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This paper deals with the acoustics of rigid porous media with inner resonators both saturated by
the same gas. The aim is to define porous media microstructures in which inner resonance phenom-
ena may occur, and to provide the modeling of acoustic waves in this situation. The first part,
focuses on the design of a periodic medium consisting in damped Helmholtz resonators embedded
in a porous matrix. In the second part, the macroscopic description of this system is established
through the homogenization method. In the third part, the features of acoustic wave propagation are
determined, and the occurrence of a broad band gap along with strongly dispersed waves is
discussed according to the characteristics of the porous matrix and of the damped resonators.
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I. INTRODUCTION

This paper focuses on acoustic waves in rigid porous
media with embedded inner resonators both saturated by the
same gas. The present study deals with materials that present
a statistically invariant representative volume element, that
are conveniently represented by periodic media.

The idea is to enforce a “partial” non-equilibrium state
at the local scale. Indeed, heterogeneous media, presenting
such a local state are driven at the macroscopic scale by non-
conventional mechanics. Among various examples, let us
mention the local resonance in highly contrasted elastic com-
posites evidenced in the pioneer paper,1 demonstrated in
practice2–4 and analyzed mathematically;5,6 or the transient
inner diffusion in double porosity media7,8 experimentally
evidenced in poro-acoustics.9 Weakly damped resonance
(quasi-elastic composites) or strongly damped resonance
(diffusion mechanisms) yield different macroscopic model-
ing (with or without inner-resonance band gaps frequencies,
respectively). However, their common feature is that their
macroscopic description strongly departs from usual model-
ing. Such materials, currently named “metamaterials,” are of
prime interest for their unconventional properties, that are
seemingly impossible to reach with classical materials.

We investigate heterogeneous porous media where long
wavelength K coincide with some local resonance in the pe-
riod. The scale separation between the macroscopic charac-
teristic length of the wave L ¼ K=2p, and the period size ‘,
introduces the small scale ratio parameter e ¼ 2p‘=K ¼ ‘=L
" 1 and enables the use of the homogenization method
to derive the macroscopic description by means of multiple
scale expansions.10,11 The phenomena differ (1) from
Rayleigh scattering (where wavelengths are slightly longer
than the period, hence local dynamic effects are weak),12,13

and (2) from Bragg scattering at high frequency in periodic
media (where wavelengths are comparable to the period

size),14 e.g., see Refs. 15 and 16. In this latter case, periodic
media can be described through Floquet–Bloch theory,17,18

multiscattering approach19 or by asymptotic method as in
elastic composites20 or in porous media.21

The aim of this paper is twofold: First, define micro-
structures of heterogeneous porous media in which inner res-
onance phenomena may occur, and second, provide the
modeling of acoustic waves in this situation. The first part,
focuses on the design of a periodic medium consisting in
damped Helmholtz resonators embedded in a porous matrix.
In the second part, the macroscopic description of this sys-
tem is established through the homogenization method. In
the third part, the features of acoustic wave propagation are
determined, and the occurrence of a broad band gap along
with strongly dispersed waves is discussed according to the
characteristics of the matrix and of the resonators.

II. HETEROGENEOUS RIGID POROUS MEDIA WITH
INNER RESONANCE

A. Conditions for “co-dynamics” regime

In heterogeneous media, the coexistence of dynamic
phenomena at both micro and macro scales, named here af-
ter “co-dynamics,” is a situation that only occurs with spe-
cific microstructural configurations. In usual elastic
composites or single porosity media, when the macroscopic
wavelength is much larger than the Representative
Elementary Volume (REV), the whole cell experiences a
quasi-static equilibrium state. Conversely, inner resonance
means that, a sub-domain of the cell experiences a dynamic
state [the resonating component(s)], while the complemen-
tary domain experiences a quasi-static state and acts as con-
veyor for the long wavelength [the carrying component(s)].
According to the physics in consideration the requirements
for “co-dynamics” differ. Nevertheless, since a macro-
scopic phenomenon remains, these situations can be
handled through the homogenization method.10,11 It is use-
ful to recall briefly the cases of elastic meta-material,1,22

and of double porosity media.7,8
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1. General considerations

In elastic composites, the distinct roles of the constitu-
ents imposed by “co-dynamics” entail that the carrying con-
stituent is considerably much stiffer than the resonating
constituent (when the density of the constituents are of the
same order).1,2,22 Further, the stiff domain must be con-
nected meanwhile the soft resonating domain may be either
connected or unconnected. At the leading order, the stress
state is determined by the stiff constituent that moves at the
cell scale in uniform motion. This uniform motion is
imposed to the boundary of the soft constituent. In this latter,
because of the dynamic “elasto-inertial” regime, the motion
is not uniform and depends on the frequency. As a conse-
quence, the mean inertia of the REV is also frequency de-
pendent and the effective apparent density reaches infinite
values (positive or negative) at the eigen-frequencies of the
resonating constituent. In practice, the singularities are regu-
larized by the presence of a weak damping. The inner reso-
nance induces narrow band-gaps centered around the eigen-
frequencies of the soft domain. These band gaps are of dif-
ferent nature than those related to diffraction at high fre-
quency in periodic systems, since they occur here at large
wavelength.

In gas saturated rigid double porosity media, “co-
dynamics” imposes the carrying constituent to be far more
permeable than the resonating constituent.8,9,23 The very per-
meable domain must be connected, but the weakly permea-
ble domain may be either connected or unconnected. At the
leading order, the gas flux is determined by the permeable
constituent that undergoes at the cell scale an uniform pres-
sure. This uniform pressure is imposed to the boundary of
the weakly permeable domain. In this latter, the mass trans-
fer through permeability is balanced by the gas compressibil-
ity. This introduces a “permeo-compression” dynamic state,
and it ensues that the pressure is not uniform and depends on
the frequency. Hence, when considering the global mass bal-
ance, the effective compressibility is frequency dependent.
However, conversely to the “elasto-inertia” resonance, the
“permeo-compression” resonance driven by viscosity is
highly damped. Therefore, no band-gap occurs, yet a signifi-
cant increases of dissipation appears in a wide frequency
band centered around the frequency for which the “permeo-
compression” characteristic size is on the order of the size of
the weakly permeable domain.

The composite and double porosity cases evidence that
a “co-dynamics” regime requires that the flux (of stress or
mass) induced by the resonating domain is sufficiently small
to be negligible at the leading order (so that the effective
constitutive parameters are on the order of those of the carry-
ing constituent), but also sufficiently large to contribute to
the macroscopic balance (as a source term for the carrying
constituent). In this asymmetric interaction, the resonating
domain undergoes a dynamic forced regime imposed by the
carrying constituent.

