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Abstract. For a class of non-selfadjoint semiclassical pseudodifferential opera-
tors with double characteristics, with a leading symbol p satisfying Re p ≥ 0, we
study bounds for resolvents and estimates for low lying eigenvalues. Specifically,
assuming that the quadratic approximations of the principal symbol of the oper-
ator along the double characteristics enjoy a partial ellipticity property along a
suitable subspace of the phase space, namely their singular spaces, we establish
semiclassical hypoelliptic a priori estimates with a loss of the full power of the
semiclassical parameter giving a localization for the low lying spectral values of
the operator.

1. Introduction

1.1. Miscellaneous facts about quadratic differential operators and doubly
characteristic pseudodifferential operators. Since the classical work by J. Sjös-
trand [13], the study of spectral properties of quadratic differential operators has
played a basic rôle in the analysis of partial differential operators with double char-
acteristics. Roughly speaking, if we have, say, a classical pseudodifferential operator
pw(x,Dx) on Rn with the Weyl symbol p(x, ξ) = pm(x, ξ) + pm−1(x, ξ) + . . . of order
m, and if X0 = (x0, ξ0) ∈ R2n is a point where

pm(X0) = dpm(X0) = 0,

then it is natural to consider the quadratic form q which begins the Taylor expansion
of pm at X0 in order to investigate the properties of the pseudodifferential operator
pw(x,Dx). For example, the study of a priori estimates such as hypoelliptic estimates
of the form

||u ||m−1 ≤ CK (|| pw(x,Dx)u ||0 + ||u ||m−2) , u ∈ C∞0 (K), K ⊂⊂ Rn,

then often depends on the spectral analysis of the quadratic operator q(x, ξ)w. See [7],
as well as Chapter 22 of [8] together with further references given there. In the classical
work [13], the spectrum of a general quadratic differential operator, that is an operator
defined in the Weyl quantization

(1.1) qw(x,Dx)u(x) =
1

(2π)n

∫
R2n

ei(x−y).ξq
(x+ y

2
, ξ
)
u(y)dydξ,

by a symbol q(x, ξ), where (x, ξ) ∈ Rn × Rn and n ∈ N∗, which is a complex-valued
quadratic form, has been determined under the basic assumption of global ellipticity
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of the quadratic symbol

(x, ξ) ∈ R2n, q(x, ξ) = 0⇒ (x, ξ) = 0.

We recently investigated properties of non-elliptic quadratic operators in the works
[6] and [12]. Considering quadratic operators whose Weyl symbols have real parts with
a sign, say here, Weyl symbols with non-negative real parts

(1.2) Re q ≥ 0,

we pointed out the existence of a particular linear subvector space S in the phase space
Rnx×Rnξ intrinsically associated to their Weyl symbols q(x, ξ) and called singular space,
which seems to play a basic rôle in the understanding of a number of fairly general
properties, such as spectral or subelliptic properties, of these non-elliptic quadratic
operators. In particular, we established that when a quadratic symbol fulfilling (1.2)
satisfies an assumption of partial ellipticity along its singular space S, that is,

(x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0,

then the spectrum of the quadratic operator qw(x,Dx) is only composed of a countable
number of eigenvalues of finite multiplicity, with a structure similar to the one known
in the case of global ellipticity described by J. Sjöstrand in [13]. We would also
like to mention at this point that the sign condition (1.2), as well as the condition
(1.13) below, seem not too restrictive, as most of the examples of operators that one
encounters naturally in applications come from semigroup generators. See also [18].

The purpose of the present work is to address the question of how these recent im-
provements in the understanding of non-elliptic quadratic operators allow to enhance
the comprehension of the properties of certain classes of non-selfadjoint semiclassical
operators with double characteristics. In this work, which is planned to be the first one
in a series on doubly characteristic pseudodifferential operators, we shall study bounds
for resolvents and estimates for low lying eigenvalues for non-selfadjoint semiclassical
pseudodifferential operators with principal symbols whose quadratic approximations
at doubly characteristic points enjoy a partial ellipticity property along their singular
spaces. Under these particular assumptions of partial ellipticity for these quadratic
approximations, we shall establish a semiclassical hypoelliptic a priori estimate with
a loss of the full power of the semiclassical parameter which gives a localization for
the low lying spectral values of the operator.

Before giving the precise statement of our main result, we shall recall miscellaneous
facts and notation that we will need about quadratic differential operators. Associated
to a complex-valued quadratic form

q : Rnx × Rnξ → C
(x, ξ) 7→ q(x, ξ),

with n ∈ N∗, is the Hamilton map F ∈M2n(C) uniquely defined by the identity

(1.3) q
(
(x, ξ); (y, η)

)
= σ

(
(x, ξ), F (y, η)

)
, (x, ξ) ∈ R2n, (y, η) ∈ R2n,

where q
(
·; ·
)
stands for the polarized form associated to the quadratic form q and σ

is the canonical symplectic form on R2n,

(1.4) σ
(
(x, ξ), (y, η)

)
= ξ.y − x.η, (x, ξ) ∈ R2n, (y, η) ∈ R2n.

It follows directly from the definition of the Hamilton map F that its real and imagi-
nary parts, denoted respectively by Re F and Im F , are the Hamilton maps associated
to the quadratic forms Re q and Im q, respectively; and that a Hamilton map is always
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skew-symmetric with respect to σ. This fact is just a consequence of the properties
of skew-symmetry of the symplectic form and symmetry of the polarized form

(1.5) ∀X,Y ∈ R2n, σ(X,FY ) = q(X;Y ) = q(Y ;X) = σ(Y, FX) = −σ(FX, Y ).

We defined in [6] the singular space S associated to a quadratic symbol q as the
following intersection of kernels

(1.6) S =
( 2n−1⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n,

where F stands for its Hamilton map; and we proved (Theorem 1.2.2 in [6]) that when
a quadratic symbol q with a non-negative real part is elliptic on its singular space S,

(1.7) (x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0,

then the spectrum of the quadratic operator qw(x,Dx) is only composed of eigenvalues
of finite multiplicity

(1.8) σ
(
qw(x,Dx)

)
=
{ ∑

λ∈σ(F ),
−iλ∈C+∪(Σ(q|S)\{0})

(
rλ + 2kλ

)
(−iλ) : kλ ∈ N

}
,

where rλ is the dimension of the space of generalized eigenvectors of F in C2n belong-
ing to the eigenvalue λ ∈ C,

Σ(q|S) = q(S) and C+ = {z ∈ C : Re z > 0}.

Here q(S) stands for the closure of the range of q along S, and it follows from (1.6)
that Σ(q|S) ⊂ iR. Let us finally end these few recollections by mentioning that one
can also describe the singular spaces of such quadratic symbols (see Section 1.4 in [6])
in terms of the eigenspaces associated to the real eigenvalues of their Hamilton maps.
Considering such a quadratic symbol q, the set of real eigenvalues of its Hamilton
map F can then be written as

σ(F ) ∩ R = {λ1, ..., λr,−λ1, ...,−λr},
with λj 6= 0 and λj 6= ±λk if j 6= k; and one can check that its singular space is the
direct sum of the symplectically orthogonal spaces

(1.9) S = Sλ1 ⊕σ⊥ Sλ2 ⊕σ⊥ ...⊕σ⊥ Sλr ,
where the spaces Sλj , 1 ≤ j ≤ r, are the symplectic spaces

(1.10) Sλj =
(
Ker(F − λj)⊕Ker(F + λj)

)
∩ R2n.

1.2. Statement of the main result. Let us now state the main result contained in
this paper. Let m ≥ 1 be a C∞ order function on R2n fulfilling

(1.11) ∃C0 ≥ 1, N0 > 0, m(X) ≤ C0〈X − Y 〉N0m(Y ), X, Y ∈ R2n,

where 〈X〉 = (1 + |X|2)
1
2 , and S(m) be the symbol class

S(m) =
{
a ∈ C∞(R2n,C) : ∀α ∈ N2n,∃Cα > 0,∀X ∈ R2n, |∂αXa(X)| ≤ Cαm(X)

}
.

We shall assume in the following, as we may, that m belongs to its own symbol class
m ∈ S(m).

Considering a symbol P (x, ξ;h) with a semiclassical asymptotic expansion in the
symbol class S(m),

(1.12) P (x, ξ;h) ∼
+∞∑
j=0

pj(x, ξ)hj ,
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with pj ∈ S(m), j ∈ N; such that its principal symbol p0 has a non-negative real part

(1.13) Re p0(X) ≥ 0, X = (x, ξ) ∈ R2n,

we shall study the operator

(1.14) P = Pw(x, hDx;h), 0 < h ≤ 1,

defined by the h-Weyl quantization of the symbol P (x, ξ;h), that is, the Weyl quan-
tization of the symbol P (x, hξ;h). When equipped with the domain

H(m) =
(
mw(x, hDx)

)−1(
L2(Rn)

)
,

for h > 0 sufficiently small, the operator P becomes a closed and densely defined
operator on L2(Rn) (see Section 3 in [1]). We shall assume that the real part of the
principal symbol p0 is elliptic at infinity in the sense that

(1.15) ∃C > 0,∀ |X| ≥ C, Re p0(X) ≥ m(X)
C

.

This assumption ensures (see Section 3 in [1]) that for sufficiently small values of
the semiclassical parameter h, 0 < h � 1, the spectrum of the operator P in a
fixed neighborhood of 0 ∈ C is discrete and consists of eigenvalues of finite algebraic
multiplicity.

We shall also assume that the characteristic set of the real part of the principal
symbol p0,

(Re p0)−1(0) ⊂ R2n,

is finite, so that we may write it as

(1.16) (Re p0)−1(0) = {X1, ..., XN}.
The sign assumption (1.13) implies in particular that we have

dRe p0(Xj) = 0,

for all 1 ≤ j ≤ N ; and we shall actually assume that these points are all doubly
characteristic points for the symbol p0,

(1.17) p0(Xj) = dp0(Xj) = 0, 1 ≤ j ≤ N,
so that we may write

(1.18) p0(Xj + Y ) = qj(Y ) +O(Y 3),

when Y → 0; where qj is the quadratic approximation which begins the Taylor
expansion of the principal symbol p0 at Xj . Notice that the sign assumption (1.13)
also implies that these complex-valued quadratic forms qj have non-negative real parts

(1.19) Re qj ≥ 0.

By denoting Sj the singular spaces associated to these quadratic forms qj , the purpose
of this work is to establish the following result:

Theorem 1. Consider a symbol P (x, ξ;h) with a semiclassical expansion in the class
S(m) such that its principal symbol p0 fulfills the assumptions (1.13), (1.15), (1.16)
and (1.17). When all the quadratic forms qj, 1 ≤ j ≤ N , defined in (1.18) are elliptic
on their associated singular spaces

(1.20) X ∈ Sj , qj(X) = 0⇒ X = 0,

then for any constant C > 1 and any fixed neighborhood Ωj ⊂ C of the spectrum of
the quadratic operator associated to the quadratic symbol qj,

σ
(
qwj (x,Dx)

)
⊂ Ωj ,
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described in (1.8), there exist some positive constants 0 < h0 ≤ 1 and C0 > 0 such
that for all 0 < h ≤ h0, u ∈ S(Rn) and |z| ≤ C satisfying

z − p1(Xj) /∈ Ωj , 1 ≤ j ≤ N,
we have

(1.21) h‖u‖ ≤ C0‖(P − hz)u‖,
with P = Pw(x, hDx;h); where p1(Xj) stands for the value of the subprincipal symbol
of the symbol P (x, ξ;h) evaluated at the doubly characteristic point Xj and ‖ · ‖ is
L2–norm on Rn.

Let us begin our few comments about Theorem 1 by mentioning that its result was
essentially well-known in the case when the quadratic forms qj are all globally elliptic
on R2n,

X ∈ R2n, qj(X) = 0⇒ X = 0,
when 1 ≤ j ≤ N . We refer the reader to the work [13] of J. Sjöstrand where the case of
classical pseudodifferential operators is considered. The novelty of Theorem 1 comes
therefore from the fact that the semiclassical hypoelliptic a priori estimate with a loss
of the full power of the semiclassical parameter (1.21) remains valid in cases where
the global ellipticity of the Hessians of the principal symbol at doubly characteristic
points fails. Our result actually shows that this estimate holds only under the weaker
assumption of partially ellipticity (1.20) for the Hessians of the principal symbol at
doubly characteristic points. Let us also stress the fact that Theorem 1 actually
extends the result of J. Sjöstrand in [13] since one can check from the definitions
(1.3) and (1.6) that the singular space S of a complex-valued quadratic form q with
a non-negative real part is always distinct from the whole phase space R2n as soon as
its real part is a non-zero quadratic form

∃(x0, ξ0) ∈ R2n, Re q(x0, ξ0) 6= 0.

