‖L∞(R),

fulfilled by any non-negative smooth function with bounded second derivative, we
deduce from another use of (5.3) that

(2.18)
(
|∇Re q|Wicku, u

)
.
(
((Re q)

1
2 )Wicku, u

)
.
(
(1 + Re q)Wicku, u

)
,

since Re q is a non-negative quadratic form and that

2(Re q)
1
2 ≤ 1 + Re q.

By using the same arguments as in (2.10), we obtain that(
(1 + Re q)Wicku, u

)
=
(
(Re q)Wicku, u

)
+ ‖u‖2L2 = Re(qWicku, u) + ‖u‖2L2

≤ ‖qWicku‖L2‖u‖L2 + ‖u‖2L2 . ‖qWicku‖2L2 + ‖u‖2L2 . ‖q̃wu‖2L2 + ‖u‖2L2 .

It therefore follows from (2.15), (2.16) and (2.18) that

(2.19)
∥∥(〈X̃〉 1

2k0+1
)w
u
∥∥2

L2 . ‖q̃wu‖2L2 + ‖u‖2L2 .



12 KAREL PRAVDA-STAROV

In order to improve the estimate (2.19), we carefully resume our previous analysis
and notice that our previous reasoning has in fact established that∥∥(〈X̃〉 1

2k0+1
)w
u
∥∥2

L2 .
∣∣Re(qWicku, (1− εg)Wicku

)∣∣+
∣∣((∇g.∇Re q)Wicku, u

)∣∣+ ‖u‖2L2

.
∣∣Re(qWicku, (1− εg)Wicku

)∣∣+ |Re(qWicku, u)|+ ‖u‖2L2

.
∣∣Re(q̃wu, (1− εg)Wicku

)∣∣+ |Re(q̃wu, u)|+ ‖u‖2L2 ,

because (1− εg)Wick is a bounded operator on L2(Rn),

(2.20) ‖(1− εg)Wick‖L(L2) ≤ ‖1− εg‖L∞(R2n).

By applying this estimate to
(
〈X̃〉

1
2k0+1

)w
u, we deduce from (2.14) and the Calderón-

Vaillancourt theorem that

(2.21)
∥∥(〈X̃〉 2

2k0+1
)w
u
∥∥2

L2 .
∣∣∣Re(q̃w(〈X̃〉 1

2k0+1
)w
u, (1− εg)Wick(〈X̃〉 1

2k0+1
)w
u
)∣∣∣

+
∣∣∣Re(q̃w(〈X̃〉 1

2k0+1
)w
u,
(
〈X̃〉

1
2k0+1

)w
u
)∣∣∣+

∥∥(〈X̃〉 1
2k0+1

)w
u
∥∥2

L2 + ‖u‖2L2 .

Then, by noticing that the commutator

(2.22)
[
q̃w,
(
〈X̃〉

1
2k0+1

)w] ∈ Opw
(
S
(
〈X〉

1
2k0+1 , 〈X〉−2dX2

))
,

because q̃ is a quadratic form, and that

(2.23)
(
〈X̃〉−

1
2k0+1

)w(〈X̃〉 1
2k0+1

)w − Id ∈ Opw
(
S(〈X〉−2, 〈X〉−2dX2)

)
,

we deduce from standard results of symbolic calculus and the Calderón-Vaillancourt
theorem that∥∥[q̃w, (〈X̃〉 1

2k0+1
)w]

u
∥∥
L2 .

∥∥[q̃w, (〈X̃〉 1
2k0+1

)w](〈X̃〉− 1
2k0+1

)w(〈X̃〉 1
2k0+1

)w
u
∥∥
L2 + ‖u‖L2

.
∥∥(〈X̃〉 1

2k0+1
)w
u
∥∥
L2 + ‖u‖L2 .(2.24)

By introducing this commutator, we get from the Cauchy-Schwarz inequality and
(2.24) that∣∣∣Re(q̃w(〈X̃〉 1

2k0+1
)w
u,
(
〈X̃〉

1
2k0+1

)w
u
)∣∣∣ . ∣∣∣Re(q̃wu, (〈X̃〉 1

2k0+1
)w(〈X̃〉 1

2k0+1
)w
u
)∣∣∣

+
∥∥(〈X̃〉 1

2k0+1
)w
u
∥∥2

L2 + ‖u‖2L2 .

By using that another use of the Cauchy-Schwarz inequality and the Calderón-Vaillancourt
theorem with (2.14) gives that∣∣∣Re(q̃wu, (〈X̃〉 1

2k0+1
)w(〈X̃〉 1

2k0+1
)w
u
)∣∣∣ . ‖q̃wu‖L2

∥∥(〈X̃〉 2
2k0+1

)w
u
∥∥
L2+‖q̃wu‖L2‖u‖L2 ,

we deduce from (2.19) and the previous estimate that∣∣∣Re(q̃w(〈X̃〉 1
2k0+1

)w
u,
(
〈X̃〉

1
2k0+1

)w
u
)∣∣∣

. ‖q̃wu‖L2

∥∥(〈X̃〉 2
2k0+1

)w
u
∥∥
L2 + ‖q̃wu‖2L2 + ‖u‖2L2 .



SUBELLIPTIC ESTIMATES FOR QUADRATIC DIFFERENTIAL OPERATORS 13

By using again the Cauchy-Schwarz inequality, (2.19), (2.20), (2.21) and (2.24), this
estimate implies that∥∥(〈X̃〉 2

2k0+1
)w
u
∥∥2

L2 .
∣∣∣Re([q̃w, (〈X̃〉 1

2k0+1
)w]

u, (1− εg)Wick(〈X̃〉 1
2k0+1

)w
u
)∣∣∣(2.25)

+
∣∣∣Re(q̃wu, (〈X̃〉 1

2k0+1
)w(1− εg)Wick(〈X̃〉 1

2k0+1
)w
u
)∣∣∣+ ‖q̃wu‖2L2 + ‖u‖2L2

.
∣∣∣Re(q̃wu, (〈X̃〉 1

2k0+1
)w(1− εg)Wick(〈X̃〉 1

2k0+1
)w
u
)∣∣∣+ ‖q̃wu‖2L2 + ‖u‖2L2

. ‖q̃wu‖L2

∥∥(〈X̃〉 1
2k0+1

)w(1− εg)Wick(〈X̃〉 1
2k0+1

)w
u
∥∥
L2 + ‖q̃wu‖2L2 + ‖u‖2L2 ,

because we get from (2.20) and (2.24) that∣∣∣Re([q̃w, (〈X̃〉 1
2k0+1

)w]
u, (1− εg)Wick(〈X̃〉 1

2k0+1
)w
u
)∣∣∣ . ∥∥(〈X̃〉 1

2k0+1
)w
u
∥∥2

L2

+
∥∥(〈X̃〉 1

2k0+1
)w
u
∥∥
L2‖u‖L2 .

Notice now that (2.8), (5.5) and (5.6) imply that[(
〈X̃〉

1
2k0+1

)w
, (1− εg)Wick] ∈ Opw

(
S(1, dX2)

)
,

since (1 − εg)Wick = g̃w, with g̃ ∈ S(1, dX2) and k0 ≥ 0. By introducing this new
commutator, we deduce from the Calderón-Vaillancourt theorem, (2.14), (2.19) and
(2.20) that∥∥(〈X̃〉 1

2k0+1
)w(1− εg)Wick(〈X̃〉 1

2k0+1
)w
u
∥∥
L2

.
∥∥(〈X̃〉 1

2k0+1
)w
u
∥∥
L2 +

∥∥(1− εg)Wick(〈X̃〉 1
2k0+1

)w(〈X̃〉 1
2k0+1

)w
u
∥∥
L2

.
∥∥(〈X̃〉 1

2k0+1
)w
u
∥∥
L2 +

∥∥(〈X̃〉 1
2k0+1

)w(〈X̃〉 1
2k0+1

)w
u
∥∥
L2

.
∥∥(〈X̃〉 2

2k0+1
)w
u
∥∥
L2 +

∥∥(〈X̃〉 1
2k0+1

)w
u
∥∥
L2 + ‖u‖L2

.
∥∥(〈X̃〉 2

2k0+1
)w
u
∥∥
L2 + ‖q̃wu‖L2 + ‖u‖L2 .

Recalling (2.25), we can then use this last estimate to obtain that

(2.26)
∥∥(〈X̃〉 2

2k0+1
)w
u
∥∥2

L2 . ‖q̃wu‖2L2 + ‖u‖2L2 .

By finally noticing from the homogeneity of degree 2 of q̃ that we have

(q̃ ◦ T )(x, ξ) =
1

2π
q(x, ξ),

if T stands for the real linear symplectic transformation

T (x, ξ) =
(
(2π)−

1
2x, (2π)

1
2 ξ
)
,

we deduce from the symplectic invariance of the Weyl quantization (Theorem 18.5.9
in [7]) that ∥∥(〈X〉 2

2k0+1
)w
u
∥∥2

L2 . ‖qwu‖2L2 + ‖u‖2L2 ,

which proves Theorem 1.2.1.