As inner resonance is a general concept, it applies to dif-
ferent physics as electromagnetism, heat transfer, bubbly flu-
ids,…. Hence, parallels can be established between these
several fields. In elastic composite, the forcing variable is

the motion and the inner resonance induces frequency de-
pendent density; in double porosity media, the forcing vari-
able is the pressure, and the inner resonance induces
frequency dependent compressibility. Similarly, for the
widely studied electromagnetic metamaterials, in media of
highly contrasted electric permittivity (respectively, mag-
netic permeability), the forcing variable is the electromag-
netic (respectively, electric) field and inner resonance results
in frequency dependent magnetic permeability (respectively,
electric permittivity).24

For each physics, the practical conditions to reach this
phenomenon differ and need a specific study. A particularity
of the poro-acoustics case, is that instead of using highly
contrasted constituents, it is sufficient to introduce a
“geometrical contrast” in the microstructure to create a reso-
nating domain behaving as an Helmholtz resonator.

2. Porous media with inner resonators

To investigate “co-dynamics” with “elasto-inertia” reso-
nance in porous media, we consider a periodic 3D medium,
of period X̂, constituted by a rigid single porosity matrix
(carrying constituent) with embedded Helmholtz resonators
(Fig. 1), both domains being saturated by air. For simplicity,
the period is assumed to contain a single Helmholtz resona-
tor Xh that does not intercept the boundary @X̂ of the period.
The period X̂, the resonator Xh, and the porous matrix do-
main X, present a common characteristic size ‘, and the con-
centration of resonators is c ¼ jXhj=jX̂j.

The porous matrix presents pores much smaller than ‘
(this condition is not mandatory; cf. Sec. III C 3). Thus, at the
scale of the period, the matrix is described by the classic
poro-acoustics as derived phenomenologically,25–29 or by
homogenization.8,11

The resonator Xh is made of a “chamber” ~X and a con-
stricted “duct” X0 both delimited by a thin impervious rigid
surface ~C and C0. The duct is of length ‘0 ¼ Oð‘Þ and its con-
stant section R (aperture on the matrix) and ~R (aperture on
the chamber) is much smaller than that of the period, i.e.,
jRj=‘2 " 1, so that the duct volume jX0j ¼ OðjRj‘Þ is negli-
gible compared to j~Xj, and j~Xj % jXhj. For convenience, the
duct is assumed to be located inside the chamber so that the
interface C between the porous matrix and the resonator is
C ¼ ~C [ R. Figure 1 depicts a configuration with an

FIG. 1. (Left) Porous matrix with periodically embedded spherical
Helmholtz resonators. (Right) Period of the media with spherical Helmholtz
resonator.
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Helmholtz resonator made of a spherical cavity of radius R
with a duct of length R having a radius aR, a" 1.

A key condition for having a “co-dynamics” regime lies
in the geometrical contrast between jRj and ‘2. This is tra-
duced mathematically by setting jRj ¼ O ðe‘2Þ, i.e., the sec-
tion of the duct is 1 order smaller than the period section.
With this geometrical constraint, the pressure that prevails in
the matrix acts on the small aperture R and induces a flux
pulsed by the resonator. With a velocity v0 in the duct of the
same order as the velocity v in the porous matrix, i.e.,
OðjvjÞ ¼ Oðjv0jÞ, the pulsed flux is of 1 order smaller than
the flux carried through the matrix Oðjv0jjRj=jvj‘2Þ
¼ OðjRj=‘2Þ ¼ e" 1. Nevertheless this flux contributes as a
source to the mass balance of the gas in the matrix. This cor-
responds to a forced regime of the resonator, enabling the
co-dynamics regime. In absence of geometric contrast, i.e.,
jRj ¼ Oð‘2Þ, the domain Xh would behaves as a large pore
without resonance effect, and for extreme geometric con-
trast, i.e., jRj & Oðe2‘2Þ, the source due to the resonator
would be negligible in the mass balance at the leading order.

The second condition to have a “co-dynamics” regime
is related to the permeability and is established in Sec. II B 2.

B. Physics at the local scale

We investigate small acoustic perturbations in the fre-
quency range of long wavelength and dynamic regime in the
resonators. The analysis is performed in the Fourier space
with harmonic time dependence exp ðixtÞ where x and f ¼
x=2p are the angular frequency and the frequency. For air at
ambient condition, the pressure and density at equilibrium
are, respectively, Pe¼ 1.013'105Pa, qe¼ 1.2kg/m3; Ce

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cPe=qe

p
¼ 343, 3 m/s is the sound velocity, c¼ 1.4 the

adiabatic coefficient, l¼ 1.85' 10(5 Pa s the viscosity.

1. Helmholtz resonators

Each resonator responds to the perturbation of pressure
P in the matrix according to the known “Helmholtz behav-
ior.” Because of the scale separation, the acoustic wave-
length is much larger than the period, hence than the
chamber size. Then, the gas in the chamber suffers a quasi-
static and adiabatic compression (neglecting thermal trans-
fer), which results in uniform perturbation of pressure ~P,
different from P.

The pressure in the duct varies from P at the aperture R on
the matrix, to ~P at the aperture ~R on the chamber. As the cham-
ber j~Xj is much larger than the duct jX0j, the volume variation
in jX0j is negligible. Then, the gas mass qejX0j moves with a
uniform motion u0. Thus a volume u0jRj is injected in the
chamber, that results in a perturbation of pressure:
~P ¼ cPeu0jRj=j~Xj. In turn, the mass undergoes a force ~PjRj,
from which we deduce the equivalent spring of the gas chamber

k ¼
~PjRj
u0
¼ cPejRj2

j~Xj
:

The motion ~u in the chamber is much smaller than the
motion u0 in the duct since Oð~u=‘Þ ¼ Oð ~P =cPeÞ
¼ Oðu0jRj=j~XjÞ, and Oð~u=u0Þ ¼ jRj=‘2 ¼ e" 1.

Neglecting the viscous forces on the wall of the duct,
the momentum balance equation for the mass in the duct
submitted to P and ~P on its extremities R and ~R, reads

ð ~P ( PÞjRj ¼ qejX0j @
2u0

@t2
;

i:e:; ku0 ( qejX0jx2u0 ¼ PjRj:

The eigen-frequency f0 ¼ x0=2p of the resonator results
from the chamber compressibility and the duct inertia,

x0 ¼ 2p f0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k

qejX0j

s

¼ C
e

d

where d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~XjjX0j

q

jRj
¼ O

‘2

ffiffiffiffiffiffi
jRj

p
 !