A noticeable example of non-elliptic quadratic operator fulfilling the assumption of
partial ellipticity (1.20) is given by the Kramers-Fokker-Planck operator

K = −∆v +
v2

4
− 1

2
+ v.∂x −

(
∂xV (x)

)
.∂v, (x, v) ∈ R2,

with the quadratic potential

V (x) =
1
2
ax2, a ∈ R∗.

One can actually check that this operator can be expressed as

K = qw(x, v,Dx, Dv)−
1
2
,

with the Weyl symbol

(1.22) q(x, v, ξ, η) = η2 +
1
4
v2 + i(vξ − axη),

which is a non-elliptic complex-valued quadratic form with a non-negative real part
and a zero singular space. Starting from this example, we may easily construct models
for Hessians with non-negative real parts fulfilling the condition (1.20) whose singular
spaces S are both non-trivial and distinct of the whole phase space. Such a model is
for instance obtained when adding to the quadratic form q defined in (1.22) an elliptic
purely imaginary-valued quadratic form iq̃ in other symplectic variables (x′′, ξ′′),

Q(x′, x′′, ξ′, ξ′′) = q(x′, ξ′) + iq̃(x′′, ξ′′),
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since the singular space is in this case given by

S = {(x′, x′′, ξ′, ξ′′) ∈ R2n′+2n′′ : x′ = ξ′ = 0}.

About the present work, we drew our inspiration quite exclusively from the semi-
classical analysis for Kramers-Fokker-Planck equation led by F. Hérau, J. Sjöstrand
and C. Stolk in [4]. Our proof of Theorem 1 relies on a similar construction of a
global bounded weight function G with controlled derivatives and the use, on the
FBI-Bargmann side, of associated weighted spaces of holomorphic functions on which
the quadratic approximations at critical points of the new principal symbol of the
operator

p̃0 ∼ p0 + iδHGp0,

become globally elliptic although the quadratic approximations of the original princi-
pal symbol may fail global ellipticity since they only fulfill the assumption of partial
ellipticity on their singular spaces. The structure of our proof will therefore follow the
one of the analysis led in [4] for the proof of the first a priori estimate in Theorem 1.2.
Parts of our proof will actually be the same and we shall therefore refer directly the
reader to some parts of the work by F. Hérau, J. Sjöstrand and C. Stolk when no
change of any kind is needed. In the setting considered in [4], the authors make some
assumptions of subellipticity for the principal symbol of the operator both locally
near critical points, say here X0 = 0,

(1.23) ∃ε0 > 0, Re p0(X) + ε0H
2
Imp0

Re p0(X) ∼ |X|2,
and at infinity. In the present work, we shall not consider such a general situation
where ellipticity may fail both locally and at infinity. Indeed, the main purpose
of the present work being to weaken the assumptions of subellipticity near critical
points, we shall simplify parts of the analysis led in [4] by requiring a property of
ellipticity at infinity for the real part of the principal symbol p0, but we shall consider
weaker local assumptions on the doubly characteristic set. Indeed, our assumption of
partial ellipticity along the singular spaces for the quadratic approximations of the
principal symbol at doubly characteristic points weakens the subelliptic assumption
(1.23) since, as we shall see in Section 4, this subelliptic assumption (1.23) induces
that the singular space S associated to the Hessian q of the principal symbol p0 at
X0 = 0 is equal to {0}. More precisely, one can check that the assumption (1.23)
is actually equivalent to the fact that the singular space S is equal to zero after the
intersection of exactly two kernels

(1.24) S = Ker(Re F ) ∩Ker
[
Re F (Im F )

]
∩ R4 = {0}.

We refer the reader to [12] for a complete discussion of subelliptic properties of qua-
dratic differential operators where this link between conditions (1.23) and (1.24) is
explained. Let us finally end this paragraph by mentioning that if one is interested in
establishing semiclassical resolvent estimates for the operator P instead of semiclassi-
cal hypoelliptic a priori estimates as the ones proved in Theorem 1, one can actually
deduce resolvent estimates from that type of a priori estimates in some specific cases.
This is discussed by F. Hérau, J. Sjöstrand and C. Stolk in [4], and we naturally refer
the reader to [4] (Section 11.1) for more details about this topic.

The plan of this paper is organized as follows. Section 2 is devoted to the construc-
tion of a global bounded weight function. Following [4], we then recall in Section 3
some basic facts about the FBI-Bargmann transform and weighted spaces of holomor-
phic functions associated to this bounded weight function. In Section 4, we investigate
the properties of the differential operators obtained by the Weyl quantization of the
quadratic approximations of the principal symbol at doubly characteristic points.
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This study will allow us to establish in Section 5 some local resolvent estimates in
a tiny neighborhood of these doubly characteristic points. After proving other local
resolvent estimates in the exterior region (Section 6), we finally complete our proof
of Theorem 1 in Section 7.

Remark. We are planning to investigate in a future work the precise semiclassical
asymptotics of the spectrum (modulo O(h∞) when h → 0+) of the doubly charac-
teristic operator Pw(x, hDx;h). More specifically, we shall try to establish under the
assumptions of Theorem 1, a similar result as the one proved in [4] (Theorem 1.3) for
Kramers-Fokker-Planck operators.

Example. Let V and W be two C∞b (R2,R) functions such that the non-negative
function V ≥ 0 is elliptic at infinity

∃C > 0,∀ |x| ≥ C, V (x) ≥ 1
C
,

and vanishes only when x = 0. We assume that

V (x) = x2
1 +O(x3),

while
W (x) = αx2

1 + 2βx1x2 + γx2
2 +O(x3),

when x → 0, for some constants α, β, γ ∈ R, not all equal to zero. Considering the
principal symbol

p0(x, ξ) = ξ2 + V (x) + iW (x),
we notice that

(Re p0)−1(0) = {(0, 0, 0, 0)},
and that this symbol satisfies all the assumptions (1.13), (1.15), (1.16) and (1.17) of
Theorem 1 with m(x, ξ) = 〈ξ〉2. The quadratic approximation of the principal symbol
p0 at (0, 0, 0, 0) is then given by the following quadratic form

(1.25) q(x1, x2, ξ1, ξ2) = ξ2
1 + ξ2

2 + x2
1 + i(αx2

1 + 2βx1x2 + γx2
2),

which is globally elliptic precisely when γ 6= 0. In general, a direct computation using
(1.3) and (1.6) shows that the singular space S associated to q is reduced to zero
precisely when β2 + γ2 6= 0. In particular, when γ = 0 and β 6= 0, the quadratic
approximation q is not globally elliptic but it obviously fulfills the assumption of
partial ellipticity along its singular space S = {0}. Theorem 1 can therefore be
applied to an operator Pw(x, hDx;h) whose symbol P (x, ξ;h) satisfies the following
semiclassical asymptotic expansion

P (x, ξ;h) ∼
+∞∑
j=0

pj(x, ξ)hj ,

with pj ∈ S(m) for j ≥ 1, despite the lack of global ellipticity of the quadratic form q.
Finally, in the case when β = γ = 0, the singular space S is then a one-dimensional
subspace and the quadratic form q fails ellipticity on S. One can actually check in this
case that the quadratic form q vanishes identically on its singular space and notice
that the spectrum of the associated operator

qw(x,Dx) = D2
x1

+D2
x2

+ (1 + iα)x2
1,

is no longer discrete.

We shall finish this introduction by explaining that it is actually sufficient to es-
tablish Theorem 1 in the special case when m = 1. Indeed, when assuming that
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Theorem 1 has already been proved when m = 1, we may consider an order func-
tion m ≥ 1 as in (1.11) such that m ∈ S(m); and a symbol P (x, ξ;h) satisfying the
associated assumptions of Theorem 1. Then, one can choose a symbol p̃0 ∈ S(1)
with a non-negative real part Re p̃0 ≥ 0 which is elliptic near infinity in the symbol
class S(1); and such that p̃0 = p0 on a large compact set containing p−1

0 (0) where
p0 stands for the principal symbol of P (x, ξ;h). This is for instance the case when
taking χ0 ∈ C∞0 (R2n; [0, 1]) such that χ0 = 1 near p−1

0 (0) and setting

p̃0 = χ0p0 + (1− χ0).

Defining also the symbols

p̃j = χ0pj + (1− χ0) ∈ S(1),

when j ≥ 1, we may choose χ ∈ C∞0 (R2n, [0, 1]) such that χ = 1 near p−1
0 (0) and

χ0 = 1 near suppχ. By setting P = Pw(x, hDx;h) and P̃ = P̃w(x, hDx;h), where

P̃ (x, ξ;h) ∼
+∞∑
j=0

p̃j(x, ξ)hj ,

in the symbol class S(1); and using L2–norms throughout, we deduce from the semi-
classical elliptic regularity that

h‖u‖ ≤ h‖χw(x, hDx)u‖+ h‖(1− χ)w(x, hDx)u‖(1.26)
≤ h‖χw(x, hDx)u‖+O(h)‖(P − hz)u‖+O(h∞)‖u‖,

since the principal symbol p0 of the operator P is elliptic near the support of the
function 1 − χ. By using that Theorem 1 is valid when m = 1, we may apply it to
the operator P̃ to get that if z is as in Theorem 1,

h‖χw(x, hDx)u‖ ≤ O(1)‖(P̃ − hz)χw(x, hDx)u‖(1.27)
≤ O(1)‖(P − hz)χw(x, hDx)u‖+O(h∞)‖u‖,

since (P̃ − P )χw(x, hDx) = O(h∞) in L(L2) when h→ 0+. We get that

(1.28) h‖χw(x, hDx)u‖ ≤ O(1)‖(P − hz)u‖+O(1)‖[P, χw(x, hDx)]u‖+O(h∞)‖u‖.

When estimating the commutator term in the right hand side of (1.28), we take
χ̃ ∈ C∞0 (R2n, [0, 1]) such that χ̃ = 1 near p−1

0 (0) and χ = 1 near supp χ̃. Then, by
using that

[P, χw(x, hDx)]χ̃w(x, hDx) = O(h∞),

in L(L2), together with the fact that p0 is elliptic near the support of 1 − χ̃, we get
that

(1.29) h‖χw(x, hDx)u‖ ≤ O(1)‖(P − hz)u‖+O(h∞)‖u‖,

which in view of (1.26) completes the proof of the reduction to the case when m = 1.
In what follows, we shall therefore be concerned exclusively with the case whenm = 1.