3. Proof of Theorem 1.2.2

This section is devoted to the proof of Theorem 1.2.2. We begin by recalling that
the symplectic invariance property of the Weyl quantization (Theorem 18.5.9 in [7])
allows us to freely choose the linear symplectic coordinates (x, ξ) in which we want
to express our symbol q in our proof of Theorem 1.2.2. Considering

q : Rnx × Rnξ → C
(x, ξ) 7→ q(x, ξ),
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a complex-valued quadratic form with a non-negative real part

Re q(x, ξ) ≥ 0, (x, ξ) ∈ R2n, n ∈ N∗,

and assuming that its singular space S has a symplectic structure, we deduce from [5]
(Section 2, See (2.0.1) and Proposition 2.0.1) that one can find some linear symplectic
coordinates in R2n,

(x, ξ) = (x′, x′′; ξ′, ξ′′) ∈ R2n,

with (x′, ξ′) and (x′′, ξ′′) some linear symplectic coordinates respectively in Sσ⊥ and
S; such that we can write the symbol q as the sum of two quadratic forms

(3.1) q(x, ξ) = q1(x′, ξ′) + iq2(x′′, ξ′′),

where q1 is a complex-valued quadratic form on R2n′ with a non-negative real part
and q2 is a real-valued quadratic form on R2n′′ . More precisely, we proved in [5]
(See (2.0.4)) that the spaces S and Sσ⊥ are stable by the real and imaginary parts
of the Hamilton map F of the symbol q; and that the two quadratic forms q1 and q2

are actually equal to

q1(x′, ξ′) = σ
(
(x′, ξ′), F |Sσ⊥(x′, ξ′)

)
and iq2(x′′, ξ′′) = σ

(
(x′′, ξ′′), F |S(x′′, ξ′′)

)
.

By denoting F1 = F |Sσ⊥ the Hamilton map of q1, we first check that (1.27) implies
that the non-negative quadratic form

(3.2) r(X ′) =
k0∑
j=0

Re q1

(
(Im F1)jX ′

)
,

is actually positive definite on Sσ⊥. Indeed, consider X ′0 ∈ Sσ⊥ such that r(X ′0) = 0.
As in (2.7), it follows that Re F1(Im F1)jX ′0 = 0 for all 0 ≤ j ≤ k0, which according
to (1.27), implies that X ′0 ∈ S ∩ Sσ⊥ = {0}.

Let us first consider the case where k0 ≥ 1. As in the proof of Theorem 1.2.1,
one can find from (3.2) and Proposition 2.0.1 a real-valued weight function in the
variables X ′ = (x′, ξ′) ∈ Sσ⊥,

(3.3) g1 ∈ S
(
1, 〈X ′〉−

2
2k0+1 dX ′2

)
,

such that

(3.4) ∃c1, c2 > 0,∀X ′ ∈ Sσ⊥, Re q1(X ′) + c1HImq1 g1(X ′) + 1 ≥ c2〈X ′〉
2

2k0+1 .

When k0 = 0, it is sufficient to just take g1 = 0 to fulfill (3.4). Then, as previously
in (2.10), one can use the multiplier defined in the Wick quantization by the symbol
1− εg1, for 0 < ε ≤ 1; and consider the quantity

Re
(
qWicku, (1− εg1)Wicku

)
.

By noticing from (3.1) that we have this time

Re
(
(1−εg1)WickqWick) =

[
(1−εg1)Re q1+

ε

4π
∇g1.∇Re q1+

ε

4π
HImq1 g1

]Wick
+Re S1,

with ‖Re S1‖L(L2) . 1, since

HImq g1 = HImq1 g1,

because of the variables tensorization. Next, one can exactly resume our analysis led
in the proof of Theorem 1.2.1 from (2.12) in order to finish the proof of Theorem 1.2.2.
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4. Proof of Proposition 2.0.1

We prove the proposition 2.0.1 by induction on the positive integerm ≥ 1 appearing
in (2.2). Let m ≥ 1, we shall assume that the proposition 2.0.1 is fulfilled for any
open set Ω0 of R2n, when the positive integer in (2.2) is strictly smaller than m.

In the following, we denote by ψ, χ and w some C∞(R, [0, 1]) functions respectively
satisfying

(4.1) ψ = 1 on [−1, 1], supp ψ ⊂ [−2, 2],

(4.2) χ = 1 on {x ∈ R : 1 ≤ |x| ≤ 2}, supp χ ⊂ {x ∈ R : 1/2 ≤ |x| ≤ 3},
and

(4.3) w = 1 on {x ∈ R : |x| ≥ 2}, supp w ⊂ {x ∈ R : |x| ≥ 1}.
More generically, we shall denote by ψj , χj and wj , j ∈ N, some other C∞(R, [0, 1])
functions satisfying similar properties as respectively ψ, χ and w with possibly differ-
ent choices for the positive numerical values which define their support localizations.

Let Ω0 be an open set of R2n such that (2.2) is fulfilled. Considering the quadratic
form

(4.4) rk(X) = Re q
(
(Im F )k−1X; (Im F )kX

)
, k ∈ N∗,

and defining

(4.5) gm(X) = ψ
(
Re q

(
(Im F )m−1X

)
〈X〉−

2(2m−1)
2m+1

)
〈X〉−

4m
2m+1 rm(X),

where ψ is the function defined in (4.1), we get from Lemma 5.2.1 that

HImq gm(X) = 2ψ
(
Re q

(
(Im F )m−1X

)
〈X〉−

2(2m−1)
2m+1

)Re q((Im F )mX
)

〈X〉
4m

2m+1
(4.6)

+ 2ψ
(
Re q

(
(Im F )m−1X

)
〈X〉−

2(2m−1)
2m+1

)Re q((Im F )m−1X; (Im F )m+1X
)

〈X〉
4m

2m+1

+ HImq

(
ψ
(
Re q

(
(Im F )m−1X

)
〈X〉−

2(2m−1)
2m+1

)) rm(X)

〈X〉
4m

2m+1

+ ψ
(
Re q

(
(Im F )m−1X

)
〈X〉−

2(2m−1)
2m+1

)
HImq

(
〈X〉−

4m
2m+1

)
rm(X).

We first check that

(4.7) gm ∈ S
(
1, 〈X〉−

2(2m−1)
2m+1 dX2

)
.

In order to verify this, we notice from Lemma 5.2.6 that the two quadratic forms

(4.8) Re q
(
(Im F )m−1X; (Im F )mX

)
and Re q

(
(Im F )m−1X; (Im F )m+1X

)
,

belong to the symbol class

(4.9) SΩ

(
〈X〉

4m
2m+1 , 〈X〉−

2(2m−1)
2m+1 dX2

)
,

for any open set Ω where Re q
(
(Im F )m−1X

)
. 〈X〉

2(2m−1)
2m+1 . To check this, we just

use in addition to Lemma 5.2.6 the obvious estimates

Re q
(
(Im F )mX

) 1
2 . 〈X〉 and Re q

(
(Im F )m+1X

) 1
2 . 〈X〉.

Moreover, since

(4.10) 〈X〉−
4m

2m+1 ∈ S
(
〈X〉−

4m
2m+1 , 〈X〉−2dX2

)
,

we obtain (4.7) from (4.1), (4.4), (4.5), (4.8), (4.9) and Lemma 5.2.2.
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Denoting respectively A1, A2, A3 and A4 the four terms appearing in the right
hand side of (4.6), we first notice from (4.1), (4.8), (4.9), (4.10) and Lemma 5.2.2 that

(4.11) A2 ∈ S
(
1, 〈X〉−

2(2m−1)
2m+1 dX2

)
.

Next, by using that
Im q ∈ S

(
〈X〉2, 〈X〉−2dX2

)
,

since Im q is a quadratic form, we get from (4.1), (4.4), (4.8), (4.9), (4.10) and
Lemma 5.2.2 that

(4.12) A3 ∈ S
(
〈X〉

2
2m+1 , 〈X〉−

2(2m−1)
2m+1 dX2

)
,

since

HImq

(
ψ
(
Re q

(
(Im F )m−1X

)
〈X〉−

2(2m−1)
2m+1

))
∈ S

(
〈X〉

2
2m+1 , 〈X〉−

2(2m−1)
2m+1 dX2

)
.

By using now that

HImq

(
〈X〉−

4m
2m+1

)
∈ S

(
〈X〉−

4m
2m+1 , 〈X〉−2dX2

)
,

we finally obtain from another use of (4.1), (4.4), (4.8), (4.9) and Lemma 5.2.2 that

(4.13) A4 ∈ S
(
1, 〈X〉−

2(2m−1)
2m+1 dX2

)
.

Since the term A3 is supported in

supp ψ′
(
Re q

(
(Im F )m−1X

)
〈X〉−

2(2m−1)
2m+1

)
,

we deduce from (4.6), (4.11), (4.12) and (4.13) that there exists χ0 a C∞(R, [0, 1])
function satisfying similar properties as in (4.2), with possibly different positive nu-
merical values for its support localization, such that, ∃c1, c2 > 0, ∀X ∈ R2n,

HImq gm(X) + c1 + c2χ0

(
Re q

(
(Im F )m−1X

)
〈X〉−

2(2m−1)
2m+1

)
〈X〉

2
2m+1(4.14)

≥ 2ψ
(
Re q

(
(Im F )m−1X

)
〈X〉−

2(2m−1)
2m+1

)Re q((Im F )mX
)

〈X〉
4m

2m+1
.