: (1)

Since jRj=‘2 " 1, then d) ‘ and the resonance occurs at a
frequency much lower than diffraction frequency of the media
f0 " fd ¼ Ce=ð2p‘Þ. In the situation described in Fig. 1,

x0 ¼ Ce

ffiffiffi
3
p

2

a
R
;

and with a radius cavity of R¼ 2 cm and radius of duct of
aR ¼ 2 mm, f0 % 236 Hz. It is easy to verify that the viscos-
ity effect on the moving mass in the duct is not significant.
Indeed, the flow is governed by inertia for frequencies higher
than the characteristic visco-inertial frequency f 0c ¼ x0c=2p.
For a duct of radius aR

x0c ¼
8l

qeðaRÞ2
;

x0

x0c
¼ C

eqe

l

ffiffiffi
3
p

8
a3R % 2:4' 106a3R:

With the same values as above, x0 % 50' x0c which indi-
cates dominant effects of inertia.

As mentioned previously, a weak amount of dissipation
regularizes the behavior of the resonator. Therefore, in the
following, the viscous dissipation in the duct will be taken
into account. Furthermore, the possibility of increasing the
dissipation will be considered by introducing a porous me-
dium in the duct (see Sec. III C 3). In any case, the flow will
be driven by a dominant inertia effect (i.e., x0 * x0c) as in
usual Helmholtz resonators.

2. Porous matrix

At the period scale, the matrix of porosity /m is
regarded as an equivalent homogeneous medium described
by the classic poro-acoustics. For simplicity, the matrix is
assumed isotropic and the dynamic permeability tensor and
tortuosity tensor reduce to scalar functions Km and
sm ¼ l=ðixqeKmÞ. Km, sm and the effective gas stiffness
Em ¼ ðPe=/mÞð1(PmÞ(1, depend on the frequency. At low
frequencies, the flow is driven by the viscosity, then
Km ! Km, the real-valued intrinsic permeability; and the
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perturbation is quasi-isotherm so Em ! Pe=/m. Hence, in
viscous regime, the wavelength is on the order of

KmðxÞ=ð2pÞ ¼ Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KmPe=ðxl/mÞ

p
Þ. At high frequencies,

the flow is driven by the inertia, then
Km ! ð/mlÞ=ðixqeam1Þ, where am1 is the high frequency
limit of the tortuosity, and the perturbation is quasi-
adiabatic, thus Em ! cPe=/m and the wavelength in inertial
regime is on the order of KmðxÞ=ð2pÞ ¼ OðCe=ð ffiffiffiffiffiffiffiffiam1

p
xÞÞ.

The two regimes are delimited by the critical frequency xc

derived by equalizing the low frequency viscous effects and
the high frequency inertial effects: xc ¼ ð/mlÞ=ðKmqeam1Þ
[the isothermal/adiabatic transition occurs at a frequency
xt ¼ OðxcÞ].

Because of the scale separation, the pressure in the ma-
trix varies at the macro (i.e., wavelength) scale and is there-
fore uniform in the period at the leading order. The velocity
in the matrix is not uniform because of the conditions on the
resonator surface C, i.e., impervious condition on ~C and con-
tinuity of flux and pressure on the aperture surface R.

It is worth mentioning that the “co-dynamics” condition is
naturally fulfilled when the resonance occurs at frequency cor-
responding to the inertial regime in the matrix, i.e., x0 > xc.
Indeed, in this case Kmðx0Þ=ð2pÞ ¼ OðCe=ð ffiffiffiffiffiffiffiffiam1

p
x0ÞÞ

¼ ‘2=
ffiffiffiffiffiffi
jRj

p
) ‘ [see (1)], that ensures the coexistence of local

and global dynamics. From the expressions of x0 and xc this
situation arises when

Kmam1

/m
>

l
qeCe d ¼ l

qeCe O
‘2

ffiffiffiffiffiffi
jRj

p
 !

:

Conversely, when the resonance occurs at frequency corre-
sponding to the viscous regime in the matrix, i.e., x0 < xc, the
“co-dynamics” condition is rather restrictive. Indeed, the scale
separation condition Kmðx0Þ=ð2pÞ ) ‘ reads in that case

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KmPe=ðxl/mÞ

p
) ‘:

The two inequalities leads to the following requirement for
the permeability

‘2

d
am1

c
" Kmam1

/m

qeCe

l
< d:

That is also, dividing by ‘ and since am1=c ¼ Oð1Þ,
‘=d ¼

ffiffiffiffiffiffi
jRj

p
=‘ ¼ Oð

ffiffi
e
p
Þ,

Oð
ffiffi
e
p
Þ " Kmam1

‘/m

qeCe

l
< O

1ffiffi
e
p
" #

hence
Kmam1

‘/m

qeCe

l
¼ Oð1Þ: (2)

Consequently, both frequency ranges show that “co-
dynamics” situations can be reached only when

Kmam1

/m
* l

qeCe Oð‘Þ; i:e:; x0=xc * Oð‘=dÞ ; (3)

which means that the porous matrix must be in inertial or
visco-inertial regime, but not in almost purely viscous re-
gime ðx0=xc " 1Þ.

III. ACOUSTICS OF POROUS MEDIA WITH INNER
RESONANCE

As we consider wavelength K much longer than the
size ‘ of the period, we take benefit of the small scale ratio
e ¼ 2pl=K ¼ ‘=L" 1 to introduce multiple scale expan-
sions, and derive the macroscopic description by homogeni-
zation. The micro and macro scales introduce two sets of
dimensionless 3D space variables, x/l¼ y* and x/L¼ x*
associated to the variations at both scales, where x stands for
the usual space variables. Equivalently, taking L as reference
length, two 3D space variables, y¼Ly*¼ e(1x and
x¼Lx*¼ x will be used, the usual derivative being then
changed into e(1@=@yþ @=@x. The homogenization process
is achieved as usual.10,11 The variables are expanded in
power of e, each term (specified by exponents in brackets)
being X̂ periodic. The expansions are introduced in the equa-
tions rewritten with the two-scale derivatives and rescaled
according to the physics. The terms of the same power in e
are identified, and the problems in series are solved until the
equation governing the phenomena at the leading order is
obtained.

A. Formulation of the problem at the local scale

The governing equations at the local scale are given
below. The variables in each domain are the perturbation of
pressure p and the velocity v [by linearity, the harmonic time
dependence exp(ixt) is skipped]. In the duct, they are
denoted by a prime, in the chamber by a tilde.

1. Porous matrix

The poro-acoustic description in the matrix reads

divðvÞ þ ix
p

Pe
/mð1(PmÞ ¼ 0 on X;

v ¼ (Km

l
,rp on X;

v , n ¼ 0 on ~C; v , n ¼ v0 , n; p ¼ p0 on R;
v; p; X̂-periodic:

8
>>>>>><

>>>>>>:

(4)

In the porous matrix, the pressure p and the velocity v are
expanded as

pðx; yÞ ¼ pð0Þðx; yÞ þ epð1Þðx; yÞ þ , , , ;
vðx; yÞ ¼ vð0Þðx; yÞ þ evð1Þðx; yÞ þ , , , :

As the pressure and density vary at the macroscale, these
equations do not need to be rescaled when re-expressed with
the double ðx; yÞ variable system, since L is the reference
length. However, the fact that jRj ¼ Oðe‘2Þ ¼ OðejCjÞ will
be explicitly taken into account in the resolution.