Acknowledgments: The first author is grateful to the partial support of the Na-
tional Science Foundation under grant DMS-0653275 and the Alfred P. Sloan Research
Fellowship.
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2. Construction of a bounded weight function

The purpose of this section is to achieve the construction of a bounded weight
function whose properties will be summarized below in Proposition 3. When assuming
that the assumptions of Theorem 1 are all fulfilled and beginning our construction
of this weight function, we shall first work in a small neighborhood of a fixed doubly
characteristic point of the principal symbol, say for example X1 ∈ p−1

0 (0). We shall
assume, for notational simplicity only, that X1 = (0, 0) ∈ R2n; and drop the index 1
by denoting simply q the quadratic approximation of the principal symbol p0 at (0, 0)
appearing in (1.18) and S its associated singular space. We may therefore write that

(2.1) p0(X) = q(X) +O(X3),

when X → 0; and recall that under the assumptions of Theorem 1, the quadratic
form q is assumed to have a non-negative real part, Re q ≥ 0, and to be elliptic
along its singular space S. Under these two assumptions, we established in [6] (see
Section 1.4.1 and Proposition 2.0.1) that the singular space S of the quadratic form
q has necessarily a symplectic structure and that new symplectic linear coordinates

X = (x, ξ) = (x′, x′′; ξ′, ξ′′) ∈ R2n = R2n′+2n′′ ,

can be chosen such that (x′′, ξ′′) and (x′, ξ′) are, respectively, some linear symplectic
coordinates in S and its symplectic orthogonal space Sσ⊥, so that in these coordinates,
the symbol q can be decomposed as the sum of two quadratic forms

(2.2) q(x, ξ) = q|Sσ⊥(x′, ξ′) + q|S(x′′, ξ′′),

where the average of the real part of first one by the flow defined by the Hamilton
vector field of its imaginary part

(2.3) 〈Re q|Sσ⊥〉T,Imq|Sσ⊥ (X ′) =
1
T

∫ T

0

Re q|Sσ⊥(etHImq|
Sσ⊥X ′)dt,

with X ′ = (x′, ξ′) ∈ R2n′ , is a positive definite quadratic form for all T > 0; and

(2.4) q|S(x′′, ξ′′) = iε̃0

n′′∑
j=1

λj(ξ′′2j + x′′2j ),

with ε̃0 ∈ {±1}, 0 ≤ n′′ ≤ n and λj > 0 for all j = 1, ..., n′′. Here the notation

Hf =
∂f

∂ξ
· ∂
∂x
− ∂f

∂x
· ∂
∂ξ
,

stands for the Hamilton vector field of a C1(R2d,C) function f . More specifically, we
checked in the proof of Proposition 2.0.1 in [6] that the two subspaces S and Sσ⊥

are stable by the real and imaginary parts Re F and Im F of the Hamilton map of
the symbol q. By using that the flow defined by the Hamilton vector field of Im q is
the linear transformation, etHImqX = e2tImFX, since a direct computation using (1.3)
shows that HImq = 2Im F , we deduce from (2.2), (2.3) and (2.4) that

(2.5) Re q(etHImqX) = Re q|Sσ⊥(etHImq|
Sσ⊥X ′)

and

(2.6) 〈Re q〉T,Imq(X) def=
1
T

∫ T

0

Re q(etHImqX)dt = 〈Re q|Sσ⊥〉T,Imq|Sσ⊥ (X ′),

where X = (X ′, X ′′), X ′ ∈ Sσ⊥, X ′′ ∈ S. We shall now use the following general
observation:
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Proposition 2. For each fixed T > 0, we have

〈Re p0〉T,Imp0
(X) def=

1
T

∫ T

0

Re p0(etHImp0X)dt = 〈Re q〉T,Imq(X) +O(X3),

when X → 0; where

〈Re q〉T,Imq(X) =
1
T

∫ T

0

Re q(etHImqX) dt.

Proof. Let T > 0 be a fixed constant. We begin by noticing that there exists c > 0
such that for all 0 ≤ t ≤ T and X ∈ R2n,

(2.7) |etHImp0X −X| ≤ ct|X| and |etHImqX −X| ≤ ct|X|.

Indeed, there exists C > 0 such that for all X ∈ R2n,

(2.8) |HImp0(X)| ≤ C|X| and |HImq(X)| ≤ C|X|,

since HImq = 2Im F , p0 ∈ S(1) and that X = 0 is a doubly characteristic point of p0.
By writing that

(2.9) etHImp0X = X +
∫ t

0

HImp0(esHImp0X)ds,

we notice that

|etHImp0X| ≤ |etHImp0X −X|+ |X| ≤ |X|+ C

∫ t

0

|esHImp0X|ds,

induces that

(2.10) |etHImp0X| ≤ eCt|X|, t ≥ 0, X ∈ R2n,

by Gronwall’s Lemma. By coming back to (2.9), we easily obtain from (2.8) the first
estimate in (2.7), the second one being obtained using exactly the same arguments.
Then, it directly follows from (2.1) and (2.10) that

〈Re p0〉T,Imp0
(X) = 〈Re q〉T,Imp0

(X) +O(X3),

so we only need to compare the two flow averages 〈Re q〉T,Imp0
and 〈Re q〉T,Imq. When

doing so, it is sufficient to argue at the level of formal Taylor expansions. Starting
from (2.1) and writing

(2.11) Im p0 ∼
+∞∑
j=1

Im p0,j ,

where for any j ∈ N∗, the functions Im p0,j are homogeneous of degree j + 1 in the
variables X = (x, ξ), so that in particular we have Im p0,1 = Im q; we get that

Re q(etHImp0X) = Re q(X) +
+∞∑
k=1

tk

k!
Hk

Imp0
Re q(X)

= Re q(X) +
+∞∑
k=1

+∞∑
j1=1

. . .

+∞∑
jk=1

tk

k!
HImp0,j1

. . . HImp0,jk
Re q(X).

Here, we are only interested in terms that are homogeneous of degree 2. By noticing
that when f is a homogeneous function of degree j then HImp0,`f is a homogeneous
function of degree ` + j − 1, it follows that the term HImp0,j1

. . . HImp0,jk
Re q is a

homogeneous function of degree j1 + . . . + jk + 2− k, which has a degree equal to 2
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precisely when j1 + . . . + jk = k. We conclude that the quadratic contributions in the
term Re q(etHImp0X) only come from the terms when j1 = . . . = jk = 1,

tk

k!
Hk

Imp0,1
Re q,

for k ≥ 0. This proves that

Re q(etHImp0X) = Re q(etHImqX) +O(X3),

and ends the proof of Proposition 2. �

Remark. Alternatively, the statement in Proposition 2 is an easy consequence of (2.7)
and the observation that there exists c̃ > 0 such that for all 0 ≤ t ≤ T and X ∈ R2n,

(2.12) |etHImp0X − etHImqX| ≤ c̃t|X|2,

that we shall have the occasion to use directly later on. Setting r = Im p0− Im q and
writing that

etHImp0X − etHImqX =
∫ t

0

[
HImp0(esHImp0X)−HImq(esHImqX)

]
ds

=
∫ t

0

Hr(esHImp0X)ds+
∫ t

0

HImq(esHImp0X − esHImqX)ds,

since HImq is a linear map, the estimate (2.12) directly follows from another use of
Gronwall’s Lemma together with (2.8), (2.10) and the fact that Hr(X) = O(X2)
uniformly on R2n.

We can therefore deduce from (2.6) and Proposition 2 that for each fixed T > 0,

(2.13) 〈Re p0〉T,Imp0
(X) = q̃(X ′) +O(X3),

where q̃(X ′) def= 〈Re q|Sσ⊥〉T,Imq|
Sσ⊥

(X ′) ∼ |X ′|2 is the positive definite quadratic
form defined in (2.3).

Let us now begin our construction of the weight function in a neighborhood of the
point (0, 0). When doing so, we shall follow an idea of [5] (Section 4), and consider g
a decreasing C∞(R+, [0, 1]) function satisfying

(2.14) g(t) = 1, t ∈ [0, 1]; and g(t) = t−1, t ≥ 2.

Notice that this choice induces that for each k ∈ N,

(2.15) g(k)(t) = O(〈t〉−1−k),

when t→ +∞, where 〈t〉 = (1 + t2)1/2. Setting

(2.16) (Re p0)ε(X) = g
( |X|2

ε

)
Re p0(X),

for any ε > 0, and recalling that p0 ∈ S(1); we easily see from (2.1) that we have the
following uniform bound on R2n,

(2.17) (Re p0)ε(X) = O(ε),

when ε → 0. Here we may also mention that ultimately the small parameter ε will
be chosen h-dependent.
Recalling now the well-known inequality

(2.18) |f ′(x)|2 ≤ 2f(x)‖f ′′‖L∞(R),
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fulfilled by any non-negative smooth function with bounded second derivative, we
notice that the estimate |∇Re p0| = O

(
(Re p0)1/2

)
induces that

(2.19) ∂αX(Re p0)ε(X) = O(ε1/2),

for any α ∈ N2n with |α| = 1. By noticing from (2.14) that

(2.20) (Re p0)ε = Re p0,

in the region where |X| ≤ ε1/2, we find from (2.1) that the bound (2.19) improves to

(2.21) ∀α ∈ N2n, |α| = 1, ∂αX(Re p0)ε(X) = O(X),

there. One can then check furthermore that for all α ∈ N2n, with |α| = 2, we have

(2.22) ∂αX(Re p0)ε(X) = O(1),

uniformly on R2n.

Remark. Bounds on higher derivatives can easily be derived. In the region where
|X| ≤ ε1/2, we have

(2.23) ∂αX(Re p0)ε(X) = O
(
X(2−|α|)+

)
,

for any α ∈ N2n; while in the region where |X| ≥ ε1/2, we check that

(2.24) ∂αX(Re p0)ε(X) = O(ε1−|α|/2).

For T > 0, we define

(2.25) Gε(X) = −
∫ +∞

−∞
J
(
− t

T

)
(Re p0)ε(etHImp0X)dt,

where J stands for a compactly supported piecewise affine function solving the equa-
tion

J ′(t) = δ(t)− 1l[−1,0](t)

and 1l[−1,0] the characteristic function of the set [−1, 0]. A direct computation as in [5]
(Section 4) using an integration by parts gives that

(2.26) HImp0Gε = 〈(Re p0)ε〉T,Imp0
− (Re p0)ε,

where

〈(Re p0)ε〉T,Imp0(X) =
1
T

∫ T

0

(Re p0)ε(etHImp0X)dt.

We notice from (2.17) and (2.25) that Gε = O(ε); and that the estimates (2.19) and
(2.22) hold for the derivatives of the function Gε as well. Let us also notice from
(2.7), (2.14), (2.16) and (2.25) that we have in the region, where |X|2 ≤ ε/2, that

(2.27) Gε(X) = −
∫ +∞

−∞
J
(
− t

T

)
Re p0(etHImp0X)dt,

fulfills

(2.28) HImp0Gε(X) = 〈Re p0〉T,Imp0
(X)− Re p0(X);

while we have, where |X|2 ≥ 8ε, that

(2.29) Gε(X) = −
∫ +∞

−∞
J
(
− t

T

)εRe p0(etHImp0X)
|etHImp0X|2

dt,

provided that the constant T > 0 is chosen fixed sufficiently small, independent of ε.
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Remark. We notice from (2.5), (2.27) and the proof of Proposition 2 that in the
region, where |X|2 ≤ ε/2, we have

(2.30) Gε(X) = Go(X ′) +O(X3),

where

(2.31) Go(X ′) = −
∫ +∞

−∞
J
(
− t

T

)
Re q|Sσ⊥(etHImq|

Sσ⊥X ′)dt,

is a quadratic form in the variables X ′ = (x′, ξ′).

When considering a constant 0 < δ � 1 whose value will be chosen later on, we
get that

(2.32) p̃0

(
X + iδHGε(X)

)
= p0(X) + iδHGεp0 +O

(
δ2|∇Gε|2

)
,

when X ∈ R2n varies in a small neighborhood of 0; if we denote by p̃0 an almost
analytic extension of the symbol p0, which is bounded together with all its derivatives
in a fixed tubular neighborhood of R2n. Writing

(2.33) Re
(
p̃0

(
X + iδHGε(X)

))
= Re p0 + δHImp0Gε +O

(
δ2|∇Gε|2

)
and

(2.34) Im
(
p̃0

(
X + iδHGε(X)

))
= Im p0 + δHGεRe p0 +O

(
δ2|∇Gε|2

)
,

we shall first consider the region, where |X|2 ≤ ε/2. Then, by using (2.13), (2.28), as
well as the fact that from (2.30), the estimate

(2.35) ∇Gε(X) = O(X),

is fulfilled in this region; we get from (2.33) that

Re
(
p̃0

(
X + iδHGε(X)

))
= Re p0 + δ

(
〈Re p0〉T,Imp0 − Re p0

)
+O

(
δ2X2

)
(2.36)

= (1− δ)Re p0 + δq̃(X ′) +O
(
δ|X|3 + δ2|X|2

)
.

By noticing that (2.35) implies that HGεRe p0(X) = O(X2), since 0 is a doubly
characteristic point for the symbol p0; we get from (2.1), (2.2), (2.34) and (2.35) that

δIm
(
p̃0

(
X + iδHGε(X)

))
= δIm p0 +O

(
δ2X2

)
= δIm q +O

(
δ2|X|2 + δ|X|3

)
,

then

(2.37) iδIm
(
p̃0

(
X + iδHGε(X)

))
= iδIm q|Sσ⊥(X ′) + iδIm q|S(X ′′)

+O
(
δ2|X|2 + δ|X|3

)
,

when |X|2 ≤ ε/2. By combining (2.36) and (2.37), we get that

(2.38) Re
(
p̃0

(
X + iδHGε(X)

))
+ iδIm

(
p̃0

(
X + iδHGε(X)

))
= (1− δ)Re p0

+ δ
(
q̃(X ′) + iIm q|Sσ⊥(X ′) + iIm q|S(X ′′)

)
+O

(
δ2|X|2 + δ|X|3

)
.