Recalling (2.2), one can find some positive constants c3, c4 > 0 such that

(4.15)
m−1∑
j=0

Re q
(
(Im F )jX

)
≥ c3|X|2,

on the open set

(4.16) Ω1 =
{
X ∈ R2n : Re q

(
(Im F )mX

)
< c4|X|2

}
∩ Ω0.

Whenm ≥ 2, one can find according to our induction hypothesis a real-valued function

(4.17) g̃m ∈ SΩ1

(
1, 〈X〉−

2
2m−1 dX2

)
,

such that

(4.18) ∃c5 > 0,∀X ∈ Ω1, Re q(X) + c5HImq g̃m(X) + 1 & 〈X〉
2

2m−1 .

For convenience, we set in the following g̃1 = 0 when m = 1. By choosing suitably
ψ0 and w0 some C∞(R, [0, 1]) functions satisfying similar properties as the functions
respectively defined in (4.1) and (4.3), with possibly different positive numerical values
for their support localizations, such that

(4.19) supp ψ0

(
Re q

(
(Im F )mX

)
|X|−2

)
w0(X)

⊂
{
X ∈ R2n : Re q

(
(Im F )mX

)
< c4|X|2

}
,
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and setting

(4.20) Gm(X) = gm(X) + ψ0

(
Re q

(
(Im F )mX

)
|X|−2

)
w0(X)g̃m(X), X ∈ Ω0,

we deduce from a straightforward adaptation of the Lemma 5.2.2 by recalling (4.1)
and (4.3) that

(4.21) ψ0

(
Re q

(
(Im F )mX

)
|X|−2

)
w0(X) ∈ S

(
1, 〈X〉−2dX2

)
.

According to (4.7) and (4.17), this implies that

(4.22) G1 ∈ SΩ0

(
1, 〈X〉− 2

3 dX2
)
and Gm ∈ SΩ0

(
1, 〈X〉−

2
2m−1 dX2

)
,

when m ≥ 2. Since from (4.21),

HImq

(
ψ0

(
Re q

(
(Im F )mX

)
|X|−2

)
w0(X)

)
∈ S

(
1, 〈X〉−2dX2

)
,

because Im q is a quadratic form, we first notice from (4.16), (4.17) and (4.19) that

HImq

(
ψ0

(
Re q

(
(Im F )mX

)
|X|−2

)
w0(X)

)
g̃m(X) ∈ SΩ0

(
1, 〈X〉−

2
2m−1 dX2

)
,

and then deduce from (4.14), (4.16), (4.18), (4.19) and (4.20) that there exist c6, c7 > 0
such that for all X ∈ Ω0,

Re q(X) + c6HImq Gm(X) + 1 + c7χ0

(
Re q

(
(Im F )m−1X

)
〈X〉−

2(2m−1)
2m+1

)
〈X〉

2
2m+1

& ψ
(
Re q

(
(Im F )m−1X

)
〈X〉−

2(2m−1)
2m+1

)Re q((Im F )mX
)

〈X〉
4m

2m+1

+ ψ0

(
Re q

(
(Im F )mX

)
|X|−2

)
w0(X)〈X〉

2
2m−1 ,

when m ≥ 2. Since

〈X〉
2

2m−1 & 〈X〉
2

2m+1 and
Re q

(
(Im F )mX

)
〈X〉

4m
2m+1

& |X|
2

2m+1 ,

when Re q
(
(Im F )mX

)
& |X|2 and |X| ≥ 1, we deduce from the previous estimate

by distinguishing the regions in Ω0 with |X| ≥ 1, where

Re q
(
(Im F )mX

)
. |X|2 and Re q

(
(Im F )mX

)
& |X|2,

according to the support of the function

ψ0

(
Re q

(
(Im F )mX

)
|X|−2

)
,

that one can find a C∞(R, [0, 1]) function w1 with the same kind of support as the
function defined in (4.3) such that

(4.23) ∃c8, c9 > 0,∀X ∈ Ω0, Re q(X) + c8HImq Gm(X)

+ c9w1

(
Re q

(
(Im F )m−1X

)
〈X〉−

2(2m−1)
2m+1

)
〈X〉

2
2m+1 + 1 & 〈X〉

2
2m+1 ,

when m ≥ 2. When m = 1, we notice from (2.2) that

(4.24) Re q
(
Im FX

)
& 〈X〉2,

on any set where

(4.25) |X| ≥ c10 and Re q(X) ≤ 〈X〉 23 ,
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if the positive constant c10 is chosen sufficiently large. Moreover, since in this case
G1 = g1 and that Re q ≥ 0, one can deduce from (4.1), (4.3), (4.14), (4.24) and (4.25),
by distinguishing the regions in Ω0 where

Re q(X) . 〈X〉 23 and Re q(X) & 〈X〉 23 ,

according to the support of the function

ψ
(
Re q(X)〈X〉− 2

3
)
,

that the estimate (4.23) is also fulfilled in the case m = 1. Continuing our study of
the case where m = 1, we notice from (4.3) and Re q ≥ 0, that one can estimate

w1

(
Re q(X)〈X〉− 2

3
)
〈X〉 23 . Re q(X),

for all X ∈ R2n. It therefore follows that one can find c11 > 0 such that for all
X ∈ Ω0,

Re q(X) + c11HImq G1(X) + 1 & 〈X〉 23 ,

which proves Proposition 2.0.1 in the case where m = 1, and our induction hypothesis
in the basis case.

Assuming in the following that m ≥ 2, we shall now work on the term

w1

(
Re q

(
(Im F )m−1X

)
〈X〉−

2(2m−1)
2m+1

)
〈X〉

2
2m+1 ,

appearing in (4.23). By considering some constants Λj ≥ 1, for 0 ≤ j ≤ m− 2, whose
values will be successively chosen in the following, we shall prove that one can write
that for all X ∈ R2n,

(4.26) w1

(
Re q

(
(Im F )m−1X

)
〈X〉

2(2m−1)
2m+1

)
≤ W̃0(X)Ψ0(X)

+
m−2∑
j=1

W̃0(X)
( j∏
l=1

Wl(X)
)

Ψj(X) + W̃0(X)
(m−1∏
l=1

Wl(X)
)
,

with

(4.27) Ψj(X) = ψ

 ΛjRe q
(
(Im F )m−j−2X

)
Re q

(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1

 , 0 ≤ j ≤ m− 2,

(4.28) Wj(X) = w2

Λj−1Re q
(
(Im F )m−j−1X

)
Re q

(
(Im F )m−jX

) 2m−2j−1
2m−2j+1

 , 1 ≤ j ≤ m− 1,

(4.29) W̃0(X) = w1

(
Re q

(
(Im F )m−1X

)
〈X〉

2(2m−1)
2m+1

)
,

where ψ is the C∞(R, [0, 1]) function defined in (4.1), and w2 is a C∞(R, [0, 1]) function
satisfying similar properties as the function defined in (4.3), with possibly different
positive numerical values for its support localization, in order to have that

(4.30) supp ψ′ ⊂
{
w2 = 1

}
and supp w′2 ⊂

{
ψ = 1

}
.
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In order to check (4.26), we begin by noticing from (4.3), (4.28) and (4.29) that for
0 ≤ j ≤ m− 1,

(4.31) Re q
(
(Im F )m−j−1X

) 1
2m−2j−1 & Re q

(
(Im F )m−jX

) 1
2m−2j+1

& ... & Re q
(
(Im F )m−1X

) 1
2m−1 & 〈X〉

2
2m+1 ,

on the support of the function

supp
(
W̃0

j∏
l=1

Wl

)
, if 1 ≤ j ≤ m− 1, or, supp W̃0, if j = 0.

Notice that the constants in the estimates (4.31) only depend on the values of the
parameters Λ0,...,Λj−1 but not on Λl, when l ≥ j. This shows that the functions

Ψ0;
( j∏
l=1

Wl

)
Ψj , for 1 ≤ j ≤ m− 2; and

m−1∏
l=1

Wl,

are well-defined on the support of the function W̃0. Now, by noticing from (4.1),
(4.3), (4.27), (4.28) and (4.30) that

(4.32) 1 ≤ Ψj +Wj+1,

on the support of the function

supp
(
W̃0

j∏
l=1

Wl

)
, if 1 ≤ j ≤ m− 2, or, supp W̃0, if j = 0,

we deduce the estimate (4.26) from a finite iteration by using the following estimates

W̃0 ≤ W̃0Ψ0 + W̃0W1

and

W̃0

( j∏
l=1

Wl

)
≤ W̃0

( j∏
l=1

Wl

)
Ψj + W̃0

( j+1∏
l=1

Wl

)
,

for any 1 ≤ j ≤ m− 2. One can also notice that (4.32) implies that

(4.33) 1 ≤ Ψj +
m−2∑
k=j+1

( k∏
l=j+1

Wl

)
Ψk +

m−1∏
l=j+1

Wl,

on the support of the function

supp
(
W̃0

j∏
l=1

Wl

)
, if 1 ≤ j ≤ m− 2, or, supp W̃0, if j = 0.