2. Gas in the duct

In the duct, he governing equations of the compressible
viscous gas in adiabatic regime are
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divðv0Þ þ ix
p0

cPe
¼ 0 on X0;

ldivðDðv0ÞÞ (rp0 ¼ ixqev0 on X0;
v0 , n ¼ 0 on C0; v0 , n ¼ v , n; p0 ¼ p on R;
v0 , n ¼ ~v , n; p0 ¼ ~p on ~R;

8
>>>><

>>>>:

(5)

where D(v) is the strain rate. The pressure and the velocity
in the duct are of the same order as in the porous matrix and
are expanded as

p0ðx; yÞ ¼ p0ð0Þðx; yÞ þ ep0ð1Þðx; yÞ þ , , , ;

v0ðx; yÞ ¼ v0ð0Þðx; yÞ þ ev0ð1Þðx; yÞ þ , , , :

As the pressure and shear forces vary in the duct, when re-
expressed with the ðx; yÞ variables (recall that L is the refer-
ence length), the terms ldivðDðv0ÞÞ and rp0 have to be
rescaled as lð‘=LÞ2divðDðv0ÞÞ ¼ le2divðDðv0ÞÞ and
‘=Lrp0 ¼ erp0, respectively. Thus, the x-y-rescaled
Navier–Stokes equation takes the following form:

le2divðDðv0ÞÞ ( erp0 ¼ ixqev0 on X0: (6)

3. Gas in the chamber

The same set of balance equations as for the duct applies
for the chamber

divð~vÞþ ix
~p

cPe
¼0; ldivðDð~vÞ(r~p¼ ixqe~v on ~X;

~v ,n¼0 on ~C [C0; ~v ,n¼v0 ,n; ~p¼p0 on ~R:

8
<

:

(7)

The pressure in the chamber is of the same order as in the
porous matrix. As for the velocity, we noticed in the previ-
ous section that Oð~u=u0Þ ¼ OðeÞ. Hence, the expansions
read

~pðx; yÞ ¼ ~pð0Þðx; yÞ þ e~pð1Þðx; yÞ þ , , , ;
~vðx; yÞ ¼ e~vð1Þðx; yÞ þ , , , :

In the chamber, the shear forces vary at the local scale.
Consequently, ldivðDð~vÞÞ is rescaled as le2divðDð~vÞ and,
the “x-y-rescaled” Navier-Stokes equation is

le2divðDð~vÞÞ (r~p ¼ ixqe~v on X0: (8)

B. Macroscopic description

As the scaling enables to match the “co-dynamics” sit-
uation, the requirement (3) is necessarily and implicitly sat-
isfied in the sequel.

1. Resolution in the matrix

The first cell problem encountered in the matrix, derived
from set (4) reads

divy (
Km

l
,rypð0Þ

" #
¼0 on X

( Km

l
,rypð0Þ

" #
,n¼0 on ~C[R; pð0Þ; X̂-periodic;

8
>>><

>>>:

whose obvious solution is pð0Þðx; yÞ ¼ Pð0ÞðxÞ.
The next order, gives the cell problem driving pressure

pð1Þðx; yÞ and velocity vð0Þðx; yÞ,

vð0Þ ¼ (Km

l
, ðrypð1Þ þrxpð0ÞÞ; divyðvð0ÞÞ ¼ 0 on X;

vð0Þ , n ¼ 0 on ~C; vð0Þ , n ¼ v0ð0Þ , n on R;
pð1ÞX̂-periodic:

8
>>><

>>>:

The equivalent weak formulation is established by multiply-
ing the balance equation by a test pressure field pðyÞ X̂-peri-
odic. Integrating over X and using the divergence theorem
gives

(
ð

X

Km

l
, ðrypð1Þ þrxPð0ÞÞ

" #
,rypdX

¼
ð

@X̂
vð0Þ , npdsþ

ð

~C
vð0Þ , npdsþ

ð

R
vð0Þ , npds:

On the right hand side, the two first integrals vanish because
of the periodicity on @X̂ and the impervious boundary condi-
tions on ~C. As for the last term, since jRj ¼ OðejCjÞ, its con-
tribution is OðeÞ relatively to the left hand side terms, and
therefore can be disregarded at the considered order.
Consequently, pð1Þ ¼ p-ð1Þð1þ OðeÞÞ, where p-ð1Þ is the so-
lution of the variational problem

8pðyÞ X̂-periodic;

ð

X

Km

l
,ryp-ð1Þ

" #
,rypdX

¼ (
ð

X

Km

l
,rxPð0Þ

" #
,rypdX:

This is a problem of conduction through a matrix with non-
conducting inclusions. As Km is uniform, the problem is
purely geometric. The solution reads

p-ð1Þ ¼ nðyÞ ,rxPð0ÞðxÞ;

where the three components of nðyÞ are the particular real-
valued solutions for unit pressure gradient in three direc-
tions.10 The local flux reads vð0Þ ¼ v-ð0Þð1þ OðeÞÞ, where

v-ð0Þðx; yÞ ¼ (Km

l
ðrynþ IÞ ,rxPð0Þ:

The difference of order 1, vð0Þ ( v-ð0Þ ¼ Oðev-ð0ÞÞ ¼ ewð1Þ

stems from the flux (unknown up to now) pulsed by the reso-
nator, i.e., qð1Þ ¼

Ð
Rv0ð0Þ:nds. It contributes to the cell prob-

lem at the next order only.
At the leading order, the mass balance in X, given by

(4) reads [wð1Þ is included in vð1Þ]

divyðvð1ÞÞ þ divxðv-ð0ÞÞ þ ix
Pð0Þ

Pe
/mð1(PmÞ ¼ 0:
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Integrating over X and using the divergence theorem and the
periodicity condition gives

ð

C
vð1Þ , ndsþ

ð

X
divxðv-ð0ÞÞdX

þ ix
Pð0Þ

Pe
/mð1(PmÞjXj ¼ 0:

The integral on C is the flux qð1Þ exchanged between the ma-
trix and the resonator, i.e.,

ð

C
vð1Þ , nds ¼ qð1Þ ¼

ð

R
v0ð0Þ , nds: (9)

Introducing the macro flux Vð0Þ and the macroscopic dynamic
permeability tensor K ¼ KmA (A is a real tensor that depends
only on the geometry of the matrix in the period),

Vð0Þ ¼ 1

jX̂j

ð

X
v-ð0ÞdX; A ¼ 1

jX̂j

ð

X
ðrynþ IÞdX;

the mean mass balance on the matrix and the dynamic Darcy
law read

1

jX̂j
qð1Þ þ divxðVð0ÞÞ þ ix

Pð0Þ

Pe
/mð1(PmÞ

jXj
jX̂j
¼ 0;

Vð0Þ ¼ (Km

l
A ,rxPð0Þ: (10)

To go further we have to determine the flux qð1Þ exchanged
with the resonator.