Let us notice that the quadratic form

X = (X ′, X ′′) 7→ q̃(X ′) + iIm q|Sσ⊥(X ′) + iIm q|S(X ′′),

is elliptic on R2n. This comes from the facts that on one hand, the quadratic form q̃
defined in (2.13) is positive definite in the variables X ′; and that on the other hand
the quadratic form Im q|S defined in (2.4) is also obviously elliptic in the variables
X ′′. Combining this with the fact that, (1−δ)Re p0 ≥ 0, if 0 < δ ≤ 1; we obtain from
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(2.38) that there exists a positive constant Ĉ > 0 such that we have in the region
where |X|2 ≤ ε/2,

(2.39)
∣∣p̃0

(
X + iδHGε(X)

)∣∣ ≥ δ|X|2

Ĉ
−O(δ2X2)−O(δX3) ≥ δ |X|2

2Ĉ
,

when 0 < δ ≤ δ0 and 0 < ε ≤ ε0, if the positive constants δ0 and ε0 are chosen
sufficiently small. This comes from the fact that one can estimate from below the
quantity ∣∣(1− δ)Re p0 + δ

(
q̃(X ′) + iIm q|Sσ⊥(X ′) + iIm q|S(X ′′)

)∣∣
=
[(

(1− δ)Re p0 + δq̃(X ′)
)2 + δ2

(
Im q|Sσ⊥(X ′) + Im q|S(X ′′)

))2] 1
2

by the quantity [
δ2q̃(X ′)2 + δ2

(
Im q|Sσ⊥(X ′) + Im q|S(X ′′)

)2] 1
2

= δ|q̃(X ′) + iIm q|Sσ⊥(X ′) + iIm q|S(X ′′)|,

since q̃ ≥ 0.
We now consider a region of the phase space where X belongs to a fixed neigh-

borhood of 0 and where |X|2 ≥ 8ε. It follows from (2.1), (2.26), (2.33) and (2.34)
that

(2.40) Re
(
p̃0

(
X + iδHGε(X)

))
= Re p0 + δ

(
〈(Re p0)ε〉T,Imp0

− (Re p0)ε
)

+O(δ2ε)

and

Im
(
p̃0

(
X + iδHGε(X)

))
= Im p0 + δHGεRe p0 +O(δ2ε)(2.41)

= Im p0 +O(δε1/2|X|+ δ2ε)

= Im q +O(δε1/2|X|+ |X|3),

since, according to our construction of the weight function, ∇Gε = O(ε1/2); while we
can use that ∇Re p0(X) = O(X), because 0 is a doubly characteristic point of the
symbol p0 and that p0 ∈ S(1). To understand the right hand side of (2.40), we first
notice from (2.7), (2.14), (2.16) and the proof of Proposition 2 that

〈(Re p0)ε〉T,Imp0
(X) = ε

1
T

∫ T

0

Re p0(etHImp0X)
|etHImp0X|2

dt

= ε
1
T

∫ T

0

Re q(etHImqX)
|etHImp0X|2

dt+O(εX),

provided that T > 0 is chosen sufficiently small. When simplifying the denominator
in the right hand side of the previous equation, we use (2.7) and (2.12) to get that

1
|etHImp0X|2

− 1
|etHImqX|2

= O
( t |X|3
|X|4

)
,

and then obtain that

(2.42) 〈(Re p0)ε〉T,Imp0
(X) = ε

1
T

∫ T

0

Re q(etHImqX)
|etHImqX|2

dt+O(εX),

since Re q(etHImqX) is a quadratic form. Considering the following non-negative
homogeneous function of degree 0,

f(X) =
1
T

∫ T

0

Re q(etHImqX)
|etHImqX|2

dt,
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we notice from (2.5) and (2.13) that, if f(X) = 0 then we necessarily have q̃(X ′) = 0,
and therefore X ′ = 0, since q̃ is a positive definite quadratic form. We may even be
more precise and observe that it follows from (2.7) that

(2.43) f(X) ≥ 1
O(1)

|X ′|2

|X|2
, X ′ = (x′, ξ′) ∈ Sσ⊥.

It follows from (2.40) and (2.42) that

(2.44) Re
(
p̃0

(
X + iδHGε(X)

))
= Re p0 − δ(Re p0)ε + δεf(X) +O(δ2ε+ δε|X|).

On the other hand, we deduce from (2.2) and (2.41) that

Im
(
p̃0

(
X + iδHGε(X)

))
= Im q(X) +O

(
δε1/2|X|+ |X|3

)
= Im q|Sσ⊥(X ′) + Im q|S(X ′′) +O

(
δε1/2|X|+ |X|3

)
,

which implies, when |X|2 ≥ 8ε, that

(2.45)
δε

|X|2
Im
(
p̃0

(
X + iδHGε(X)

))
=

δε

|X|2
(
Im q|Sσ⊥(X ′) + Im q|S(X ′′)

)
+O(δ2ε+ δε|X|).

It follows from (2.44) and (2.45) that

(2.46) Re
(
p̃0

(
X + iδHGε(X)

))
+ i

δε

|X|2
Im
(
p̃0

(
X + iδHGε(X)

))
= Re p0

−δ(Re p0)ε+
δε

|X|2
(
|X|2f(X) + iIm q|Sσ⊥(X ′) + iIm q|S(X ′′)

)
+O

(
δ2ε+ δε|X|

)
,

where the continuous function of X 6= 0,

X 7→ |X|2f(X) + iIm q|Sσ⊥(X ′) + iIm q|S(X ′′),

is homogeneous of degree 2 and does not vanish when |X| = 1. This comes from (2.4)
and the fact that f(X) = 0 implies that X ′ = 0. By using from (2.14) and (2.16) that

Re p0 − δ(Re p0)ε ≥ 0,

when 0 < δ ≤ 1; and by possibly considering a smaller constant 0 < δ0 ≤ 1, we deduce
from (2.46) that there exist some positive constants C > 1 and C̃ > 1 such that for
all 0 < δ ≤ δ0, 0 < ε ≤ ε0 and 8ε ≤ |X|2 ≤ 1/C; we have

(2.47)
∣∣p̃0

(
X + iδHGε(X)

)∣∣ ≥ δε

C̃
.

This follows from the fact that one can estimate from below the quantity∣∣∣Re p0 − δ(Re p0)ε +
δε

|X|2
(
|X|2f(X) + iIm q|Sσ⊥(X ′) + iIm q|S(X ′′)

)∣∣∣
=
[(
Re p0 − δ(Re p0)ε + δεf(X)

)2 +
δ2ε2

|X|4
(
Im q|Sσ⊥(X ′) + Im q|S(X ′′)

)2] 1
2
,

by [
δ2ε2f(X)2 +

δ2ε2

|X|4
(
Im q|Sσ⊥(X ′) + Im q|S(X ′′)

)2] 1
2

=
∣∣∣ δε|X|2 (|X|2f(X) + iIm q|Sσ⊥(X ′) + iIm q|S(X ′′)

)∣∣∣,
since f(X) ≥ 0.
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Recalling (2.2) and (2.4), we notice that ε̃0Im q|S is a positive definite quadratic
form

(2.48) ε̃0Im q|S(X ′′) & |X ′′|2,

while

(2.49) ε̃0Im q|Sσ⊥(X ′) = O(X ′2).

Continuing to work in the region where 8ε ≤ |X|2 ≤ 1/C and writing

(2.50) Re
((

1− iε̃0
δηε

|X|2
)
p̃0

(
X + iδHGε(X)

))
= Re

(
p̃0

(
X + iδHGε(X)

))
+ ε̃0

δηε

|X|2
Im
(
p̃0

(
X + iδHGε(X)

))
,

where 0 < η ≤ 1 stands for a constant whose value will be chosen later on, it follows
from (2.44) and (2.45) that

(2.51) Re
((

1− iε̃0
δηε

|X|2
)
p̃0

(
X + iδHGε(X)

))
= Re p0(X)− δ(Re p)ε(X)

+
δε

|X|2
(
|X|2f(X) + ηε̃0Im q|S(X ′′) + ηε̃0Im q|Sσ⊥(X ′)

)
+O(δ2ε+ δε|X|).

By noticing from (2.43), (2.48) and (2.49) that the degree 2 homogeneous continuous
function of the variable X = (X ′, X ′′) 6= 0,

X 7→ |X|2f(X) + ηε̃0Im q|S(X ′′) + ηε̃0Im q|Sσ⊥(X ′),

can be estimated from below by

|X|2f(X) + ηε̃0Im q|S(X ′′) + ηε̃0Im q|Sσ⊥(X ′) ≥ |X|
2

O(1)
,

provided that the constant 0 < η ≤ 1 is chosen sufficiently small. By using again that

Re p0 − δ(Re p0)ε ≥ 0,

we get from (2.51) after possibly decreasing the value of the constant 0 < δ0 ≤ 1 and
increasing the value of the constant C > 1 that for all 0 < δ ≤ δ0 and 0 < ε ≤ ε0,

(2.52) Re
((

1− iε̃0
δηε

|X|2
)
p̃0

(
X + iδHGε(X)

))
≥ δε

O(1)
,

when 8ε ≤ |X|2 ≤ 1/C.
Having established the estimates (2.39), (2.47) and (2.52), it finally remains to

consider the intermediate region where ε/2 ≤ |X|2 ≤ 8ε. We notice that in this
region, the estimate (2.40) also holds true, while we may write by using (2.5) and
Proposition 2 that

〈(Re p0)ε〉T,Imp0
(X) =

1
T

∫ T

0

g
( |etHImp0X|2

ε

)
Re q

(
etHImqX

)
dt+O(X3)

=
1
T

∫ T

0

g
( |etHImp0X|2

ε

)
Re q|Sσ⊥(etHImq|

Sσ⊥X ′)dt+O(X3),

where we have here

g
( |etHImp0X|2

ε

)
∼ 1,
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uniformly with respect to the parameters 0 < ε ≤ ε0 and t ∈ [0, T ]; if the positive
constant T is chosen sufficiently small. It follows that

〈(Re p0)ε〉T,Imp0
(X) ≥ 1

O(1)
|X ′|2 −O(|X|3).

Combining this estimate together with (2.40) and (2.41), we easily see that the esti-
mate (2.47) also holds in this region, where it is equivalent to (2.39). The estimate
(2.52) is valid here as well.

To summarize our discussion so far, we have shown that there exist some positive
constants C > 1, C̃ > 1, c̃ 6= 0, 0 < ε0 ≤ 1 and 0 < δ0 ≤ 1 such that the local C∞
weight function

G1,ε
def= Gε,

defined in a neighborhood of 0 satisfies for all 0 < ε ≤ ε0 and 0 < δ ≤ δ0 that

(2.53)
∣∣p̃0

(
X + iδHG1,ε(X)

)∣∣ ≥ δ

C̃
min(|X|2, ε),

when |X| ≤ 1/C; and

(2.54) Re
((

1− ic̃ δε

|X|2
)
p̃0

(
X + iδHG1,ε(X)

))
≥ δε

C̃
,

when ε1/2 ≤ |X| ≤ 1/C.
Proceeding similarly and working near each of the other doubly characteristic

points Xj ∈ p−1
0 (0), we obtain locally defined weight functions

Gj,ε ∈ C∞(neigh(Xj ,R2n)),

for 2 ≤ j ≤ N , so that the natural analogues of (2.53) and (2.54) hold for Gj,ε in the
regions where respectively |X −Xj | ≤ 1/C and ε1/2 ≤ |X −Xj | ≤ 1/C. To obtain
a definition of the global weight function that we shall denote again Gε, we consider
small open sets Ωj ⊂ R2n, 1 ≤ j ≤ N , with Xj ∈ Ωj and Ωj ∩ Ωk = ∅, when j 6= k.
By taking some C∞0 (Ωj , [0, 1]) functions χj such that χj = 1 in a neighborhood of the
doubly characteristic point Xj , we define the global C∞0 (R2n) weight function

Gε =
N∑
j=1

χjGj,ε,

and by restricting our attention to a fixed open set Ωj , we notice from (1.15) and
(1.16) that the support of the functions ∇χj is contained in a region where the real
part of the principal symbol p0 is elliptic

Re p0(X) ≥ 1/O(1).