Since Re q ≥ 0, we then get from (4.31) that

(4.34) ∀X ∈ R2n, W̃0(X)
(m−1∏
l=1

Wl(X)
)
〈X〉

2
2m+1 ≤ ãΛ0,...,Λm−2Re q(X),

where ãΛ0,...,Λm−2 is a positive constant whose value depends on the parameters

(Λl)0≤l≤m−2.

We define

(4.35) pj(X) = W̃0(X)
( j∏
l=1

Wl(X)
)

Ψj(X)
rm−j−1(X)

Re q
(
(Im F )m−j−1X

) 2m−2j−2
2m−2j−1

,
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for 1 ≤ j ≤ m− 2, and

(4.36) p0(X) = W̃0(X)Ψ0(X)
rm−1(X)

Re q
(
(Im F )m−1X

) 2m−2
2m−1

,

where the quadratic forms rk are defined in (4.4). We get from (4.1), (4.3), (4.27),
(4.28), (4.29), (4.31), Lemma 5.2.2, Lemma 5.2.4, Lemma 5.2.5 and Lemma 5.2.7 that

(4.37) pj ∈ S
(
1, 〈X〉−

2(2m−2j−3)
2m+1 dX2

)
.

for any 0 ≤ j ≤ m− 2.
We shall now study the Poisson brackets HImq pj . In doing so, we begin by writing

that

HImq pj(X) =
(
HImqW̃0

)
(X)

( j∏
l=1

Wl(X)
)

Ψj(X)
rm−j−1(X)

Re q
(
(Im F )m−j−1X

) 2m−2j−2
2m−2j−1

(4.38)

+ W̃0(X)
( j∏
l=1

Wl(X)
)(
HImqΨj

)
(X)

rm−j−1(X)

Re q
(
(Im F )m−j−1X

) 2m−2j−2
2m−2j−1

+ W̃0(X)
( j∏
l=1

Wl(X)
)

Ψj(X)HImq

(
Re q

(
(Im F )m−j−1X

)− 2m−2j−2
2m−2j−1

)
rm−j−1(X)

+ W̃0(X)
( j∏
l=1

Wl(X)
)

Ψj(X)
HImq rm−j−1(X)

Re q
(
(Im F )m−j−1X

) 2m−2j−2
2m−2j−1

+
j∑
l=1

W̃0(X)
(
HImqWl

)
(X)

( j∏
k=1
k 6=l

Wk(X)
)

Ψj(X)
rm−j−1(X)

Re q
(
(Im F )m−j−1X

) 2m−2j−2
2m−2j−1

,

for 1 ≤ j ≤ m − 2. We denote by respectively B1,j , B2,j , B3,j , B4,j and B5,j the
five terms appearing in the right hand side of (4.38). We also write in the case where
j = 0,

HImq p0(X) =
(
HImqW̃0

)
(X)Ψ0(X)

rm−1(X)

Re q
(
(Im F )m−1X

) 2m−2
2m−1

(4.39)

+ W̃0(X)
(
HImqΨ0

)
(X)

rm−1(X)

Re q
(
(Im F )m−1X

) 2m−2
2m−1

+ W̃0(X)Ψ0(X)HImq

(
Re q

(
(Im F )m−1X

)− 2m−2
2m−1

)
rm−1(X)

+ W̃0(X)Ψ0(X)
HImq rm−1(X)

Re q
(
(Im F )m−1X

) 2m−2
2m−1

,

and denote as before by respectively B1,0, B2,0, B3,0 and B4,0 the four terms appearing
in the right hand side of (4.39).

Since the constants in the estimates (4.31) only depend on the values of the param-
eters Λ0,..., Λj−1; but not on Λl, when l ≥ j; we notice from (4.26), (4.31) and (4.34)
that there exist a0 > 0 and some positive constants aj,Λ0,...,Λj−1 , for 1 ≤ j ≤ m − 1,
whose values with respect to the parameters (Λl)0≤l≤m−2 only depend on Λ0,..., Λj−1;
but not on Λl, when l ≥ j; such that for any constants (αj)1≤j≤m−2, with αj ≥ 1;
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and X ∈ R2n,

w1

(
Re q

(
(Im F )m−1X

)
〈X〉

2(2m−1)
2m+1

)
〈X〉

2
2m+1 ≤ a0W̃0(X)Ψ0(X)Re q

(
(Im F )m−1X

) 1
2m−1

(4.40)

+
m−2∑
j=1

αjaj,Λ0,...,Λj−1W̃0(X)
( j∏
l=1

Wl(X)
)

Ψj(X)Re q
(
(Im F )m−j−1X

) 1
2m−2j−1

+ am−1,Λ0,...,Λm−2Re q(X).

The positive constant a0 is independent of any of the parameters (Λl)0≤l≤m−2. Setting

(4.41) p = a0p0 +
m−2∑
j=1

αjaj,Λ0,...,Λj−1pj ,

we know from (4.37) that

(4.42) p ∈ S
(
1, 〈X〉−

2
2m+1 dX2

)
.

For any ε > 0, we shall prove that after a proper choice for the constants (Λj)0≤j≤m−2

and (αj)1≤j≤m−2, with Λj ≥ 1, αj ≥ 1, whose values will depend on ε; one can find
a positive constant c12,ε > 0 such that for all X ∈ R2n,

(4.43) c12,εRe q(X)+HImq p(X)+ε〈X〉
2

2m+1 ≥ w1

(
Re q

(
(Im F )m−1X

)
〈X〉

2(2m−1)
2m+1

)
〈X〉

2
2m+1 .

Once this estimate proved, Proposition 2.0.1 will directly follow from (4.22), (4.23),
(4.42) and (4.43), if we choose the positive parameter ε sufficiently small and consider
the weight function

g = c13,εGm + c14,εp,

after a suitable choice for the positive constants c13,ε and c14,ε.
Let ε > 0, it therefore remains to choose properly these constants (Λj)0≤j≤m−2

and (αj)1≤j≤m−2, with Λj ≥ 1, αj ≥ 1, in order to satisfy (4.43).
Recalling from (5.22) that

(4.44) ∀ 0 ≤ j ≤ m− 2, HImq rm−j−1(X) = 2Re q
(
(Im F )m−j−1X

)
+ 2Re q

(
(Im F )m−jX; (Im F )m−j−2X

)
,

one can notice by expanding the term 2am−1,Λ0,...,Λm−2Re q+HImq p by using (4.38),
(4.39) and (4.41) that the terms in

a0B4,0 +
m−2∑
j=1

αjaj,Λ0,...,Λj−1B4,j ,

produced by the terms associated to 2Re q
(
(Im F )m−j−1X

)
while using (4.44), give

exactly two times the term

a0W̃0(X)Ψ0(X)Re q
(
(Im F )m−1X

) 1
2m−1(4.45)

+
m−2∑
j=1

αjaj,Λ0,...,Λj−1W̃0(X)
( j∏
l=1

Wl(X)
)

Ψj(X)Re q
(
(Im F )m−j−1X

) 1
2m−2j−1

+ am−1,Λ0,...,Λm−2Re q(X),

for which we have the estimate (4.40). To prove the estimate (4.43), it will therefore
be sufficient to check that all the other terms appearing in (4.38) and (4.39) can also
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be all absorbed in the term (4.45) after a proper choice for the constants (Λj)0≤j≤m−2

and (αj)1≤j≤m−2; at the exception of a remainder term in

ε〈X〉
2

2m+1 .

We shall choose these constants in the following order Λ0, α1, Λ1, α2, ...., αm−2 and
Λm−2.

We successively study the remaining terms in (4.38) and (4.39), by increasing value
of the integer 0 ≤ j ≤ m− 2. We first notice from (4.1), (4.3), (4.27), (4.29), (4.39),
Lemma 5.2.8 and Lemma 5.2.12 that one can choose the first constant Λ0 ≥ 1 such
that for all X ∈ R2n,

(4.46) a0|B1,0(X)| . Λ−
1
2

0 〈X〉
2

2m+1 ≤ ε

m− 1
〈X〉

2
2m+1 .

By noticing from (4.31) that the estimates

(4.47) Re q
(
(Im F )mX

)
. 〈X〉2 . Re q

(
(Im F )m−1X

) 2m+1
2m−1 ,

are fulfilled on the support of the function W̃0, we deduce from (4.1), (4.27) and (4.39)
that the modulus of the term B3,0 can be estimated as

a0|B3,0(X)| = a0

∣∣∣Re q((Im F )m−1X
) 2m−2

2m−1HImq

(
Re q

(
(Im F )m−1X

)− 2m−2
2m−1

)∣∣∣
×
∣∣Re q((Im F )m−1X

)− 2m−2
2m−1 rm−1(X)

∣∣W̃0(X)Ψ0(X)

. Λ−
1
2

0 W̃0(X)Ψ0(X)Re q
(
(Im F )m−1X

) 1
2m−1 ,

for all X ∈ R2n; since from Lemma 5.2.8 and Lemma 5.2.10, we have∣∣∣Re q((Im F )m−1X
) 2m−2

2m−1HImq

(
Re q

(
(Im F )m−1X

)− 2m−2
2m−1

)∣∣∣ . Re q
(
(Im F )m−1X

) 1
2m−1

and ∣∣Re q((Im F )m−1X
)− 2m−2

2m−1 rm−1(X)
∣∣ . Λ−

1
2

0 ,

on the support of the function W̃0(X)Ψ0(X). By possibly increasing sufficiently the
value of the constant Λ0 which is of course possible while keeping (4.46), one can
control this term with the “good” term (4.45).