2. Resolution in the duct

The velocity and pressure at the leading order, are
driven by the set (5) modified with the re-scaled Navier-
Stokes Eq. (6). To simplify the presentation, we directly
introduce the fact that the pressure at the leading order in the
chamber is uniform, of value ~P

ð0ÞðxÞ, as demonstrated inde-
pendently in the next paragraph,

divyðv0ð0ÞÞ ¼ 0 on X0;
lDyðv0ð0ÞÞ (ryp0ð0Þ ¼ ixqev0ð0Þ on X0;
v0ð0Þ , n ¼ 0 on C0;
p0ð0Þ ¼ Pð0Þ on R; p0ð0Þ ¼ ~P

ð0Þ
on ~R:

8
>>>><

>>>>:

This set describes a visco-inertial incompressible flow forced
by the imposed pressures at the extremities of the duct and
the velocity is in the form

v0ð0Þðx; yÞ ¼ ( fðx; yÞ
ixqe

~P
ð0Þ ( Pð0Þ

‘0
:

The flux q(1) defined by (9), constant along the duct because
of divy(v

0(0))¼ 0, reads

qð1Þ ¼
ð

R
v0
ð0Þ , nds ¼ ( jRj

ixqes0ðxÞ
~P
ð0Þ ( Pð0Þ

‘0
; (11)

where s0ðxÞ is the dynamic tortuosity of the duct defined by

s0ðxÞ ¼ 1

jRj

ð

R
fðx; yÞ , nds

& '(1

:

If the duct is a straight cylinder of circular section of radius
aR, the frequency dependent tortuosity s(x) involves Bessel
functions30

s0ðxÞ ¼
J0ði

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i8x=x0c

p
Þ

J2ði
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i8x=x0c

p
Þ

; x0c ¼
8l

qeðaRÞ2
;

and when the flow is dominated by the inertia, i.e.,
x=x0c ) 1, s0ðxÞ can be approximated as

s0ðxÞ % 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ix=x0c

p when x=x0c ) 1 : (12)

Remember that expression (11) applies only when require-
ment (3) is satisfied.

It is here worth to underline that, conversely to the situa-
tion of a single resonator in a open space, where the incident
field and the scattered field are naturally separated, the peri-
odic distribution of the oscillator makes that the scattered
fields interact and contribute to the pressure field at the lead-
ing order. Thus the separation into incident and scattered
fields is not directly related to the asymptotic process: P(0)

involves both the “incident pressure” and the mean part of
the field resulting form the interferences of the periodic scat-
tered field. Note also that the small attenuation due to the
radiation of the pressure at the vicinity of the aperture is not
accounted for at the leading order considered here.

3. Resolution in the chamber

The first equation derived from (8) is ry ~pð0Þ ¼ 0 and
therefore ~pð0Þðx; yÞ ¼ ~P

ð0ÞðxÞ. Consequently, at the leading
order the mass balance gives

divyð~vð1ÞÞ þ ix
~P
ð0Þ

cPe
¼ 0:

Integrating this equation over ~X and using the divergence theo-
rem and the impervious condition on ~C and C0 gives (the nor-
mal of the chamber is the opposite of the normal of the duct)

(qð1Þ þ ix
~P
ð0Þ

cPe
j~Xj ¼ 0: (13)

For this result, it is sufficient to formulate the global flux bal-
ance on ~R without appeals to the point to point velocity con-
tinuity. In fact, the velocity in the duct is of an order higher
than in the chamber and a transition zone in the vicinity of
the duct enables the matching of both fields. In practice, this
region is on the order of the duct’s radius and may be disre-
garded in a leading order description.

C. Homogenized model

Equating the flux qð1Þ derived in the duct (11) and in the
chamber (13) provides
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ix
~P
ð0Þ

cPe
j~Xj ¼ ( jRj

ixqes0ðxÞ
~P
ð0Þ ( Pð0Þ

‘0
:

Thus, for straight duct where jX0j ¼ jRj‘0;

1( x2s0ðxÞ qe

cPe

j~XjjX0j
jRj2

 !
~P
ð0Þ ¼ Pð0Þ: (14)

Therefore, recalling that x0 ¼ CejRj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~Xj jX0j

q
;

qð1Þ ¼ ix
Pð0Þ

cPe

j~Xj
1( ðx=x0Þ2s0ðxÞ

:

Reporting this result in the mass balance equation established
for the matrix (10), leads to the leading order set of equations
(remind that 1( c ¼ jXj=jX̂j), valid up to a precision e,

divx ðVð0ÞÞ þ ix
Pð0Þ

cPe
/mð1( cÞcð1(PmðxÞÞ þ

c

1( ðx=x0Þ2s0ðxÞ

" #
¼ 0

Vð0Þ ¼ (KmðxÞ
l

A ,rxPð0Þ:

8
>>>><

>>>>:

(15)

This set constitutes the macroscopic description, where
the effective dynamic permeability and compressibility are
deduced from the knowledge of the microstructure. This for-
mulation accounts for the “co-dynamic” regime in the
media, with the simultaneous occurrence of macroscopic
wave-length and local dynamics in the resonator that arises
when the condition (3) is satisfied. This situation involves
two distinct pressure fields at the period scale, namely, Pð0Þ

that “carries” the macroscopic wave, and ~P
ð0Þ

developed in
the resonator as forced response to Pð0Þ.

1. Effective dynamic permeability

The effective dynamic permeability is that of the matrix
corrected by the real valued tensor A. The effective perme-
ability is the same as if the resonators were impervious inclu-
sions, and therefore is reduced compared to the permeability
of the matrix. For period geometry presenting three orthogo-
nal planes of symmetry, the macroscopic tensor is isotropic,
i.e., A¼AI. Using classical results on conduction in hetero-
geneous media,31 we necessarily have A< 1 – c and for
spherical resonators at a concentration c & 1=3, A can be
assessed quite accurately by A % 2ð1( cÞ=ð2þ cÞ.

2. Effective stiffness

The frequency dependent effective stiffness EðxÞ is sig-
nificantly modified compared to that prevailing in usual po-
rous media. It reads

EðxÞ ¼ cPe

 

/mð1( cÞcð1(PmðxÞÞ

þ c

1( ðx=x0Þ2s0ðxÞ

!(1

:

For the physical interpretation, it is easier to reformulate
E(x) as

EðxÞ ¼ 1( c

Em
þ c

Er

" #(1

;

EmðxÞ ¼ ðPe=/mÞð1(PmðxÞÞ(1;

ErðxÞ ¼ cPeð1( ðx=x0Þ2s0ðxÞÞ:

The geometric mean discloses an association in series 1 of
the effective gas stiffness in the matrix Em and 2 of the appa-
rent stiffness Er that reflects the elasto-inertial nature of the
resonator, each being weighted by the volume ratio of its re-
spective domain.