We have therefore proved the following result which sums up the whole discussion led
in this section.

Proposition 3. Let p̃0 be an almost analytic extension of the principal symbol p0

of the symbol P (x, ξ;h) considered in Theorem 1 to a tubular neighborhood of R2n;
bounded together with all its derivatives in this neighborhood. Under the assumptions
of Theorem 1, one can find some constants

C > 1, C̃ > 1, 0 < δ0 ≤ 1, 0 < ε0 ≤ 1, c̃ 6= 0;

and a C∞0 (R2n,R) weight function Gε depending on the parameter 0 < ε ≤ ε0 and
supported in a neighborhood of the doubly characteristic set

supp Gε ⊂
{
X ∈ R2n : dist

(
X, p−1

0 (0)
)
≤ 2/C

}
,
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such that we have uniformly for all 0 < ε ≤ ε0 and 0 < δ ≤ δ0 that

(i) Gε = O(ε), ∂2Gε = O(1) on R2n

(ii) ∇Gε = O
(
dist

(
X, p−1

0 (0)
))

in the region where dist
(
X, p−1

0 (0)
)
≤ ε1/2

(iii) ∇Gε = O(ε1/2) in the region where dist
(
X, p−1

0 (0)
)
≥ ε1/2

(iv) We have ∣∣p̃0

(
X + iδHGε(X)

)∣∣ ≥ δ

C̃
min

[
dist

(
X, p−1

0 (0)
)2
, ε
]
,

in the region where dist
(
X, p−1

0 (0)
)
≤ 1/C

(v) We have

Re
((

1− ic̃ δε

dist
(
X, p−1

0 (0)
)2)p̃0

(
X + iδHGε(X)

))
≥ δε

C̃

in the region where dist
(
X, p−1

0 (0)
)
≥ ε1/2

3. Review of FBI tools

The purpose of this section is to recall the definition of the weighted spaces of holo-
morphic functions associated to the weight function Gε constructed in the previous
section; and the action of the operator P in these spaces. The following discussion
will very much follow the corresponding discussion in [4] (Section 3) and will therefore
be somewhat brief.

Throughout this paper, we shall work with the usual semiclassical FBI-Bargmann
transform

(3.1) Tu(x) = C̃h−3n/4

∫
R2n

e
i
hϕ(x,y)u(y)dy, x ∈ Cn, C̃ > 0,

with the phase ϕ(x, y) = i
2 (x − y)2. Associated to the FBI-Bargmann transform T ,

there is the linear canonical transformation

(3.2) κT : T ∗Cn 3 (y, η) 7→ (x, ξ) = (y − iη, η) ∈ T ∗Cn,

mapping the real phase space T ∗Rn onto the IR-manifold

(3.3) ΛΦ0 =
{(
x,

2
i

∂Φ0

∂x
(x)
)

: x ∈ Cn
}
,

where

(3.4) Φ0(x) =
1
2

(Imx)2
.

We recall that for a suitable choice of the constant C̃ > 0 in (3.1), the transformation

(3.5) T : L2(Rn)→ HΦ0(Cn)

is unitary; where here and in what follows, when Φ ∈ C∞(Cn) is a suitable strictly
plurisubharmonic weight function close to Φ0, we shall letHΦ(Cn) stand for the closed
subspace of L2(Cn, e− 2Φ

h L(dx)), consisting of functions that are entire holomorphic.
The integration element L(dx) stands here for the Lebesgue measure on Cn.

We have an exact version of the Egorov theorem which says that

(3.6) TawT−1 = aw, a ∈ S(1),

where the symbol a ∈ S(ΛΦ0 , 1) is given by the formula

a = a ◦ κ−1
T ,
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where κT is the linear canonical transformation defined in (3.2). Here the Weyl
quantization of the symbol a ∈ S(ΛΦ0 , 1), given by

aw(x, hDx)u(x) =
1

(2πh)n

∫∫
Γ0(x)

e
i
h (x−y)·θa

(x+ y

2
, θ
)
u(y)dydθ,

where Γ0(x) is the contour θ = 2
i
∂Φ0
∂x

(
x+y

2

)
, gives rise to a uniformly bounded operator

on HΦ0(Cn). The proof of this fact, explained in detail in [4] (Section 3), as well as
in [17], proceeds by a contour deformation argument together with the Stokes formula,
which allows us to write

aw(x, hDx)u(x) =
1

(2πh)n

∫∫
Γt0 (x)

e
i
h (x−y)·θψ0(x− y)a

(x+ y

2
, θ
)
u(y)dydθ+R1u(x),

where ψ0 stands for a C∞0 (Cn) function such that ψ0 = 1 near 0, and Γt(x) is the
contour given by

θ =
2
i

∂Φ0

∂x

(x+ y

2

)
+ it(x− y), 0 ≤ t ≤ t0, t0 > 0.

We also continue to write a for a suitable almost analytic extension of a to a tubular
neighborhood of ΛΦ0 . Furthermore, the remainder term R1 is of the form

R1u(x) =
1

(2πh)n

∫∫∫
Γ[0,t0]

e
i
h (x−y)·θu(y)∂y,θ

(
ψ0(x− y)a

(x+ y

2
, θ
))
∧ dy ∧ dθ

+R0u(x),

where the operator R0 satisfies

R0 = O(h∞) : L2
(
Cn, e−2Φ0/hL(dx)

)
→ L2

(
Cn, e−2Φ0/hL(dx)

)
,

and Γ[0,t0] is the naturally defined union of the Γt for 0 ≤ t ≤ t0. It is shown in detail
in [17], using the almost analyticity of a, that the effective kernel of the operator

R1 : L2
(
Cn, e−2Φ0/hL(dx)

)
→ L2

(
Cn, e−2Φ0/hL(dx)

)
is O(h∞).

Applying the remarks above to the operator P = Pw(x, hDx;h) appearing in
Theorem 1 and setting P0 = TPT−1, we get that

P0 = O(1) : HΦ0(Cn)→ HΦ0(Cn),

if P0 stands for the operator Pw0 (x, hDx;h) whose symbol has the following semiclas-
sical asymptotic expansion

(3.7) P0(x, ξ;h) ∼
+∞∑
j=0

pj(x, ξ)hj ,

where pj = pj ◦ κ−1
T , for any j ≥ 0.

Then, associated with the weight function Gε constructed in Section 2, there is the
IR-manifold

(3.8) Λδ,ε =
{
X + iδHGε(X) : X ∈ R2n

}
,

for 0 ≤ δ ≤ 1 and 0 < ε ≤ ε0. Arguing as in [4], we see that we have

(3.9) κT (Λδ,ε) = ΛΦδ,ε
def=
{(
x,

2
i

∂Φδ,ε
∂x

(x)
)

: x ∈ C2n
}
,

when 0 < δ � 1; where the function Φδ,ε(x) is the critical value with respect to the
variables (y, η) of the following functional

(3.10) Φδ,ε(x) = v.c.(y,η)∈Cn×Rn
(
− Im ϕ(x, y)− (Im y).η + δGε(Re y, η)

)
.
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Following the discussion led in [4] (Section 3.2), one can check that Φδ,ε ∈ C∞(Cn)
is a strictly plurisubharmonic function satisfying

(3.11) Φδ,ε(x) = Φ0(x) + δGε(Rex,−Imx) +O(δ2ε),

uniformly on Cn, when 0 < δ � 1. Since from Proposition 3,

supp Gε ⊂
{
X ∈ R2n : dist

(
X, p−1

0 (0)
)
≤ 2/C

}
,

we furthermore know that this strictly plurisubharmonic function Φδ,ε agrees with Φ0

outside a bounded set and that

(3.12) ∇ (Φδ,ε − Φ0) = O(δε1/2),

uniformly on Cn; with ∇2Φδ,ε ∈ L∞(Cn), uniformly with respect to the parameters
δ and ε. Since from another use of Proposition 3 and (3.11), we globally have on Cn,

(3.13) Φδ,ε − Φ0 = O(ε),

we notice, by choosing the small parameter ε appearing in the construction of the
weight Gε to be equal to ε = Ah, where h is the semiclassical parameter and A� 1 a
large constant to be chosen in the following; that for each fixed A > 0, the norms in the
weighted spaces HΦ0(Cn) and HΦδ,ε(Cn) are uniformly equivalent in the semiclassical
limit h → 0+. Carrying out an additional contour deformation, as in [4], and using
(3.12), we get a bounded operator

P0 = O(1) : HΦδ,ε(Cn)→ HΦδ,ε(Cn),

given, for u in HΦδ,ε(Cn), by

(3.14) P0u(x) =
1

(2πh)n

∫∫
eΓδ,ε(x)

e
i
h (x−y)·θψ0(x− y)P0

(x+ y

2
, θ;h

)
u(y)dydθ +Ru,

where, as above, ψ0 stands for a C∞0 (Cn) function such that ψ0 = 1 near 0; and
Γ̃δ,ε(x) is the contour given by

θ =
2
i

∂Φδ,ε
∂x

(x+ y

2

)
+ it0(x− y), t0 > 0.

We have that the operator R appearing in (3.14) satisfies

R = OA(h∞) : L2
(
Cn, e−2Φδ,ε/hL(dx)

)
→ L2

(
Cn, e−2Φδ,ε/hL(dx)

)
.

Let us finally mention that in (3.14), we continue to write P0 for an almost holo-
morphic extension of the symbol P0 ∈ S(ΛΦ0 , 1) in a tubular neighborhood of ΛΦ0 ,
bounded together with all of its derivatives. Similarly, we shall also write pj for some
almost holomorphic extensions of the symbols pj ∈ S(ΛΦ0 , 1) in a tubular neighbor-
hood of ΛΦ0 , bounded together with all of their derivatives when j ≥ 0.

4. The quadratic case

The main purpose of this section is to get localized resolvent estimates for quadratic
operators whose Weyl symbols fulfill the same properties as the quadratic approxi-
mations qj of the principal symbol p0 of the operator considered in Theorem 1. We
shall therefore be concerned in this section with complex-valued quadratic forms with
non-negative real part

(4.1) Re q(X) ≥ 0, X ∈ R2n, n ∈ N∗,

which enjoy a property of ellipticity on their singular spaces

(4.2) X ∈ S, q(X) = 0⇒ X = 0.
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The main reference about quadratic operators is the work of J. Sjöstrand [13] and we
shall actually follow very closely the analysis relying on this basic work which is led in
[4] (Section 5), to explain how in view of recent improvements in the understanding
of non-elliptic quadratic operators obtained in [6], the localized resolvent estimates
established in [4] (Proposition 5.2) for quadratic operators whose symbols fulfill (4.1)
and the subelliptic assumption

(4.3) ∃ε0, C > 0, Re q(X) + ε0H
2
ImqRe q(X) ≥ ε0

C
|X|2, X ∈ R2n,

can be extended to the class of quadratic operators with symbols satisfying only (4.1)
and (4.2).

