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Soutenue publiquement le 5 décembre 2013, après l’avis des rapporteurs :

M. Bernard Helffer Professeur à l’Université de Paris-Sud
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Avant propos

Depuis le début des années 70, l’étude microlocale des équations aux dérivées
partielles doublement caractéristiques jouit d’une solide tradition en analyse [23,
24, 25, 26, 60, 63, 73, 75, 91, 109, 110, 113]. Ces dernières années, ce domaine
a connu un nouvel intérêt et de récents développements inspirés par l’étude de cer-
tains problèmes non-autoadjoints à caractéristiques doubles. Ce regain d’intérêt
trouve quelques unes de ses sources dans l’étude du comportement asymptotique
des solutions d’équations d’évolution associées à des opérateurs non-autoadjoints{

(∂t + P )u(t, x) = 0,
u(t, ·)|t=0 = u0 ∈ L2(Rn).

Cette problématique est particulièrement importante en théorie cinétique et dans
l’étude des problèmes de retour à l’équilibre en physique statistique. L’opérateur de
Kramers-Fokker-Planck

(0.1) P = −∆v +
|v|2
4
− n

2
+ v · ∂x −∇xV (x) · ∂v, (x, v) ∈ R2n,

associé à un potentiel régulier V ∈ C∞(Rn,R), est un exemple d’opérateur cinétique
non-autoadjoint dont l’étude spectrale et pseudospectrale initiée par Hérau, Sjös-
trand et Stolk [70] a été l’une des principales sources d’inspiration pour la théorie
de l’espace singulier et l’étude générale des opérateurs pseudodifférentiels double-
ment caractéristiques developpées dans le premier chapitre de ce manuscrit.

Les premiers exemples d’opérateurs doublement caractéristiques sont donnés par
les opérateurs différentiels quadratiques

Q(x,Dx) =
∑
|α+β|=2

qα,βx
αDβ

x , x ∈ Rn,

où qα,β ∈ C, Dxj = i−1∂xj , et α, β ∈ Nn. Dans le cas elliptique, le spectre de
ces opérateurs est connu depuis plusieurs décennies et a été décrit explicitement
par Sjöstrand [113] et Boutet de Monvel [23]. Les opérateurs quadratiques jouent
un rôle central dans l’analyse des propriétés des opérateurs pseudodifférentiels à
caractéristiques doubles. C’est notamment le cas concernant les résultats généraux
d’hypoellipticité avec perte d’une dérivée

(0.2) ‖u‖(s+m−1) ≤ CK(‖Pu‖(s) + ‖u‖(s+m−2)), u ∈ C∞0 (K), K b Rn,

où ‖ ·‖(s) désigne la norme de Sobolev Hs. Étant donné P = pw(x,Dx) un opérateur
pseudodifférentiel classique d’ordre m dont le symbole de Weyl

p(x, ξ) = pm(x, ξ) + pm−1(x, ξ) + pm−2(x, ξ) + . . . ,

admet un point de caractéristique double

pm(X0) = ∇pm(X0) = 0, X0 = (x0, ξ0) ∈ R2n,
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2 AVANT PROPOS

il est naturel pour étudier les propriétés de cet opérateur de considérer la forme
quadratique q qui commence le développement de Taylor du symbole principal pm
au point X0. Génériquement [73, 113], lorsque le symbole principal s’annule exacte-
ment au deuxième ordre au point doublement caractéristique, i.e., lorsque la forme
quadratique q est elliptique, l’estimation hypoelliptique (0.2) est satisfaite pour tout
compact K b Rn, si et seulement si l’opposé du symbole sous-principal −pm−1(X0)
évalué au point doublement caractéristique évite le spectre de l’approximation quadra-
tique du symbole principal au point doublement caractéristique qw(x,Dx). Ce résul-
tat met en exergue le lien entre les propriétés des opérateurs pseudodifférentiels dou-
blement caractéristiques et celles de leurs approximations quadratiques, et souligne
le fait que l’analyse microlocale de ces opérateurs à caractéristiques doubles passe
au préalable par une bonne compréhension des propriétés notamment spectrales des
opérateurs quadratiques. Pour de nombreux modèles cinétiques comme l’opérateur
de Kramers-Fokker-Planck, les approximations quadratiques de ces opérateurs