In absence of dissipation s0ðxÞ ¼ 1 and Er decreases
continuously with the frequency

Erðx" x0Þ! cPe; Erðx0Þ ¼ 0;

Erðx > x0Þ < 0; Erðx) x0Þ! (1:

The un-conventional properties of the effective stiffness are
simply evidenced in the case where x0 > xc (and x0 > xt)
so that the thermal behavior is adiabatic and
Emðx0Þ % cPe=/m. Then

EðxÞ % E1ðxÞ ¼ cPe ð1( cÞ/m þ
c

1( ðx=x0Þ2
" #(1

that is negative in the frequency band ½x0; x-0/ designated as
“atypical band” in the sequel

x-0 ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c

ð1( cÞ/m

r
;

E1ðxÞ * 0 if x 62 ½x0;x-0/; E1ðx0Þ ¼ 0;

E1ðxÞ & 0 if x 2 ½x0;x-0/; E1ðx-60 Þ ¼ 61:
(16)

More generally, in the frequency range of the resonator effect,
say ½ð1=2Þx0; 2x-0/, the effective behavior of the gas differs
radically from its usual behavior in porous media. Note that if
the matrix is in isothermal regime around x0, the upper limit
of the atypical band becomes x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðc=ð1( cÞ/mÞc

p
.
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The dissipation regularizes the behavior, but neverthe-
less a strong effect of the resonator remains. Introducing the
weak dissipation in s0ðxÞ as in (12) yields

ErðxÞ ¼ cPe 1( ðx=x0Þ2 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ix=x0c

p
 ! !

:

The visco-inertial nature of the dissipation leads to an un-
usual damped response function involving a term as
x3=2=

ffiffi
i
p

. At the resonance, Erðx0Þ ¼ (ðcPeÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ix0=x0c

p
,

so jErðx0Þj " cPe=c, since x0=x0c ) 1. Consequently, con-
sidering again the adiabatic case where Emðx0Þ % cPe=/m;

Eðx0Þ % (
cPe

c

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ix0=x0c

p ;

Eðx-0Þ %
cPe

c

c/m

1( c

" #2
x0

x-0

" #2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ix-0=x0c

q
;

8
>>>><

>>>>:

i:e:; jEðx0Þj"
cPe

c
; jEðx-0Þj)

cPe

c
:

(17)

The contrast between both values decreases as x0=x0c
decreases, i.e., as the resonator’s dissipation increases.

3. Other possible microstructure inducing inner
resonance

Let us mention several variations (Fig. 2) of the studied
configuration, that lead to a macro description of the same

kind as (15). In any cases, the aspect ratios of the resonator
geometry are kept: small section and volume of the duct

compared to those of the chamber, in order to ensure that the
resonating effect induces a small flux compared to the mac-

roscopic flux. However, the chamber can take various form,
sphere, ellipsoid, cubes, polyhedrons,….

The duct can be replaced by a device enhancing the dissi-
pation. For instance, X0 can be filled by N ducts of smaller
diameters and infinitesimal thickness. The formulation is identi-
cal, however the critical frequency x0c involved in s0ðxÞ is
increased by a factor OðNÞ. Ducts of corrugated boundary can
also be contemplated in order to increase the damping and also
the apparent inertia (i.e., s0ðx!1Þ > 1). This objective can
also be achieved by introducing a porous media in X0. The the-
oretical treatment will be very close, replacing the local Navier-
Stokes equations by a local poro-acoustic description. For a
straight duct, the result is the replacement in (15) of s0ðxÞ by
s0-ðxÞ=/0 where s0-ðxÞ and /0 are the dynamic tortuosity and
porosity of the media inserted in X0.

One may also suppress the porous matrix: either the
frame of the medium is made by the resonators themselves

and X consists in the inter-resonators pores, or some resona-
tors are introduced in a impervious granular skeleton with
grain’s size of the same order as the resonator’s size. In both
cases, the theory would require to replace the poro-acoustic
formulation in the matrix by a Navier-Stokes formulation of
the gas flow in the pores X. However, as the resonator’s flow
is 1 order smaller that the pore’s flow, impervious conditions
at the pores/resonator interface apply at the leading order
and lead to the classic Darcy dynamic problem.32,33 Thus,
one obtains a description of the same nature, except that K
and P are directly defined from the pores geometry X.

In these different cases, one may also insert in a period
N resonators tuned with different frequencies. The effective

stiffness then becomes: EðxÞ¼ ðð1(cÞ=EmþRN
i¼1ci=EriÞ

(1,
and the global effect affect a frequency band involving the
resonant frequencies of each resonators.

Finally, similar homogenized description applies if
identical resonators are non-periodically distributed.
Indeed, when a separation of scales exists, i.e., for long
wavelengths, periodic materials and non-periodic materials
with REV show macroscopic behavior of the same
nature.11

IV. ANALYSIS OF WAVE PROPAGATION

A. Feature of acoustic wave propagation

In the whole section we focus on macroscopic isotropic
media. Eliminating the velocity in (15), and introducing the
dynamic tortuosity of the matrix gives the following har-
monic wave equation:

( /mA

ixqesmðxÞ
DxPð0Þ þ ix

Pð0Þ

EðxÞ
¼ 0;

i:e:; EðxÞDxPð0Þ þ x2qe smðxÞ
/mA

Pð0Þ ¼ 0: (18)

1. Acoustic wave velocity

Consider an harmonic plane wave Pð0Þ ¼ P exp ½iðxt
(kðxÞxÞ/, of complex wave number kðxÞ. Reporting Pð0Þ in
(18), yields the complex and frequency dependent wave ve-
locity CðxÞ

CðxÞ ¼ x
kðxÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðxÞ/mA

qesmðxÞ

s

;

that is, explicitly,

CðxÞ ¼ Ce

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

ð1( cÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

smðxÞ
c½1(PmðxÞ/ þ

c

/mð1( cÞ
1

1( ðx=x0Þ2s0ðxÞ

 !(1
vuut :

The wave is characterized by its wavelength, K ¼ jCðxÞjð2p=xÞ and the nature of the field (more or less attenuated or oscillat-
ing) defined by uðxÞ ¼ ArgðCðxÞÞ. Far from the resonance, we obtain the limit behaviors
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when x=x0 " 1; CðxÞ % Ce

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

ð1( cÞ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

smðxÞ
c½1(PmðxÞ/ þ

c

/mð1( cÞ

" #(1
s

; (19)

which corresponds to the adiabatic participation of the gas in the chamber to the effective stiffness, and a dynamic permeabil-
ity reduced by the form factor A;

when x=x0 ) 1; CðxÞ % Ce

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

ð1( cÞ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

smðxÞcð1(PmðxÞÞ

r
; (20)

which is the behavior that would be obtained if the resona-
tors were impervious.