Let us start by verifying that the assumption (4.2) really weakens the subelliptic
assumption (4.3). This is the case because condition (4.3) actually implies that the
singular space is necessarily zero. To check this, we first notice from Lemma 2 in
[11] that the Hamilton map of the quadratic form H2

ImqRe q is given by the double
commutator

4[Im F, [Im F,Re F ]].
One can then deduce from the definition of the singular space (1.6) and the properties
of skew-symmetry of the symplectic form and Hamilton maps (1.5) that the two
quadratic forms Re q and H2

ImqRe q identically vanish on S,

Re q(X) = σ(X,Re FX),

H2
ImqRe q(X) = σ

(
X, 4[Im F, [Im F,Re F ]]X

)
= −8σ

(
(Im F )X, [Im F,Re F ]X

)
= −8σ

(
(Im F )X, (Im F )(Re F )X

)
+ 8σ

(
(Im F )X, (Re F )(Im F )X

)
,

implying that when (4.3) is fulfilled, then S = {0}.
By considering from now a complex-valued quadratic form q satisfying (4.1) and

(4.2), we shall study the associated quadratic operator Q = qw(x, hDx) on the FBI-
Bargmann side. By using the FBI-Bargmann transform T introduced in (3.1),

T : L2(Rn)→ HΦ0(Cn),

and the Egorov property recalled in (3.6), we may write

(4.4) TQu = Q0Tu, u ∈ S(Rn),

where Q0 is the quadratic differential operator on Cn whose Weyl symbol q0 is defined
by the identity

(4.5) q0 ◦ κT = q,

with κT being the linear canonical transformation given in (3.2). Following [17], we
recall that when realizing Q0 as an unbounded operator on HΦ0(Cn), we may first
use the contour integral representation

Q0u(x) =
1

(2πh)n

∫∫
θ= 2

i
∂Φ0
∂x ( x+y

2 )
e
i
h (x−y)·θq0

(x+ y

2
, θ
)
u(y) dy dθ,

and then, by using that the symbol q0 is holomorphic, we obtain from a contour
deformation the following formula for Q0 as an unbounded operator on HΦ0(Cn),

(4.6) Q0u(x) =
1

(2πh)n

∫∫
θ= 2

i
∂Φ0
∂x ( x+y

2 )+it(x−y)

e
i
h (x−y)·θq0

(x+ y

2
, θ
)
u(y) dy dθ,

for any t > 0. We now consider as in (2.31) the real-valued quadratic weight

(4.7) Go(X) = −
∫ +∞

−∞
J
(
− t

T

)
Re q(etHImqX)dt,
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which fulfills as in (2.26) the identity

(4.8) HImqG
o = 〈Re q〉T,Imq − Re q,

where

〈Re q〉T,Imq(X) =
1
T

∫ T

0

Re q(etHImqX)dt.

As in [4] and [6], we shall consider an IR-deformation of the real phase space R2n

associated to this quadratic weight Go. Setting

(4.9) Λδ =
{
X + iδHGo(X) : X ∈ R2n

}
⊂ C2n,

for 0 ≤ δ ≤ 1, where HGo stands for the Hamilton vector field of Go, we find as in [6]
and in the previous section that we have

(4.10) κT (Λδ) = ΛΦoδ

def=
{(
x,

2
i

∂Φoδ
∂x

(x)
)

: x ∈ Cn
}
,

for all 0 ≤ δ ≤ δ0, with δ0 > 0 small enough, where Φoδ is a strictly plurisubharmonic
quadratic form on Cn verifying

(4.11) Φoδ(x) = Φ0(x) + δGo(Rex,−Imx) +O(δ2 |x|2).

Associated to the quadratic form Φoδ is the weighted space of holomorphic functions
HΦoδ

(Cn) defined as in Section 3. We can now view the operator Q0 as an unbounded
operator

Q0 : HΦoδ
(Cn)→ HΦoδ

(Cn),

if we make a new contour deformation as in (4.6) and set

(4.12) Q0u(x) =
1

(2πh)n

∫∫
θ= 2

i

∂Φo
δ

∂x ( x+y
2 )+it0(x−y)

e
i
h (x−y)·θq0

(x+ y

2
, θ
)
u(y) dy dθ,

for t0 > 0, when δ is sufficiently small, 0 < δ � 1. By coming back to the real side via
the FBI-Bargmann transform, the operator Q0 can then be viewed as an unbounded
operator on L2(Rn) whose Weyl symbol is given by the following quadratic form

(4.13) q̃(X) = q
(
X + iδHGo(X)

)
.

As in Section 2, we recall that the singular space S of a quadratic symbol q satisfy-
ing the assumptions (4.1) and (4.2) always has a symplectic structure (see Section 1.4.1
in [6]) and that according to [6] (Proposition 2.0.1), new symplectic linear coordinates

X = (x, ξ) = (x′, x′′; ξ′, ξ′′) ∈ R2n = R2n′+2n′′ ,

can be chosen such that (x′′, ξ′′) and (x′, ξ′) are, respectively, some linear symplectic
coordinates in S and its symplectic orthogonal space Sσ⊥, so that in these coordinates,
the symbol q can be decomposed as the sum of two quadratic forms

(4.14) q(x, ξ) = q|Sσ⊥(x′, ξ′) + q|S(x′′, ξ′′),

such that the average of the real part of first one by the flow defined by the Hamilton
vector field of its imaginary part

(4.15) 〈Re q|Sσ⊥〉T,Imq|Sσ⊥ (X ′) =
1
T

∫ T

0

Re q|Sσ⊥(etHImq|
Sσ⊥X ′)dt,

where X ′ = (x′, ξ′) ∈ R2n′ ; is a positive definite quadratic form for all T > 0; and

(4.16) q|S(x′′, ξ′′) = iε̃0

n′′∑
j=1

λj(ξ′′2j + x′′2j ),
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with ε̃0 ∈ {±1}, 0 ≤ n′′ ≤ n and λj > 0 for all j = 1, ..., n′′. Then, by noticing that a
direct computation gives that

HImq = 2Im F,

we deduce from (4.7), (4.8), (4.14), (4.16); and the stability property of the spaces
S and Sσ⊥ by the map Im F

(
see (2.0.4) in [6]

)
; that the quadratic weight Go only

depends on the variables X ′ = (x′, ξ′) ∈ R2n′ ,

(4.17) Go(X ′) = −
∫ +∞

−∞
J
(
− t

T

)
Re q|Sσ⊥(etHImq|

Sσ⊥X ′) dt

and satisfies

(4.18) HImq|
Sσ⊥

Go = 〈Re q|Sσ⊥〉T,Imq|Sσ⊥ − Re q|Sσ⊥ .

Since the symbol q̃ in (4.13) is easily seen to be equal to

(4.19) q̃ = q − iδHqG
o +O(δ2 |∇Go|2),

we deduce from the previous tensorization of the variables (4.14), (4.16) and (4.17)
that this symbol can be written as

(4.20) q̃(X) = r(X ′) + iε̃0

n′′∑
j=1

λj(ξ′′2j + x′′2j ),

with
r(X ′) = q|Sσ⊥(X ′)− iδHq|

Sσ⊥
Go(X ′) +O(δ2 |X ′|2).

Using now (4.1), (4.14), (4.15) and (4.18), we notice that the real part of the quadratic
symbol r,

Re q|Sσ⊥(X ′) + δHImq|
Sσ⊥

Go(X ′) +O(δ2 |X ′|2)

= (1− δ)Re q|Sσ⊥(X ′) + δ〈Re q|Sσ⊥〉T,Imq|Sσ⊥ (X ′) +O(δ2 |X ′|2) ≥ δ

C
|X ′|2,

for C > 1; is a positive definite quadratic form for all 0 < δ � 1 sufficiently small. In
view of (4.20), this particular property implies the ellipticity of the quadratic symbol
q̃ on R2n. We can then apply the classical result of J. Sjöstrand (Theorem 3.5 in
[13]) to the operator Q0 viewed as an unbounded operator on HΦoδ

(Cn), and using
similar arguments as the ones used by F. Hérau, J. Sjöstrand and C. Stolk in their
proof of Proposition 5.1 in [4], we get that this operator Q0 fulfills all the properties
stated in [4] (Proposition 5.1), namely that its spectrum, as an unbounded operator
on HΦoδ

(Cn) for 0 < δ � 1, is only composed of eigenvalues of finite multiplicity with
the following structure

(4.21) σ
(
Q0

)
=
{ ∑

λ∈σ(F ),
−iλ∈C+∪(Σ(q|S)\{0})

h
(
rλ + 2kλ

)
(−iλ) : kλ ∈ N

}
,

where F is the Hamilton map associated to the quadratic form q, rλ the dimension of
the space of generalized eigenvectors of F in C2n belonging to the eigenvalue λ ∈ C,

Σ(q|S) = q(S) and C+ = {z ∈ C : Re z > 0};

with q(S) standing for the closure of the set q(S). Furthermore, if z remains in a
compact set of empty intersection with σ(Q0), then we have with d(x) = |x|,
(4.22) ‖(h+ d2)u‖ ≤ O(1)‖(Q0 − hz)u‖,
and

(4.23) ‖(h+ d2)
1
2u‖ ≤ O(1)‖(h+ d2)−

1
2 (Q0 − hz)u‖,
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for all holomorphic function u satisfying respectively

(h+ d2)u ∈ L2
(
Cn, e−2Φoδ(x)/hL(dx)

)
and (h+ d2)

1
2u ∈ L2

(
Cn, e−2Φoδ(x)/hL(dx)

)
.

The only difference with Proposition 5.1 in [4] is that we describe here the spectrum
of Q0 by the mean of the singular space as we did in [6] (Theorem 1.2.2).

We have therefore checked that any quadratic operator whose symbol q fulfills the
assumptions (4.1) and (4.2), verifies all the properties stated in [4] (Proposition 5.1).
We can then deduce from Proposition 5.2 in [4] that the operator Q0 also verifies
the estimates stated in [4] (Proposition 5.2), since the proof of Proposition 5.2 only
relies on estimates obtained in [4] (Proposition 5.1). This proves that any quadratic
operator whose Weyl symbol fulfills the assumptions (4.1) and (4.2), defines on the
FBI transform side, an unbounded operator on the spaces HΦoδ

(Cn), with 0 < δ � 1,
which fulfills the following localized resolvent estimates:

Lemma 4.0.1. Let χ0 ∈ C∞0 (Cn) be fixed and equal to 1 near 0, and fix k ∈ R. Then
for z varying in a compact set that does not contain any eigenvalues of the operator
Q0|h=1 described in (4.21), we have with d(x) = |x|,

(4.24) ‖(h+ d2)1−kχ0u‖ ≤ O(1)‖(h+ d2)−kχ0(Q0 − hz)u‖+O(h
1
2 )‖1lKu‖,

where K is any fixed neighborhood of supp(∇χ0) and 1lK stands for its characteristic
function. Here the norm is taken in the space L2(Cn, e−2Φoδ/hL(dx)).

By using these localized resolvent estimates satisfied by quadratic operators defined
by the quadratic approximations of the principal symbol p0 at double characteristic
points, we shall establish in the next section local resolvent estimates for these op-
erators and the operator P = Pw(x, hDx;h) in a tiny neighborhood of the doubly
characteristic set.

5. Local resolvent estimates in a tiny neighborhood of the doubly
characteristic set

In all of this section, Gε stands for the weight function constructed in Proposition 3
and we choose the small parameter ε to be equal to

(5.1) ε = Ah, A� 1,

where h is the semiclassical parameter and A a large constant to be chosen in the
following.

We recall from Section 3 that the IR-manifold Λδ,ε defined in (3.8) is represented
on the FBI-transform side by

(5.2) κT (Λδ,ε) = ΛΦδ,ε =
{(
x,

2
i

∂Φδ,ε
∂x

(x)
)

: x ∈ Cn
}
,

where Φδ,ε ∈ C∞(Cn) is the strictly plurisubharmonic function introduced in (3.10)
for 0 < ε ≤ ε0 and sufficiently small values of the parameter 0 < δ � 1. Let us notice
directly from (2.27) and (3.10) that this weight function Φδ,ε is independent of the
parameter ε in a region where |x| ≤

√
ε/C, after a suitable choice of the constant

C > 0. By making a rescaling in ε, we may and will assume in the following that we
have C = 1.

By recalling from Section 3 that we have a uniformly bounded operator

(5.3) P0 : HΦδ,ε(Cn)→ HΦδ,ε(Cn),
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we shall be concerned with the almost holomorphic extension of the principal symbol
p0 of the operator P0, restricted to ΛΦδ,ε , and to ease the notation in this section, we
shall simply write

p0
def= p0|ΛΦδ,ε

.

We shall also assume for simplicity that the characteristic set p−1
0 (0) is composed of

an unique point, say here (0, 0), which corresponds to the point Cn 3 x = 0 on the
FBI-transform side.