Next, we deduce from (4.1), (4.27), (4.39), (4.47) and Lemma 5.2.9 that the mod-
ulus of the second term in B4,0 associated to

2Re q
(
(Im F )mX; (Im F )m−2X

)
,

while using (4.44), denoted here B̃4,0,

B̃4,0(X) = W̃0(X)Ψ0(X)

 HImq rm−1(X)

Re q
(
(Im F )m−1X

) 2m−2
2m−1

− 2Re q
(
(Im F )m−1X

) 1
2m−1

 ,

can be estimated as

a0|B̃4,0(X)| . Λ−
1
2

0 W̃0(X)Ψ0(X)Re q
(
(Im F )m−1X

) 1
2m−1 ,

for all X ∈ R2n. By possibly increasing sufficiently the value of the constant Λ0

which is of course possible while keeping (4.46), one can also control this term with
the “good” term (4.45). The value of the constant Λ0 is now definitively fixed. In
(4.39), it only remains to study the term B2,0.

About this term, we deduce from (4.1), (4.3), (4.27), (4.29), (4.39), Lemma 5.2.8
and Lemma 5.2.11 that for all X ∈ R2n,

(4.48) a0|B2,0(X)| . W̃0(X)W1(X)Re q
(
(Im F )m−1X

) 1
2m−1 .
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By using now (4.31) and (4.33) with j = 1, we obtain that for all X ∈ R2n,

a0|B2,0(X)| ≤ cm−1,Λ0,...,Λm−2W̃0(X)
(m−1∏
l=1

Wl(X)
)
Re q(X)

+
m−2∑
j=1

cj,Λ0,...,Λj−1W̃0(X)
( j∏
l=1

Wl(X)
)

Ψj(X)Re q
(
(Im F )m−j−1X

) 1
2m−2j−1 ,

which implies that

(4.49) a0|B2,0(X)| ≤ cm−1,Λ0,...,Λm−2Re q(X)

+
m−2∑
j=1

cj,Λ0,...,Λj−1W̃0(X)
( j∏
l=1

Wl(X)
)

Ψj(X)Re q
(
(Im F )m−j−1X

) 1
2m−2j−1 ,

where the quantities cj,Λ0,...,Λj−1 stand for positive constants whose values depend
on Λ0,..., Λj−1, but not on (Λk)j≤k≤m−2 and (αk)1≤k≤m−2, according to the remark
done after (4.31). One can therefore choose the constant α1 ≥ 1 in (4.41) sufficiently
large in order to absorb the term of the index j = 1 in the sum appearing in the right
hand side of the estimate (4.49) by the term of same index in the “good” term (4.45).
This is possible since the constants a1,Λ0 and c1,Λ0 are now fixed after our choice of
the parameter Λ0.

This ends our step index j = 0 in which we have chosen the values for the two
constants Λ0 and α1 ≥ 1. We shall now explain how to choose the remaining constants
(Λj)1≤j≤m−2 and (αj)2≤j≤m−2 in (4.41) in order to satisfy (4.43). This choice will
also determine the values of the constants (aj,Λ0,...,Λj−1)1≤j≤m−2 appearing in (4.41).
After this step index j = 0, we have managed to absorb all the terms appearing in
(4.39) in the “good” term (4.45) at the exception of a remainder coming from (4.46)
and (4.49),

m−2∑
j=2

cj,Λ0,...,Λj−1W̃0(X)
( j∏
l=1

Wl(X)
)

Ψj(X)Re q
(
(Im F )m−j−1X

) 1
2m−2j−1

+
ε

m− 1
〈X〉

2
2m+1 ,

where one recall that the positive constants cj,Λ0,...,Λj−1 only depend on Λ0,...,Λj−1,
but not on (Λk)j≤k≤m−2 and (αk)1≤k≤m−2.

We proceed in the following by finite induction and assume that, at the beginning
of the step index k, with 1 ≤ k ≤ m − 2, we have already chosen the values for the
constants (Λj)0≤j≤k−1 and (αj)1≤j≤k in (4.41); and that these choices have allowed
to absorb all the terms appearing in the right hand side of (4.39) and (4.38), when
1 ≤ j ≤ k − 1, in the “good” term (4.45) at the exception of a remainder term

(4.50)
k

m− 1
ε〈X〉

2
2m+1 +

m−2∑
j=k+1

c̃j,Λ0,...,Λj−1,α1,...,αk−1W̃0(X)
( j∏
l=1

Wl(X)
)

Ψj(X)Re q
(
(Im F )m−j−1X

) 1
2m−2j−1 ,

where the quantities c̃j,Λ0,...,Λj−1,α1,...,αk−1 stand for positive constants whose values
only depend on Λ0,..., Λj−1, α1,..., αk−1; but not on (Λl)j≤l≤m−2 and (αl)k≤l≤m−2.

We shall now explain how to choose the constants Λk and; αk+1, when k ≤ m− 3;
in this step index k in order to absorb the terms appearing in the right hand side of
(4.38), when j = k, at the exception of a remainder term of the type (4.50) where k
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will be replaced by k+ 1; in the “good” term (4.45). Since the constants (Λj)0≤j≤k−1

and (αj)1≤j≤k have already been chosen, we shall only underline in the following the
dependence of our estimates with respect to the other parameters (Λj)k≤j≤m−2 and
(αj)k+1≤j≤m−2, whose values remain to be chosen.

We notice from (4.1), (4.3), (4.27), (4.28), (4.29), (4.31), (4.38), Lemma 5.2.8 and
Lemma 5.2.12 that one can assume by choosing the constant Λk ≥ 1 sufficiently large
that for all X ∈ R2n,

(4.51) αkak,Λ0,...,Λk−1 |B1,k(X)| . Λ−
1
2

k 〈X〉
2

2m+1 ≤ ε

m− 1
〈X〉

2
2m+1 ,

since the constants αk, Λ0,....,Λk−1 have already been fixed.
Next, we deduce from (4.1), (4.27), (4.31) and (4.38) that the modulus of the term

B3,k can be estimated as

αkak,Λ0,...,Λk−1 |B3,k(X)| = αkak,Λ0,...,Λk−1W̃0(X)
( k∏
l=1

Wl(X)
)

Ψk(X)

×
∣∣∣∣Re q((Im F )m−k−1X

) 2m−2k−2
2m−2k−1HImq

(
Re q

(
(Im F )m−k−1X

)− 2m−2k−2
2m−2k−1

)∣∣∣∣
×
∣∣Re q((Im F )m−k−1X

)− 2m−2k−2
2m−2k−1 rm−k−1(X)

∣∣
. Λ−

1
2

k W̃0(X)
( k∏
l=1

Wl(X)
)

Ψk(X)Re q
(
(Im F )m−k−1X

) 1
2m−2k−1 ,

for all X ∈ R2n; since from Lemma 5.2.8 and Lemma 5.2.10, we have∣∣∣∣Re q((Im F )m−k−1X
) 2m−2k−2

2m−2k−1HImq

(
Re q

(
(Im F )m−k−1X

)− 2m−2k−2
2m−2k−1

)∣∣∣∣
. Re q

(
(Im F )m−k−1X

) 1
2m−2k−1

and ∣∣Re q((Im F )m−k−1X
)− 2m−2k−2

2m−2k−1 rm−k−1(X)
∣∣ . Λ−

1
2

k ,

on the support of the function

W̃0(X)
( k∏
l=1

Wl(X)
)

Ψk(X).

By possibly increasing sufficiently the value of the constant Λk which is of course
possible while keeping (4.51), one can control this term with the “good” term (4.45).

Next, we deduce from (4.1), (4.27), (4.31), (4.38) and Lemma 5.2.9 that the mod-
ulus of the second term in B4,k associated to

2Re q
(
(Im F )m−kX; (Im F )m−k−2X

)
,

while using (4.44), denoted here B̃4,k,

B̃4,k(X) = W̃0(X)
( k∏
l=1

Wl(X)
)

Ψk(X)

×

 HImq rm−k−1(X)

Re q
(
(Im F )m−k−1X

) 2m−2k−2
2m−2k−1

− 2Re q
(
(Im F )m−k−1X

) 1
2m−2k−1

 ;
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can be estimated as

αkak,Λ0,...,Λk−1 |B̃4,k(X)|

. Λ−
1
2

k W̃0(X)
( k∏
l=1

Wl(X)
)

Ψk(X)Re q
(
(Im F )m−k−1X

) 1
2m−2k−1 ,

for all X ∈ R2n. By possibly increasing sufficiently the value of the constant Λk which
is of course possible while keeping (4.51), one can control this term with the “good”
term (4.45).