2. Atypical features: Dispersion and band gaps

A comprehensive analysis of the velocity can not be
handled analytically, because of the complex value of the
macro-parameters. However, the main features can be point
out by assuming an adiabatic regime in the matrix, so that
Em becomes cPe/m Then, the velocity simplifies in CcðxÞ,

CcðxÞ ¼ Cc
mðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c

/mð1( cÞ
1

1(ðx=x0Þ2s0ðxÞ

 !(1
vuut

with CcmðxÞ ¼ C
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

ð1( cÞ

s ffiffiffiffiffiffiffiffiffiffiffiffi
1

smðxÞ

s

:

Cc
mðxÞ is the velocity that would be obtained if the matrix

were in adiabatic regime and if the resonators were impervi-
ous. It corresponds to a particular version of the classic poro-
acoustic wave, and will be used in the sequel as reference
model to highlights the effect of the resonators.

Frequency out of the atypical band, i.e., 0 & x
& x0 or x * x-0. Let us, for the moment, neglect the resona-
tor dissipation [taking s0ðxÞ ¼ 1 and denoting the velocity
Cc in this simplified case by Cc1]. For those frequencies the
effective stiffness is positive, and we simply have

Cc
1ðxÞ
CcmðxÞ

¼ RðxÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c

/mð1( cÞ
1

1( ðx=x0Þ2

 !(1
vuut ;

Arg ðCc1Þ ¼ ArgðCcmÞ:

Thus, the effect of resonators is to decrease (resp. increase)
the velocity and the wavelength by RðxÞ for 0 & x & x0

(respectively, x * x-0), keeping the nature the of waves
identical as that of waves in the matrix. Frequencies x0 and
x-0 lead to singular values: Cc1ðx0Þ ¼ 0 and Kðx0Þ ¼ 0;
jCc1ðx-60 Þj ¼1 and Kðx-60 Þ ¼1. These singularities are
regularized by the resonator’s damping. Taking s0ðxÞ given
by (12) with x0=x0c ) 1, yields the finite complex values

Ccðx0Þ ¼ Ccmðx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/mð1( cÞ

c

r
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ix0=x0c
4
p ;

Ccðx-0Þ ¼ C
c
mðx

-
0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/mð1( cÞ

c

r
x0

x-0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ix-0=x0c

4

q

that indicate a small finite wavelength at x0 and a large finite
wavelength at x-0 (both compared to reference wavelength).

Frequency in the atypical band, i.e., x0 & x & x-0.
Considering first undamped resonators, taking s0ðxÞ ¼ 1 the
effective stiffness takes real negative values and

Cc
1ðxÞ
CcmðxÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c

/mð1( cÞ
1

1( ðx=x0Þ2

(((((

(((((

(1
vuut ;

ArgðCc1Þ ¼ ArgðCc
mÞ6p=2:

In usual porous media, as the argument of the dynamic tortu-
osity of the matrix varies from (p=2 at low frequency (vis-
cous flow) to 0 at large frequency (inertial flow),1 then
0 & Arg ðCcmÞ & p=4, and the wave is oscillating and damped
as it progresses.

The p=2-jump of Arg ðCc1Þ in the atypical band modifies
drastically the nature of the wave that becomes over-
damped. Therefore, waves are confined in a region of char-
acteristic size K ¼ jCðxÞjð2p=xÞ. Thus the atypical band
corresponds to a band gap of the media.

Anomalous wave appear when uðxÞ > p=2 or
uðxÞ < 0: The phase velocity is positive along with the
wave amplitude amplifies in positive x direction. However,
because of the negative effective stiffness, the group and
phase velocities are of opposite sign. Therefore, the train of
wave is actually attenuated when it propagates. This situa-
tion is similar to that encountered in 1D array of resonator.33

This analysis concerns only the situation of undamped
resonator. In presence of damping the abrupt variations at x0

and x-0 are smoothed in a frequency zone where the
real elastic term becomes smaller than the complex damped

FIG. 2. (Color online) (left) Granular media made of Helmholtz resonators
of different resonant frequency; (right) period made of a porous matrix with
embedded Helmholtz resonator whose the duct enables enhanced damping.
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term. Simple algebra gives the following assessment of

the smoothing zones: ½x0ð16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0c=ð8x0Þ

p
Þ/ and

½x-0ð16ðc/m=ð1( cÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0c=ð8x-0Þ

p
Þ/. One see that these

zones are larger as the resonator’s damping increases (i.e.,
x0=x0c decreases).34,35

B. Illustrating examples

To illustrate these results, Figs. 3–5 display the
modulus and the argument of the dimensionless veloc-
ity CaðxÞ versus the dimensionless frequency x=x0,
where

CaðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am1

smðxÞ
c½1(PmðxÞ/ þ

c

/mð1( cÞ
1

1( ðx=x0Þ2s0ðxÞ

 !(1
vuut :

Calculations are performed on porous media with embedded
resonator at a concentration c ¼ 1=3. Matrix of high poros-
ity, /m ¼ 0:8, and low porosity, /m ¼ 0:1, are considered.
The influence of the flow regime in the matrix at resonance
is highlighted from the three cases: Dominant inertial flow
x0=xc ¼ 10, visco-inertial flow x0=xc ¼ 1, and viscous
flow with weak inertia x0=xc ¼ 0:1 [this latter case is at the

limit of applicability of the model, see (3)]. The effect of the
dissipation of the resonator is also analyzed, by presenting
the simple duct configuration (x0=x0c ¼ 50 see Sec. II B 1),
and in each case an adapted value of x0=x0c enabling to
avoid anomalous waves in the atypical band. The dynamic
tortuosity functions smðxÞ and s0ðxÞ, and the thermal perme-
ability PmðxÞ are approximated by the Johnson formula

FIG. 3. (Color online) Dimensionless
wave velocity CadðxÞ of a porous
media with embedded resonators at
concentration c ¼ 1=3 with x0=xc

¼ 10. (Top) Modulus and (bottom)
phase versus dimensionless frequency
x=x0. Matrix of porosity (left)
/m ¼ 0:1; (right) /m ¼ 0:8. Bold line:
low damped resonator ðx0=x0c ¼ 50Þ.
Bold dashed line: resonator with
enhanced damping, namely, x0=x0c ¼
30 for /m ¼ 0:1 (left); resonator with
lower damping, namely, x0=x0c ¼
800 for /m ¼ 0:8 (right). For compari-
son, the characteristics of the single
porosity media that match the low [Eq.
(19)] and high [Eq. (20)] frequency
behavior are drawn in normal and
dashed lines.