Considering the quadratic approximation of the principal symbol p0,

(5.4) q0(x, ξ) =
∑

|α+β|=2

∂αx ∂
β
ξ p0(0, 0)
α!β!

xαξβ ,

at the critical point (0, 0), we may write

(5.5) p0(x, ξ) + hp1(x, ξ)− q0(x, ξ)− hp1(0, 0) = O
(
(h+ |(x, ξ)|2)

3
2
)
, 0 < h ≤ 1,

where p1 stands for the subprincipal symbol of the symbol P (x, ξ;h) appearing in
its asymptotic expansion (1.12). Using this quadratic approximation, we aim in this
section at getting local resolvent estimates for the operator P0 in the following tiny
neighborhood of the doubly characteristic point

|x| ≤
√
ε,

on the FBI-transform side. Working in this region, we can first notice that we may
replace Φδ,ε by the strictly plurisubharmonic quadratic form Φoδ, introduced in (4.10),
since the identities (2.30), (3.11) and (4.11) induce that the two L2-norms associated
to these weight functions are equivalent in the region where |x| ≤

√
ε,

(5.6) exp
(
−O(1)(A+A3/2h1/2)

)
≤ e−

2Φδ,ε(x)
h e

2Φoδ(x)
h ≤ exp

(
O(1)(A+A3/2h1/2)

)
,

for each fixed constant A� 1.
By assuming therefore that the weight function Φδ,ε is equal to the quadratic form

Φoδ in the region where |x| ≤
√
ε, we realize the operators pw0 (x, hDx), pw1 (x,Dx), P0

and Q0 with a contour as in (3.14). We deduce from this realization and (5.5) that
the difference between the corresponding effective kernels of pw0 (x,Dx) +hpw1 (x, hDx)
and Q0 + hp1(0, 0) is, for some D > 0,

OA(1)h−ne−
D
h |x−y|

2
(h+ |x|2 + |y|2)

3
2 = OA(1)h−ne−

D
h |x−y|

2
(h

3
2 + |x|3 + |x− y|3),

which implies as in [4] (see (6.9)) that

(5.7) ‖pw0 (x, hDx)u+ hpw1 (x, hDx)u−Q0u− hp1(0, 0)u‖HΦδ,ε (|x|≤
√
Ah)

= OA(h
3
2 )‖u‖HΦδ,ε

,

where the notation OA is here to emphasize that the constant may depend on the
large parameter A which will be chosen later on.

Keeping in mind that the operator Q0 is realized with a contour as in (3.14) and
using the fact that its symbol is a quadratic polynomial, we check that if the quantity
Q0u is replaced by the corresponding differential expression∑

|α+β|=2

∂αx ∂
β
ξ p0(0, 0)
α!β!

(
xα(hDx)β

)w
u,

on the FBI-transform side, we then commit an error w satisfying

(5.8) ‖w‖HΦδ,ε (|x|≤
√
Ah) ≤ e

− 1
Ch ‖u‖HΦδ,ε

,
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for some C > 0.
Continuing to follow [4] (Section 6), we can now consider the change of variables

on the FBI-transform side

x =
√
εx̃, hDx =

√
εh̃Dx̃,

with h̃ = A−1. Then, setting Q̃0 = q0(x̃, h̃Dx̃)w, homogeneity properties imply that

(5.9) Q0 = qw0 (x, hDx) =
h

h̃
qw0 (x̃, h̃Dx̃) =

h

h̃
Q̃0,

and, with d = d(x) = |x|, d̃ = d(x̃) = |x̃|; we have the following identities, since Φoδ(x)
is a quadratic form

(5.10) h+ d2 =
h

h̃
(h̃+ d̃2), e−

2Φoδ(x)
h = e−

2Φoδ(x̃)

h̃ .

Let χ0 ∈ C∞0 (Cn) be fixed and equal to 1 near the set where |x| ≤ 1. For k ∈ R,
we can then apply Lemma 4.0.1 to the operator Q̃0 to get that for any z belonging
to a fixed compact set avoiding the eigenvalues of the operator Q̃0|h̃=1, the following
estimate is fulfilled

(5.11) ‖(h̃+ d̃2)1−kχ0(x̃)ũ‖ ≤ O(1)‖(h̃+ d̃2)−kχ0(x̃)(Q̃0 − h̃z)ũ‖+O(h̃
1
2 )‖1lK ũ‖,

where K is a fixed neighborhood of supp(∇χ0). Here the norm is taken with respect
to the weight e−2Φoδ(x̃)/h̃. By noticing that we can replace the term O(h̃

1
2 )‖1lK ũ‖ by

O(h̃
1
2 )‖(h̃+ d̃2)1−k1lK ũ‖,

and that in view of (5.9) the two operators Q0|h=1 and Q̃0|h̃=1 have the same spectra,
we get from (5.9), (5.10) and (5.11) by coming back to initial variables x, h, that
for any z belonging to a fixed compact set avoiding the eigenvalues of the operator
Q0|h=1, we have∥∥∥( h̃

h

)1−k
(h+d2)1−kχ0

( x√
Ah

)
u
∥∥∥ ≤ O(1)

∥∥∥( h̃
h

)1−k
(h+d2)−kχ0

( x√
Ah

)
(Q0−hz)u

∥∥∥
+ C̃h̃

1
2

∥∥∥( h̃
h

)1−k
(h+ d2)1−k1lK

( x√
Ah

)
u
∥∥∥,

which finally induces the following result:

Lemma 5.0.2. Let χ0 ∈ C∞0 (Cn) be fixed and equal to 1 near the set where |x| ≤ 1,
and fix k ∈ R. Then for z varying in a compact set that does not contain any
eigenvalues of the operator Q0|h=1 described in (4.21), we have with d(x) = |x|,

(5.12)
∥∥∥(h+ d2)1−kχ0

( x√
Ah

)
u
∥∥∥ ≤ O(1)

∥∥∥(h+ d2)−kχ0

( x√
Ah

)
(Q0 − hz)u

∥∥∥
+O

( 1√
A

)∥∥∥(h+ d2)1−k1lK
( x√

Ah

)
u
∥∥∥,

when 0 < h � 1 and A � 1, where K is any fixed neighborhood of supp(∇χ0) and
1lK stands for its characteristic function. Here the norm is taken with respect to
the weight e−2Φoδ(x)/h. According to (5.6), all these norms with respect to the weight
e−2Φoδ/h can then be replaced by norms with respect to the weight e−2Φδ,ε/h in the
previous estimate.
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6. Local resolvent estimates in the exterior region

We shall now establish local resolvent estimates in the region outside the tiny
neighborhood of the doubly characteristic set considered in the previous section. As in
Section 5, we shall continue to assume for simplicity only that the doubly characteristic
set p−1

0 (0) is composed of a unique point, say here (0, 0) ∈ R2n, which corresponds to
the point Cn 3 x = 0 on the FBI-transform side.

Considering always the same IR-manifold

ΛΦδ,ε = κT (Λδ,ε) =
{(
x,

2
i

∂Φδ,ε
∂x

(x)
)

: x ∈ Cn
}
,

associated to the weight Gε as in the previous section, we recall that the small pa-
rameter ε is taken equal to

ε = Ah, A� 1,

where h stands for the semiclassical parameter and A a large parameter still remaining
to be chosen. The purpose of this section is to get a local resolvent estimate in the
region outside the tiny

√
ε–neighborhood of the doubly characteristic point 0 studied

in the previous section. We shall therefore be concerned with studying the following
region on the FBI-transform side of the IR-manifold ΛΦδ,ε ,

(6.1) |x| ≥
√
ε.

We begin by noticing from (3.4) and (3.11) that we have

(6.2) ξ = −Im x+O(δ
√
ε),

when (x, ξ) ∈ ΛΦδ,ε . When working in the unbounded region (6.1), we recall from
Proposition 3 that we have

(6.3) Re
((

1− ic̃ δε
|x|2

)
p0

(
x,

2
i

∂Φδ,ε(x)
∂x

))
≥ δε

C̃
,

when |x| ≥
√
ε. It is therefore convenient to consider again the new variables

(6.4) x =
√
εx̃.

In these new coordinates, the IR-manifold ΛΦδ,ε then becomes replaced by

(6.5) ΛeΦδ,ε =
{(
x̃,

2
i

∂Φ̃δ,ε(x̃)
∂x̃

,
)

: x̃ ∈ Cn
}
,

with

(6.6) Φ̃δ,ε(x̃) =
1
ε

Φδ,ε(
√
εx̃).

We notice from (6.2) and (6.6) that the function ∇2Φ̃δ,ε belongs to the space L∞(Cn)
uniformly with respect to the parameters 0 < δ ≤ δ0 and 0 < ε ≤ ε0, since it is the
case for the function ∇2Φδ,ε; and that

ξ̃ = −Im x̃+O(δ),

along the IR-manifold ΛeΦδ,ε . Writing

(6.7)
1
ε
pw0 (x, hDx) =

1
ε
pw0
(√
ε(x̃, h̃Dex)

)
,

with

(6.8) h̃ =
h

ε
=

1
A
,
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we shall work with the h̃–pseudodifferential operator

P̃ε =
1
ε
pw0 (x, hDx),

whose Weyl symbol is given by

(6.9) p̃ε(x̃, ξ̃) =
1
ε
p0

(√
ε(x̃, ξ̃)

)
,

fulfilling for any k ≥ 0,
∇kp̃ε = O(εk/2−1),

so that in particular, we have

(6.10) ∇kp̃ε = O(1),

uniformly with respect to the parameter 0 < ε ≤ ε0 on ΛeΦδ,ε , when k ≥ 2. Recalling
that

p0 = p0 ◦ κ−1
T ,

where κT is the linear canonical transformation defined in (3.2), this remark together
with the fact that we have the estimate

p0(x, ξ) = O(|(x, ξ)|2),

near the origin since (0, 0) is a doubly characteristic point for the symbol p0; imply
that in any region along ΛeΦδ,ε where the variables x̃ remains bounded, we have

p̃ε = O(1),

uniformly with respect to the parameter 0 < ε ≤ ε0; while

p̃ε = O(|x̃|2),

when |x̃| → +∞. It follows from (6.3) that along the IR-manifold ΛeΦδ,ε the symbol
(6.9) satisfies the following estimate

(6.11) Re
((

1− ic̃ δ

|x̃2|

)
p̃ε

(
x̃,

2
i

∂Φ̃δ,ε(x̃)
∂x̃

))
≥ δ

C̃
.

in the region where |x̃| ≥ 1; and we recall that associated with the IR-manifold ΛeΦδ,ε
is the weighted space

HeΦδ,ε,eh(Cn),

where the index h̃ is here to remind us that the new semiclassical parameter used in
the definition of this space is now h̃. Since from (6.6), we have

Φ̃δ,ε(x̃)

h̃
=

Φδ,ε(x)
h

,

we notice that the map
u(x) 7→ ũ(x̃) = εn/2u(

√
εx̃),

then maps unitarily the spaces HΦδ,ε,h(Cn) = HΦδ,ε(Cn) to HeΦδ,ε,eh(Cn).
The idea is then to make use of the fundamental quantization vs. multiplication for-

mula in the space HeΦδ,ε,eh(Cn) applied to the operator P̃ε. This fundamental formula
was established in the analytic case in [16] and in the C∞ case in [4] (Section 3.4).
Since, as we have already observed, the symbol p̃ε may exhibit some quadratic growth,
its use requires a bit some care. We verify in the following Proposition that this for-
mula can still be applied in our case.
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Proposition 4. Let ψ(x̃) ∈ C∞b (Cn) be such that ∇ψ = O(|x̃|−1) when |x̃| → +∞.
Then the quantization vs. multiplication formula holds

(6.12) (ψP̃εũ, ũ)eΦδ,ε,h̃ =
∫

Cn
ψ(x̃)p̃ε

(
x̃,

2
i

∂Φ̃δ,ε(x̃)
∂x̃

)
|ũ(x̃)|2e−

2eΦδ,ε(ex)eh L(dx̃)

+O(h̃)‖ũ‖2eΦδ,ε,h̃.

Proof. The proof of this proposition follows by inspection of the arguments given
in [4] (Section 3.4). Writing a contour integral representation for the quantity P̃εũ
obtained by making a change of scales in the contour integral (3.14), we shall consider
the Taylor expansion of the expression

p̃ε

( x̃+ ỹ

2
, θ̃
)
,

along the corresponding contour to get that

(6.13) p̃ε

( x̃+ ỹ

2
, θ̃
)

= p̃ε
(
x̃, ξ(x̃)

)
+

n∑
j=1

fj,ε(x̃)
(
θ̃j − ξj(x̃)

)
+

n∑
j=1

gj,ε(x̃)(ỹj − x̃j)

+ r̃ε(x̃, ỹ; θ̃),

where

fj,ε(x̃) = ∂θj p̃ε
(
x̃, ξ(x̃)

)
, gj,ε(x̃) =

1
2
∂xj p̃ε

(
x̃, ξ(x̃)

)
and ξ(x̃) =

2
i

∂Φ̃δ,ε(x̃)
∂x̃

.