For 1 ≤ l ≤ k, we shall now study the term

B5,k,l(X) = W̃0(X)
(
HImqWl

)
(X)

( k∏
j=1
j 6=l

Wj(X)
)

Ψk(X)
rm−k−1(X)

Re q
(
(Im F )m−k−1X

) 2m−2k−2
2m−2k−1

,

appearing in the term B5,k in (4.38). By noticing that

Re q
(
(Im F )m−l−2X

)
∼ Λ−1

l Re q
(
(Im F )m−l−1X

) 2m−2l−3
2m−2l−1 ,

on the support of the function HImqWl+1, it follows from (4.1), (4.3), (4.27), (4.28),
(4.29), (4.31), (4.47), Lemma 5.2.8 and Lemma 5.2.13 that for all X ∈ R2n,

αkak,Λ0,...,Λk−1 |B5,k,1(X)| . Λ−
1
2

k W̃0(X)Ψ0(X)Re q
(
(Im F )m−1X

) 1
2m−1

and

αkak,Λ0,...,Λk−1 |B5,k,l(X)|

. Λ−
1
2

k W̃0(X)
( l−1∏
j=1

Wj(X)
)

Ψl−1(X)Re q
(
(Im F )m−lX

) 1
2m−2l+1 ,

when l ≥ 2. By possibly increasing again the value of the constant Λk, one can
therefore control the term αkak,Λ0,...,Λk−1B5,k with the “good” term (4.45). The value
of the constant Λk is now definitively fixed.

About the term B2,k, we deduce from (4.1), (4.3), (4.27), (4.28), (4.29), (4.31),
(4.38), Lemma 5.2.8 and Lemma 5.2.11 that for all X ∈ R2n,

(4.52) αkak,Λ0,...,Λk−1 |B2,k(X)|

. W̃0(X)
( k+1∏
l=1

Wl(X)
)
Re q

(
(Im F )m−k−1X

) 1
2m−2k−1 .

By distinguishing two cases, we first assume in the following that k ≤ m− 3. In this
case, by using (4.31) and (4.33) with j = k + 1, we obtain that for all X ∈ R2n,

αkak,Λ0,...,Λk−1 |B2,k(X)| ≤ c′m−1,Λ0,...,Λm−2,α1,...,αk
W̃0(X)

(m−1∏
l=1

Wl(X)
)
Re q(X)

+
m−2∑
j=k+1

c′j,Λ0,...,Λj−1,α1,...,αk
W̃0(X)

( j∏
l=1

Wl(X)
)

Ψj(X)Re q
(
(Im F )m−j−1X

) 1
2m−2j−1 ,
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which implies that

(4.53) αkak,Λ0,...,Λk−1 |B2,k(X)| ≤ c′m−1,Λ0,...,Λm−2,α1,...,αk
Re q(X)

+
m−2∑
j=k+1

c′j,Λ0,...,Λj−1,α1,...,αk
W̃0(X)

( j∏
l=1

Wl(X)
)

Ψj(X)Re q
(
(Im F )m−j−1X

) 1
2m−2j−1 ,

where the quantities c′j,Λ0,...,Λj−1,α1,...,αk
stand for positive constants whose values

only depend on Λ0,..., Λj−1, α1,..., αk, but not on (Λl)j≤l≤m−2 and (αl)k+1≤l≤m−2.
Indeed, we recall that the constants appearing in the estimates (4.31) only depend on
the values of the parameters Λ0,..., Λj−1; but not on (Λl)j≤l≤m−2 and (αl)1≤l≤m−2.
One can therefore choose the constant αk+1 ≥ 1 in (4.41) sufficiently large in order to
absorb the term of index j = k+ 1 in the sum (4.50); and the term of index j = k+ 1
in the sum appearing in the right hand side of the estimate (4.53), by the term of
same index in the “good” term (4.45).

When k = m−2 and taking Λm−2 = 1, it follows from (4.31), used with j = m−1,
and (4.52) that for all X ∈ R2n,

αm−2am−2,Λ0,...,Λm−3 |B2,m−2(X)| . W̃0(X)
(m−1∏
l=1

Wl(X)
)
Re q(Im FX)

1
3(4.54)

. Re q(X).

This process allows us to achieve the construction of the weight function p satisfying
(4.43), which ends the proof of (4.43). This also ends the proof of Proposition 2.0.1. �

5. Appendix

5.1. Wick calculus. The purpose of this section is to recall the definition and basic
properties of the Wick quantization that we need for the proof of Theorem 1.2.1. We
follow here the presentation of the Wick quantization given by N. Lerner in [9] and
refer the reader to his work for the proofs of the results recalled below.

The main property of the Wick quantization is its property of positivity, i.e., that
non-negative Hamiltonians define non-negative operators

a ≥ 0⇒ aWick ≥ 0.

We recall that this is not the case for the Weyl quantization and refer to [9] for an
example of non-negative Hamiltonian defining an operator which is not non-negative.

Before defining properly the Wick quantization, we first need to recall the definition
of the wave packets transform of a function u ∈ S(Rn),

Wu(y, η) = (u, ϕy,η)L2(Rn) = 2n/4
∫

Rn
u(x)e−π(x−y)2e−2iπ(x−y).ηdx, (y, η) ∈ R2n.

where
ϕy,η(x) = 2n/4e−π(x−y)2e2iπ(x−y).η, x ∈ Rn,

and x2 = x2
1 + ...+x2

n. With this definition, one can check (See Lemma 2.1 in [9]) that
the mapping u 7→Wu is continuous from S(Rn) to S(R2n), isometric from L2(Rn) to
L2(R2n) and that we have the reconstruction formula

(5.1) ∀u ∈ S(Rn),∀x ∈ Rn, u(x) =
∫

R2n
Wu(y, η)ϕy,η(x)dydη.

By denoting by ΣY the operator defined in the Weyl quantization by the symbol

pY (X) = 2ne−2π|X−Y |2 , Y = (y, η) ∈ R2n,
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which is a rank-one orthogonal projection,(
ΣY u

)
(x) = Wu(Y )ϕY (x) = (u, ϕY )L2(Rn)ϕY (x),

we define the Wick quantization of any L∞(R2n) symbol a as

(5.2) aWick =
∫

R2n
a(Y )ΣY dY .

More generally, one can extend this definition when the symbol a belongs to S ′(R2n)
by defining the operator aWick for any u and v in S(Rn) by

< aWicku, v >S′(Rn),S(Rn)=< a(Y ), (ΣY u, v)L2(Rn) >S′(R2n),S(R2n),

where < ·, · >S′(Rn),S(Rn) denotes the duality bracket between the spaces S ′(Rn) and
S(Rn). The Wick quantization is a positive quantization

(5.3) a ≥ 0⇒ aWick ≥ 0.

In particular, real Hamiltonians get quantized in this quantization by formally self-
adjoint operators and one has (See Proposition 3.2 in [9]) that L∞(R2n) symbols
define bounded operators on L2(Rn) such that

(5.4) ‖aWick‖L(L2(Rn)) ≤ ‖a‖L∞(R2n).

According to Proposition 3.3 in [9], the Wick and Weyl quantizations of a symbol a
are linked by the following identities

(5.5) aWick = ãw,

with

(5.6) ã(X) =
∫

R2n
a(X + Y )e−2π|Y |22ndY , X ∈ R2n,

and

(5.7) aWick = aw + r(a)w,

where r(a) stands for the symbol

(5.8) r(a)(X) =
∫ 1

0

∫
R2n

(1− θ)a′′(X + θY )Y 2e−2π|Y |22ndY dθ, X ∈ R2n,

if we use here the normalization chosen in [9] for the Weyl quantization

(5.9) (awu)(x) =
∫

R2n
e2iπ(x−y).ξa

(x+ y

2
, ξ
)
u(y)dydξ,

which differs from the one chosen in this paper. Because of this difference in nor-
malizations, certain constant factors will naturally appear in the core of the proof
of Theorem 1.2.1 while using certain formulas of Section 5.1, but these are minor
adaptations. We also recall the following composition formula obtained in the proof
of Proposition 3.4 in [9],

(5.10) aWickbWick =
[
ab− 1

4π
a′.b′ +

1
4iπ
{a, b}

]Wick
+ S,

with ‖S‖L(L2(Rn)) ≤ dn‖a‖L∞γ2(b), when a ∈ L∞(R2n) and b is a smooth symbol
satisfying

γ2(b) = sup
X∈R2n,

T∈R2n,|T |=1

|b(2)(X)T 2| < +∞.
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The term dn appearing in the previous estimate stands for a positive constant de-
pending only on the dimension n, and the notation {a, b} denotes the Poisson bracket

{a, b} =
∂a

∂ξ
.
∂b

∂x
− ∂a

∂x
.
∂b

∂ξ
.

5.2. Some technical lemmas. This second part of the appendix is devoted to the
proofs of several technical lemmas.

Lemma 5.2.1. If l1, l2 ∈ N then

(5.11) HImq Re q
(
(Im F )l1X; (Im F )l2X

)
= 2Re q

(
(Im F )l1+1X; (Im F )l2X

)
+ 2Re q

(
(Im F )l1X; (Im F )l2+1X

)
,

where Re q(X;Y ) stands for the polarized form associated to the quadratic form Re q.

Proof of Lemma 5.2.1. We begin by noticing from (1.11) and the skew-symmetry
property of Hamilton maps (1.12) that the Hamilton map of the quadratic form

r̃(X) = Re q
(
(Im F )l1X; (Im F )l2X

)
,

is given by

(5.12) F̃ =
1
2
(
(−1)l1(Im F )l1Re F (Im F )l2 + (−1)l2(Im F )l2Re F (Im F )l1

)
,

since for any l1, l2 ∈ N,

(−1)l1σ
(
X, (Im F )l1Re F (Im F )l2X

)
= σ

(
(Im F )l1X,Re F (Im F )l2X

)
(5.13)

= Re q
(
(Im F )l1X, (Im F )l2X

)
.