FIG. 4. (Color online) Same as Fig. 3
except that x0=xc ¼ 1 and that the
bold dashed lines correspond to reso-
nators with enhanced damping (left)
x0=x0c ¼ 4 for /m ¼ 0:1 and (right)
x0=x0c ¼ 60 for /m ¼ 0:8.
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and to reduce the number of parameters, xt¼xc, M¼Mt¼ 2
for the porous medium and M0¼ 1, a01¼ 1 for the ducts.

Figure 3 ðx0=xc ¼ 10Þ shows that the influence of the
resonators affect a broad frequency band, say ½x0=2; 2x-0/,
where the acoustic wave presents a great dispersion. The role
of the matrix porosity on the extent of the atypical frequency
band is evident: for /m ¼ 0:1, x-0=x0 ¼ 2:5, and for
/m ¼ 0:8, x-0=x0 % 1:3. The high level of attenuation is
focused in the band ½x0; x-0/, while the change of velocity
appears in a much larger range, with low velocity when x &
x0 and high velocity when x * x-0. In the atypical band
½x0; x-0/ the “wave” is almost exponentially decaying

ðu % p=2Þ, with a penetration depth of jCaðxÞjx. A fre-
quency band of large velocity and weak attenuation appears
around x * x-0, specially with low porosity matrix. This may
lead to acoustic wave propagating faster than in ambient air.

In the atypical band ½x0; x-0/, for low porosity matrix
/m ¼ 0:1 and weakly damped configuration (simple duct,
x0=x0c ¼ 50), one observes anomalous waves, when
Arg ðCadðxÞÞ % (p=2. Anomalous waves disappear by
increasing the dissipation in the duct ðx0=x0c & 30Þ. In the
case of large porosity, a much smaller damping ðx0=x0c &
800Þ is sufficient to avoid anomalous waves.

The response of the medium presents a sharp band gap
in the broad interval ½x0; x-0/ not centered on the tuned fre-
quency x0. In Fig. 4, ðx0=xc ¼ 1Þ similar trends are
observed. The band gap is slightly shifted to lower fre-
quency, not as sharp as in the case of Fig. 3, and the velocity
is also smoothed. With low porosity, anomalous waves
occurs in the atypical band with weakly damped resonators
ðx0=x0c ¼ 50Þ but disappears by increasing the dissipation
ðx0=x0c & 4Þ. For the high porosity matrix, the required
damping is significantly lower ðx0=x0c ¼ 70Þ.

FIG. 5. (Color online) Same legend as
Fig. 3 except that x0=xc ¼ 0:1 and
that the bold dashed lines correspond
to damped resonator: (left) x0=x0c ¼ 1
for /m ¼ 0:1; (right) x0=x0c ¼ 8 for
/m ¼ 0:8.

FIG. 6. (Color online) Wave character-
istics versus frequency of resonator of
eigen-frequency f0¼ 473 Hz embedded
(left) in a dense fibrous media, and
(right) in an open cell foam. (Top)
Real part and Absolute value (dashed
line) of the velocity divided by the
sound velocity. (Bottom) Attenuation
factor (presented with opposite value
to enable correspondence with the
velocity).
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In Fig. 5, ðx0=xc ¼ 0:1Þ, presents the same qualitative
trends. The atypical band give rise to anomalous diffusion
wave. In this case, the resonator’s damping needed to avoid
this type of waves is much larger, respectively, x0=x0c ¼ 1,
ðx0=x0c ¼ 8Þ for the low (high) porosity matrix case. The
band gap remains localized around ½x0; x-0/ with high po-
rosity matrix, while with low porosity matrix, velocity and
attenuation are significantly modified in the whole low fre-
quency band ½0; x-0/.

Finally, Fig. 6 presents two realistic examples with reso-
nators in concentration c ¼ 1=3, of eigen-frequency f0¼ 473
Hz (radius cavity of R¼ 1 cm, radius of duct of aR ¼ 1 mm,
simple duct configuration, i.e., x0=x0c ¼ 50). In the first
case, they are embedded in a dense fibrous material typical
for thermal insulation, having a porosity /m ¼ 0:1 an intrin-
sic permeability Km ¼ 6:2' 10(5m2, and a high frequency
tortuosity am1 ’ 1, thus xc ¼ 2:5' 10(2 Hz. With these
values x0=xc ¼ 125 and the atypical band gap is ½f0 ¼ 473;
f -0 ¼ 1159 Hz/. In the second case, the matrix is a classic
open cell foam of porosity with /m ¼ 0:8, Km ¼ 6:2
'10(8m2, am1 ’ 1, thus xc ¼ 25 Hz, giving x0=xc ¼ 125
'105 and a atypical band gap ½f0 ¼ 473; f -0 ¼ 603 Hz/. In
both cases, the real part and absolute value of the velocity
(divided by the sound velocity) and the attenuation factor,
At ¼ tanðuÞ, disclose the band gap effect (At> 1 means an
attenuation higher than diffusion waves) and the possibility
to reach supersonic velocity together with weak attenuation
in a wide band of frequencies f > f -0 .

V. CONCLUSION

Insert resonators in porous media leads to acoustic prop-
erties that depart from the classic poro-acoustic description.
The study points out the key parameters of the system and
explains the macroscopic behavior from the physics at the
local scale, in the frequency range that respects the long
wavelength condition. Despite similarities with meta-elastic
materials or double porosity media, the particularity of the
mechanisms driving the porous media with embedded reso-
nators lead to a specific description.

In inner resonant porous media, two different pressure
fields co-exist and interact dynamically at the scale of the
period. This corresponds to a “co-dynamic” regime, in
which macro wavelength and local resonance occur simul-
taneously. The key phenomenon relies on the fact that the
elasto-inertial response of the resonator acts as a negative
apparent stiffness that combines in series with the effective
stiffness of the gas in the matrix. This results in an effec-
tive negative stiffness of the gas in the media, for frequen-
cies belonging to a frequency band much wider than the
close vicinity of the tuned frequency. The features of
acoustic wave are drastically modified especially in this
atypical band. According to the damping of the resonator,
and to the nature of the flow regime in the matrix, one may
obtain sharp broad band gap and band of low and high, up
to supersonic, sound velocity: the lower is the matrix poros-
ity, the wider is the band gap; the smaller is the resonator
damping, the sharper is the band gap and the stronger is the
dispersion.

The homogenized model is quasi-analytic, and its effec-
tive parameters are fully determined from the knowledge of
the geometry and of the properties of the material constitut-
ing the period. Thus, the model can be used to project uncon-
ventional acoustic media. Inner resonant porous media could
be of interest for practical applications, that may concern the
design of new systems, either for damping or for fast/low ve-
locity purpose, at different spatial and/or frequency scales.
Finally, it would be of interest to realize such materials and
to perform tests in order appreciate experimentally their
actual properties.
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