We notice in particular that

(6.14) fj,ε(x̃) = O(|x̃|), ∇fj,ε(x̃) = O(1),

uniformly with respect to 0 < ε ≤ ε0 and x̃ ∈ Cn; and that the remainder r̃ε appearing
in right hand side of (6.13) satisfies

r̃ε(x̃, ỹ; θ̃) = O(|x̃− ỹ|2 + h∞),

uniformly with respect to the parameter 0 < ε ≤ ε0; as we know that

∇2p̃ε ∈ L∞ and θ̃ − ξ(x̃) = O(|x̃− ỹ|),
uniformly with respect to the parameter 0 < ε ≤ 1. Arguing as in [4] (Section 3.4),
we see that the contribution to the scalar product (ψP̃εũ, ũ)eΦδ,ε,h̃ coming from this
remainder term r̃ε can be estimated from above by

O(h̃)‖ũ‖2eΦδ,ε,h̃.
The contribution from the third term in the right hand side of (6.13) vanishes as
noticed in [4] (Section 3.4). It therefore remains to study the contribution coming
from the second term in (6.13). Here, arguing as in [4] and [16], we see that this term
contributes the following sum of integrals

n∑
j=1

∫
Cn
ψ(x̃)fj,ε(x̃)

[(
h̃Dexj − ξj(x̃)

)
ũ(x̃)

]
ũ(x̃)e−

2eΦδ,ε(ex)eh L(dx̃).

Integrating by parts, as in [16] (p.9), and using that ũ is a holomorphic function, we
find that each of the terms in this sum is equal to

−
∫

Cn
h̃Dexj(ψ(x̃)fj,ε(x̃)

)
|ũ(x̃)|2e−

2eΦδ,ε(ex)eh L(dx̃).
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Considering

Dexj(ψ(x̃)fj,ε(x̃)
)

= Dexjψ(x̃)fj,ε(x̃) + ψ(x̃)Dexjfj,ε(x̃),

we notice that the second term appearing in the right hand side of the last equality
is uniformly bounded since from (6.14), we know that ∇fj,ε = O(1). As for the first
one, we see using (6.14) and the bound ∇ψ = O(|x̃|−1), that it is bounded as well.
This completes the proof of Proposition 4. �

Considering χ a C∞b (Cn; [0, 1]) function such that χ = 1 when |x̃| is large enough
with

supp χ ⊂ {x̃ ∈ Cn : |x̃| ≥ 1};
and

m(x̃) = 1− ic̃ δ

|x̃|2
,

we shall apply Proposition 4 with the function ψ(x̃) = χ(x̃)m(x̃) and the operator P̃ε
replaced by P̃ε − h̃z; where the spectral parameter z ∈ C satisfies |z| ≤ C for some
fixed C > 0. From now on, the parameter δ > 0 is going to be kept sufficiently small
but fixed. We get from Proposition 4 that the scalar product

(6.15)
(
χm(P̃ε − h̃z)ũ, ũ

)eΦδ,ε,h̃,
is equal to∫

Cn
χ(x̃)m(x̃)p̃ε

(
x̃,

2
i

∂Φ̃δ,ε(x̃)
∂x̃

)
|ũ(x̃)|2 e−

2eΦδ,ε(ex)eh L(dx̃) +O(h̃)‖ũ‖2eΦδ,ε,h̃.
Since

Re
(
χm(P̃ε − h̃z)ũ, ũ

)eΦδ,ε,h̃
=
∫

Cn
χ(x̃)Re

[
m(x̃)p̃ε

(
x̃,

2
i

∂Φ̃δ,ε(x̃)
∂x̃

)]
|ũ(x̃)|2e−

2eΦδ,ε(ex)eh L(dx̃) +O(h̃)‖ũ‖2eΦδ,ε,h̃,
we deduce from the Cauchy-Schwarz inequality and the estimate (6.11) holding on
the support of the function χ that∫

Cn
χ(x̃)|ũ(x̃)|2e−

2eΦδ,ε(ex)eh L(dx̃) ≤ O(1)‖(P̃ε − h̃z)ũ‖eΦδ,ε,h̃‖ũ‖eΦδ,ε,h̃ +O(h̃)‖ũ‖2eΦδ,ε,h̃.
We can now come back to the original variables x =

√
εx̃ and obtain that

ε

∫
Cn
χ
( x√

ε

)
|u(x)|2e−

2Φδ,ε(x)
h L(dx) ≤ O(1)‖(pw0 (x, hDx)− hz)u‖Φδ,ε‖u‖Φδ,ε

+O(h)‖u‖2Φδ,ε .

It follows from (3.7) that the operator P0 = Pw0 (x, hDx;h) also fulfills

ε

∫
Cn
χ
( x√

ε

)
|u(x)|2e−

2Φδ,ε(x)
h L(dx) ≤ O(1)‖(P0 − hz)u‖Φδ,ε‖u‖Φδ,ε +O(h)‖u‖2Φδ,ε .

Finally, by recalling that ε = Ah, we can rewrite this estimate as

(6.16) h

∫
Cn
χ
( x√

Ah

)
|u(x)|2e−

2Φδ,ε(x)
h L(dx) ≤ O(1)‖(P0 − hz)u‖Φδ,ε‖u‖Φδ,ε

+O
( h
A

)
‖u‖2Φδ,ε ,

where A� 1 is a large parameter remaining to be chosen.
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7. Proof of Theorem 1

In this section, we shall glue together the local resolvent estimates that we estab-
lished first in a tiny neighborhood of the doubly characteristic set (Section 5) and
then in the exterior region considered in the previous section in order to complete the
proof of Theorem 1.

By considering the same cutoff function χ0 ∈ C∞0 (Cn, [0, 1]) as in Section 5 and
going back to (5.12) with k = 1/2, we deduce from this estimate and the triangle
inequality that there exists C > 0 such that∥∥∥(h+ d2)

1
2χ0

( x√
Ah

)
u
∥∥∥

Φδ,ε
(7.1)

≤ C
∥∥∥(h+ d2)−

1
2χ0

( x√
Ah

)(
pw0 (x, hDx) + hpw1 (x, hDx)− hz

)
u
∥∥∥

Φδ,ε

+ C
∥∥∥(h+ d2)−

1
2χ0

( x√
Ah

)(
pw0 (x, hDx) + hpw1 (x, hDx)−Q0 − hp1(0, 0)

)
u
∥∥∥

Φδ,ε

+
C̃√
A

∥∥∥(h+ d2)
1
2 1lK

( x√
Ah

)
u
∥∥∥

Φδ,ε
,

for all z varying in a compact set such that the set z − p1(0, 0) does not contain any
eigenvalues of the operator Q0|h=1 described in (4.21). We recall that Q0 stands here
for the operator appearing in (5.7). Since on the supports of the functions χ0(x/

√
Ah)

and 1lK(x/
√
Ah), one can estimate the quantity h+ d2 by

h ≤ h+ d2 ≤ c1Ah,

with c1 > 0 a positive constant independent of the parameters A and h; we deduce
from (5.7) and (7.1) that there exist some positive constants c2 and c3,A, where the
constant c2 is independent of the parameters A and h, whereas c3,A may actually
depend on A but not on h; such that

(7.2) h
1
2

∥∥∥χ0

( x√
Ah

)
u
∥∥∥

Φδ,ε
≤ c2h−

1
2
∥∥(pw0 (x, hDx) + hpw1 (x, hDx)− hz

)
u
∥∥

Φδ,ε

+ c3,Ah‖u‖Φδ,ε + c2h
1
2

∥∥∥1lK
( x√

Ah

)
u
∥∥∥

Φδ,ε
.

It follows from (3.7) that the operator P0 = Pw0 (x, hDx;h) also fulfills

(7.3) h
1
2

∥∥∥χ0

( x√
Ah

)
u
∥∥∥

Φδ,ε
≤ c2h−

1
2
∥∥(P0 − hz

)
u
∥∥

Φδ,ε
+ c3,Ah‖u‖Φδ,ε

+ c2h
1
2

∥∥∥1lK
( x√

Ah

)
u
∥∥∥

Φδ,ε
,

where c3,A stands for a new constant depending on the parameter A but not on h.
Recalling that here K stands for a fixed neighborhood of the support of the function
∇χ0, we get from (7.3) upon squaring that

(7.4) h
∥∥∥χ0

( x√
Ah

)
u
∥∥∥2

Φδ,ε
≤ O(1)

h
‖(P0 − hz)u‖2Φδ,ε +OA(h2)‖u‖2Φδ,ε

+O(h)
∥∥∥1lK

( x√
Ah

)
u
∥∥∥2

Φδ,ε
.
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On the other hand, we get from the estimate (6.16) that

(7.5) h

∫
Cn
χ
( x√

Ah

)
|u(x)|2e−

2Φδ,ε(x)
h L(dx) + h

∥∥∥1lK
( x√

Ah

)
u
∥∥∥2

Φδ,ε

≤ O(1)‖(P0 − hz)u‖Φδ,ε‖u‖Φδ,ε +O
( h
A

)
‖u‖2Φδ,ε ,

and we then obtain by collecting (7.4) and (7.5) that

h

∫
Cn
|u(x)|2e−

2Φδ,ε(x)
h L(dx) ≤ O(1)‖(P0 − hz)u‖Φδ,ε‖u‖Φδ,ε

+
O(1)
h
‖(P0 − hz)u‖2Φδ,ε +

(
O
( h
A

)
+OA(h2)

)
‖u‖2Φδ,ε .

Here we have also used that we arrange, as we may, that χ + χ2
0 ≥ 1 on Cn. By

multiplying by the parameter h and using that

O(1)h‖(P0 − hz)u‖Φδ,ε‖u‖Φδ,ε ≤ O(1)‖(P0 − hz)u‖2Φδ,ε +
h2

2
‖u‖2Φδ,ε ,

we get that

h2

∫
Cn
|u(x)|2e−

2Φδ,ε(x)
h L(dx) ≤ O(1)‖(P0 − hz)u‖2Φδ,ε +

h2

2
‖u‖2Φδ,ε

+
(
O
(h2

A

)
+OA(h3)

)
‖u‖2Φδ,ε .

By now choosing the parameter A sufficiently large, but fixed; and then considering
a positive constant h0 > 0 sufficiently small, 0 < h0 � 1, depending on the choice
done for the value of the constant A, we obtain that for all 0 < h ≤ h0,

(7.6) h‖u‖Φδ,ε ≤ O(1)‖(P0 − hz)u‖Φδ,ε .

Let us underline that one can then replace in this estimate the weight function Φδ,ε
by the standard quadratic weight Φ0 defined in (3.4) at the expense of an O(1)–
loss. Indeed, this follows from the fact that according to (3.13), the two associated
L2-norms are equivalent since we have

exp
(
−O(A)

)
≤ e−

2Φδ,ε
h e

2Φ0
h ≤ exp

(
O(A)

)
.

It is now easy to complete the proof of Theorem 1 . In doing so, it is sufficient to
go back to the L2–side by undoing the FBI transform T in (7.6) to get that for all
u ∈ L2(Rn) and 0 < h ≤ h0,

(7.7) h‖u‖L2 ≤ O(1)‖(P − hz)u‖L2 ,

for all z varying in a compact set such that the set z − p1(0, 0) does not contain
any eigenvalues of the operator qw1 (x,Dx) described in (4.21). This ends the proof
of Theorem 1 since we recall that we were considering here, for simplicity only, the
case when the doubly characteristic set is reduced to an unique point X1 = (0, 0). In
the general case when the doubly characteristic set is composed of a finite number of
points

p−1
0 (0) = {X1, ..., XN},

a simple adaptation of the previous arguments allows to establish similar estimates
as (7.4) near each doubly characteristic point Xj when the spectral parameter z stays
in a compact set as described in the statement of Theorem 1. We then conclude
the proof of Theorem 1 by using a similar a priori estimate as (7.5) in the exterior
region. �
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