Then, a direct computation (See Lemma 2 in [11]) shows that the Hamiton map of
the quadratic form

HImq r̃ =
{
Im q, r̃

}
=
∂Im q

∂ξ
.
∂r̃

∂x
− ∂Im q

∂x
.
∂r̃

∂ξ
,

is given by the commutator −2[Im F, F̃ ], that is,

HImq r̃(X) = −2σ
(
X, [Im F, F̃ ]X

)
.

A computation using (5.13) then allows to directly get (5.11). �

Lemma 5.2.2. Consider a C∞(R) function f such that

f ∈ L∞(R) and ∃c1, c2 > 0, supp f ′ ⊂
{
x ∈ R : c1 ≤ |x| ≤ c2

}
,

then for all 0 < α ≤ 1 and k ∈ N,

(5.14) f
(
Re q((Im F )kX)〈X〉−2α

)
∈ S(1, 〈X〉−2αdX2).

Proof of Lemma 5.2.2. It is sufficient to check that

(5.15) ∇
(
Re q((Im F )kX)〈X〉−2α

)
∈ SΩ

(
〈X〉−α, 〈X〉−2αdX2

)
,

where Ω is a small open neighborhood of supp f ′
(
Re q((Im F )kX)〈X〉−2α

)
. We de-

duce from (2.1), (2.17) and the fact that Re q((Im F )kX) is a quadratic form that

Re q
(
(Im F )kX

)
∼ 〈X〉2α

and
|∇
(
Re q((Im F )kX)

)
| . Re q((Im F )kX)1/2 . 〈X〉α,
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on Ω. By noticing that 0 < α ≤ 1, 〈X〉r ∈ S(〈X〉r, 〈X〉−2dX2), for any r ∈ R, and
that the function Re q((Im F )kX) is just a quadratic form, we directly deduce (5.15)
from the previous estimates and the Leibniz’s rule, since

Re q((Im F )kX) ∈ SΩ

(
〈X〉2α, 〈X〉−2αdX2

)
. �

Lemma 5.2.3. For all s ∈ R and 0 ≤ j ≤ m− 2, we have

Re q
(
(Im F )m−j−1X

)s ∈ SΩ

(
Re q

(
(Im F )m−j−1X

)s
,Re q

(
(Im F )m−j−1X

)−1
dX2

)
,

if Ω is any open set where

Re q
(
(Im F )m−j−1X

)
& 〈X〉

2(2m−2j−1)
2m+1 .

Proof of Lemma 5.2.3. Recalling that the symbol Re q
(
(Im F )m−j−1X

)
is a non-

negative quadratic form and that we have from (2.17) that

(5.16)
∣∣∇Re q((Im F )m−j−1X

)∣∣ . Re q
(
(Im F )m−j−1X

) 1
2 ,

which implies that for all s ∈ R,∣∣∣∇(Re q((Im F )m−j−1X
)s)∣∣∣

Re q
(
(Im F )m−j−1X

)s .

∣∣∇Re q((Im F )m−j−1X
)∣∣

Re q
(
(Im F )m−j−1X

)(5.17)

. Re q
(
(Im F )m−j−1X

)− 1
2 ,

on Ω, we notice that the result of Lemma 5.2.3 is therefore a straightforward conse-
quence of the Leibniz’s rule. �

Lemma 5.2.4. Consider the function Ψj defined in (4.27) then for any 0 ≤ j ≤ m−2,

Ψj ∈ SΩ

(
1,Re q

(
(Im F )m−j−1X

)− 2m−2j−3
2m−2j−1 dX2

)
,

if Ω is any open set where

Re q
(
(Im F )m−j−1X

)
& 〈X〉

2(2m−2j−1)
2m+1 ,

which implies in particular that

Ψj ∈ SΩ

(
1, 〈X〉−

2(2m−2j−3)
2m+1 dX2

)
.

Proof of Lemma 5.2.4. We first notice from (4.1) and (4.27) that

Re q
(
(Im F )m−j−2X

)
∼ Re q

(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1 ,

on Ω ∩ supp Ψ′j . Since from (2.17),∣∣∇Re q((Im F )m−j−2X
)∣∣ . Re q

(
(Im F )m−j−2X

) 1
2(5.18)

. Re q
(
(Im F )m−j−1X

) 2m−2j−3
2(2m−2j−1) ,

on Ω∩ supp Ψ′j , we deduce that the quadratic symbol Re q
(
(Im F )m−j−2X

)
belongs

to the class

(5.19) SΩ∩suppΨ′j

(
Re q

(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1 ,

dX2

Re q
(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1

)
,
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It follows from Lemma 5.2.3 that

Re q
(
(Im F )m−j−2X

)
Re q

(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1

∈ SΩ∩suppΨ′j

(
1,

dX2

Re q
(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1

)
,

which implies that

Ψj ∈ SΩ

(
1,Re q

(
(Im F )m−j−1X

)− 2m−2j−3
2m−2j−1 dX2

)
.

This ends the proof of Lemma 5.2.4. �

Lemma 5.2.5. Consider the function Wj defined in (4.28) then for any 1 ≤ j ≤
m− 1,

Wj ∈ SΩ

(
1,Re q

(
(Im F )m−j−1X

)−1
dX2

)
,

if Ω is any open set where

Re q
(
(Im F )m−j−1X

)
& 〈X〉

2(2m−2j−1)
2m+1 ,

which implies in particular that

Wj ∈ SΩ

(
1, 〈X〉−

2(2m−2j−1)
2m+1 dX2

)
.

Proof of Lemma 5.2.5. By noticing from (4.3) and (4.28) that

Re q
(
(Im F )m−j−1X

)
∼ Re q

(
(Im F )m−jX

) 2m−2j−1
2m−2j+1

and
Re q

(
(Im F )m−jX

)
& 〈X〉

2(2m−2j+1)
2m+1 ,

on Ω ∩ supp W ′j , and that the two derivatives ψ′ and w′2 of the functions appearing
in (4.27) and (4.28) have similar types of support as the function defined in (4.2), we
notice that we are exactly in the setting studied in Lemma 5.2.4 with j replaced by
j − 1. We therefore deduce the result of Lemma 5.2.5 from our analysis led in the
proof of Lemma 5.2.4. �

Lemma 5.2.6. If l1, l2 ∈ N then∣∣Re q((Im F )l1X; (Im F )l2X
)∣∣ ≤ Re q

(
(Im F )l1X

) 1
2Re q

(
(Im F )l2X

) 1
2 ,∣∣∇Re q((Im F )l1X; (Im F )l2X

)∣∣ . Re q
(
(Im F )l1X

) 1
2 + Re q

(
(Im F )l2X

) 1
2 .

Proof of Lemma 5.2.6. By reason of symmetry, we can assume in the following that
l1 ≤ l2. Recalling that the quadratic form Re q is non-negative, the first estimate is
a direct consequence of the Cauchy-Schwarz inequality. About the second estimate,
we recall from (5.12) that the Hamilton map of the quadratic form

Re q
(
(Im F )l1X; (Im F )l2X

)
,

is
1
2
(
(−1)l1(Im F )l1Re F (Im F )l2 + (−1)l2(Im F )l2Re F (Im F )l1

)
.

A direct computation as in (3.18) of [11] shows that

(5.20) ∇Re q
(
(Im F )l1X; (Im F )l2X

)
= (−1)l1+1σ(Im F )l1Re F (Im F )l2X

+ (−1)l2+1σ(Im F )l2Re F (Im F )l1X
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where
σ =

(
0 In
−In 0

)
.

The notation In stands here for the n by n identity matrix. We deduce from (2.17)
and (5.20) that for any k ∈ N,

(5.21) |(Im F )kRe F (Im F )kX| .
∣∣∇Re q((Im F )kX

)∣∣ . Re q
(
(Im F )kX

) 1
2 .

By using twice the estimate (5.21) with respectively X and (Im F )l2−l1X, and the
index k = l1, we deduce from (5.20) the second estimate of Lemma 5.2.6. �

Lemma 5.2.7. Consider the quadratic form rm−j−1 defined in (4.4) then for any
0 ≤ j ≤ m− 2,

rm−j−1(X)

Re q
(
(Im F )m−j−1X

) 2m−2j−2
2m−2j−1

∈ SΩ

(
1,Re q

(
(Im F )m−j−1X

)− 2m−2j−3
2m−2j−1 dX2

)
,

if Ω is any open set where

Re q
(
(Im F )m−j−1X

)
& 〈X〉

2(2m−2j−1)
2m+1

and
Re q

(
(Im F )m−j−2X

)
. Re q

(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1 ,

which implies in particular that
rm−j−1(X)

Re q
(
(Im F )m−j−1X

) 2m−2j−2
2m−2j−1

∈ SΩ

(
1, 〈X〉−

2(2m−2j−3)
2m+1 dX2

)
.

Proof of Lemma 5.2.7. Since from Lemma 5.2.6,

|rm−j−1(X)| . Re q
(
(Im F )m−j−1X

) 2m−2j−2
2m−2j−1

and

|∇rm−j−1(X)| . Re q
(
(Im F )m−j−1X

) 1
2 + Re q

(
(Im F )m−j−2X

) 1
2

. Re q
(
(Im F )m−j−1X

) 1
2 ,

on Ω, we get that the quadratic form rm−j−1 belongs to the symbol class

SΩ

(
Re q

(
(Im F )m−j−1X

) 2m−2j−2
2m−2j−1 ,Re q

(
(Im F )m−j−1X

)− 2m−2j−3
2m−2j−1 dX2

)
.

One can then deduce the result of Lemma 5.2.7 from Lemma 5.2.3. �

When adding a large parameter Λj ≥ 1 in the description of the open set Ω, a
straightforward adaptation of the proof of the previous lemma gives the following
L∞(Ω) estimate with respect to this parameter.

Lemma 5.2.8. Consider the quadratic form rm−j−1 defined in (4.4) then for any
0 ≤ j ≤ m− 2,∥∥Re q((Im F )m−j−1X

)− 2m−2j−2
2m−2j−1 rm−j−1(X)

∥∥
L∞(Ω)

. Λ−
1
2

j ,

if Ω is any open set where

Re q
(
(Im F )m−j−1X

)
& 〈X〉

2(2m−2j−1)
2m+1

and
Re q

(
(Im F )m−j−2X

)
. Λ−1

j Re q
(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1 ,
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with Λj ≥ 1.

In the following lemmas, we shall carefully study the dependence of the estimates
with respect to the large parameter Λj ≥ 1.

Lemma 5.2.9. For any 0 ≤ j ≤ m− 2, we have for all X ∈ Ω,∣∣∣∣∣∣ HImq rm−j−1(X)

Re q
(
(Im F )m−j−1X

) 2m−2j−2
2m−2j−1

− 2Re q
(
(Im F )m−j−1X

) 1
2m−2j−1

∣∣∣∣∣∣
. Λ−

1
2

j Re q
(
(Im F )m−j−1X

) 1
2m−2j−1 ,

if Ω is any open set where

Re q
(
(Im F )m−j−1X

)
& 〈X〉

2(2m−2j−1)
2m+1 ,

Re q
(
(Im F )m−j−2X

)
. Λ−1

j Re q
(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1 ,

Re q
(
(Im F )m−jX

)
. Re q

(
(Im F )m−j−1X

) 2m−2j+1
2m−2j−1 ,

with Λj ≥ 1.

Proof of Lemma 5.2.9. We begin by writing from (4.4) and Lemma 5.2.1 that

(5.22) HImq rm−j−1(X) = 2Re q
(
(Im F )m−j−1X

)
+ 2Re q

(
(Im F )m−jX; (Im F )m−j−2X

)
.

Lemma 5.2.9 is then a consequence of the following estimate∣∣Re q((Im F )m−jX; (Im F )m−j−2X
)∣∣

≤ Re q
(
(Im F )m−jX

) 1
2Re q

(
(Im F )m−j−2X

) 1
2

. Λ−
1
2

j Re q
(
(Im F )m−j−1X

)
,

fulfilled on Ω that we obtain from Lemma 5.2.6. �

Lemma 5.2.10. For any 0 ≤ j ≤ m− 2, we have for all X ∈ Ω,∣∣∣Re q((Im F )m−j−1X
) 2m−2j−2

2m−2j−1HImq

(
Re q

(
(Im F )m−j−1X

)− 2m−2j−2
2m−2j−1

)∣∣∣
. Re q

(
(Im F )m−j−1X

) 1
2m−2j−1 ,

if Ω is any open set where

Re q
(
(Im F )m−j−1X

)
& 〈X〉

2(2m−2j−1)
2m+1 ,

Re q
(
(Im F )m−j−2X

)
. Λ−1

j Re q
(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1 ,

Re q
(
(Im F )m−jX

)
. Re q

(
(Im F )m−j−1X

) 2m−2j+1
2m−2j−1 ,

with Λj ≥ 1.
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Proof of Lemma 5.2.10. We begin by writing from Lemma 5.2.1 that

(5.23) HImq Re q
(
(Im F )m−j−1X

)
= 4Re q

(
(Im F )m−j−1X; (Im F )m−jX

)
.

Since

Re q
(
(Im F )m−j−1X

) 2m−2j−2
2m−2j−1HImq

(
Re q

(
(Im F )m−j−1X

)− 2m−2j−2
2m−2j−1

)
= − 2m− 2j − 2

2m− 2j − 1
HImq Re q

(
(Im F )m−j−1X

)
Re q

(
(Im F )m−j−1X

) ,

Lemma 5.2.10 is then a consequence of the following estimate∣∣Re q((Im F )m−j−1X; (Im F )m−jX
)∣∣(5.24)

≤ Re q
(
(Im F )m−j−1X

) 1
2Re q

(
(Im F )m−jX

) 1
2

. Re q
(
(Im F )m−j−1X

)1+ 1
2m−2j−1 ,

fulfilled on Ω that we obtain from Lemma 5.2.6. �

Lemma 5.2.11. Consider the functions Ψj and Wj+1 defined in (4.27) and (4.28)
then for any 0 ≤ j ≤ m− 2, we have for all X ∈ Ω,

|HImqΨj(X)| . Λ
1
2
j Re q

(
(Im F )m−j−1X

) 1
2m−2j−1Wj+1(X),

if Ω is any open set where

Re q
(
(Im F )m−j−1X

)
& 〈X〉

2(2m−2j−1)
2m+1 ,

Re q
(
(Im F )m−j−2X

)
. Λ−1

j Re q
(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1 ,

Re q
(
(Im F )m−jX

)
. Re q

(
(Im F )m−j−1X

) 2m−2j+1
2m−2j−1 ,

with Λj ≥ 1.

Proof of Lemma 5.2.11. We begin by noticing from (4.28) and (4.30) that

(5.25)

∣∣∣∣∣∣ψ′
 ΛjRe q

(
(Im F )m−j−2X

)
Re q

(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1

∣∣∣∣∣∣ .Wj+1(X),

and by writing from Lemma 5.2.1 that

(5.26) HImq Re q
(
(Im F )m−j−2X

)
= 4Re q

(
(Im F )m−j−2X; (Im F )m−j−1X

)
.

It follows from Lemma 5.2.6 that for all X ∈ Ω,∣∣Re q((Im F )m−j−2X; (Im F )m−j−1X
)∣∣(5.27)

≤ Re q
(
(Im F )m−j−2X

) 1
2Re q

(
(Im F )m−j−1X

) 1
2

. Λ−
1
2

j Re q
(
(Im F )m−j−1X

) 2m−2j−2
2m−2j−1 .

Then, by writing that

HImq

 ΛjRe q
(
(Im F )m−j−2X

)
Re q

(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1

 =
ΛjHImq Re q

(
(Im F )m−j−2X

)
Re q

(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1

− 2m− 2j − 3
2m− 2j − 1

ΛjRe q
(
(Im F )m−j−2X

)
HImq Re q

(
(Im F )m−j−1X

)
Re q

(
(Im F )m−j−1X

)1+ 2m−2j−3
2m−2j−1

.
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Lemma 5.2.11 is a consequence of (4.27), (5.23), (5.24), (5.26), (5.27) and (5.28), since

Re q
(
(Im F )m−j−2X

)
∼ Λ−1

j Re q
(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1 ,

on the support of Ψ′j . �

Lemma 5.2.12. For m ≥ 2, consider the function W̃0 defined in (4.29) then for all
X ∈ R2n,

|HImqW̃0(X)| . 〈X〉
2

2m+1 .

Proof of Lemma 5.2.12. Since |∇Im q(X)| . 〈X〉, because Im q is a quadratic form,
Lemma 5.2.12 is then a consequence of (4.3), (4.29) and Lemma 5.2.2. �

Lemma 5.2.13. Consider the function Wj+1 defined in (4.28) then for any 0 ≤ j ≤
m− 2, we have for all X ∈ Ω,

|HImqWj+1(X)| . Λ
1
2
j Re q

(
(Im F )m−j−1X

) 1
2m−2j−1 Ψj(X),

if Ω is any open set where

Re q
(
(Im F )m−j−1X

)
& 〈X〉

2(2m−2j−1)
2m+1 ,

Re q
(
(Im F )m−j−2X

)
. Λ−1

j Re q
(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1 ,

Re q
(
(Im F )m−jX

)
. Re q

(
(Im F )m−j−1X

) 2m−2j+1
2m−2j−1 ,

with Λj ≥ 1.

Proof of Lemma 5.2.13. One can notice from (4.1), (4.3), (4.27), (4.28) and (4.30)
that

(5.28) ∀ 0 ≤ j ≤ m− 2,

∣∣∣∣∣∣w′2
 ΛjRe q

(
(Im F )m−j−2X

)
Re q

(
(Im F )m−j−1X

) 2m−2j−3
2m−2j−1

∣∣∣∣∣∣ . Ψj(X),

and that the derivatives of Ψj and Wj+1 are exactly the same types of functions. It
follows that Lemma 5.2.13 is just a straightforward consequence of Lemma 5.2.11. �
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