qw(x,Dx) : L2(Rn)→ L2(Rn),

ne satisfont pas à l’hypothèse d’ellipticité

(0.3) (x, ξ) ∈ R2n, q(x, ξ) = 0⇒ (x, ξ) = (0, 0),

et la théorie microlocale classique pour les opérateurs à caractéristiques doubles
est inopérante. Ces modèles cinétiques présentent une certaine dégénérescence au
niveau de leurs ensembles doublement caractéristiques. L’étude de la structure mi-
crolocale de ce type de dégénérescence est à l’origine de la série de travaux présentée
dans le premier chapitre de ce manuscrit. Plus particulièrement, la première partie
du chapitre 1 est dédiée à l’étude des propriétés de certaines classes d’opérateurs
quadratiques non elliptiques. Pour ce faire, nous introduisons la notion d’espace
singulier associé à un opérateur quadratique. L’espace singulier est un sous-espace
vectoriel particulier de l’espace des phases

(0.4) S =
( +∞⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n ⊂ R2n,

défini intrinsèquement à partir de l’application hamiltonienne F du symbole de Weyl
d’un opérateur quadratique. La théorie développée dans ce manuscrit montre que
cette notion d’espace singulier est un objet algébrique simple particulièrement adapté
à la description des propriétés des opérateurs quadratiques non elliptiques, et que
la structure de ce sous-espace vectoriel permet de caractériser certaines propriétés
dynamiques du symbole de ces opérateurs. Pour de nombreux modèles cinétiques
comme l’opérateur de Kramers-Fokker-Planck, les approximations quadratiques de
ces opérateurs violent l’hypothèse d’ellipticité (0.3) mais satisfont à une hypothèse
d’ellipticité partielle le long de leurs espaces singuliers

(0.5) (x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = (0, 0).

La première partie du chapitre 1 étudie les propriétés spectrales et sous-elliptiques
de la classe des opérateurs quadratiques accrétifs satisfaisant à cette hypothèse
d’ellipticité partielle. Nous montrons que ces opérateurs partiellement elliptiques
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ont un spectre discret ayant une structure identique à celle des opérateurs quadra-
tiques elliptiques

σ(qw(x,Dx)) =
{ ∑

λ∈σ(F ),
−iλ∈C+∪(Σ(q|S)\{0})

(
rλ + 2kλ

)
(−iλ) : kλ ≥ 0

}
.

La notion d’espace singulier permet également de caractériser les propriétés sous-
elliptiques des opérateurs quadratiques et de démontrer qu’ils sont microlocale-
ment régularisants dans toutes les directions de l’espace des phases données par
l’orthogonal symplectique de l’espace singulier

Sσ⊥ = {X ∈ R2n : ∀Y ∈ S, σ(X, Y ) = 0}.
La seconde partie du chapitre 1 a trait à l’étude spectrale et pseudo-spectrale
d’opérateurs pseudodifférentiels non-autoadjoints semi-classiques dont les approxi-
mations quadratiques aux points doublement caractéristiques satisfont à l’hypothèse
d’ellipticité partielle (0.5). Étudier les propriétés pseudospectrales d’un opérateur
revient à étudier les lignes de niveau de la norme de sa résolvante. Pour des opéra-
teurs non-autoadjoints, il s’agit d’un problème non trivial, et ce même lorsque le
spectre de ces opérateurs est connu. En effet, il n’y a aucun contrôle a priori de
la résolvante d’un opérateur non-autoadjoint par son spectre, et la résolvante d’un
tel opérateur peut exploser en norme dans des régions non bornées de l’ensemble
résolvant très éloignées du spectre. Ces phénomènes de non contrôle de la résolvante
sont liés à la possible très forte instabilité du spectre des opérateurs non-autoadjoints
sous l’effet de petites perturbations. Les travaux de thèse de l’auteur ont montré que
ce genre d’instabilités spectrales apparâıt pour tout opérateur quadratique elliptique
non normal dans des régions de l’ensemble résolvant à la géométrie caractéristique.
L’analyse de l’équation de Kramers-Fokker-Planck [70] a également mis en évidence
une géométrie particulière régissant les propriétés spectrales et pseudospectrales de
l’opérateur (0.1) au voisinage d’un point doublement caractéristique. La deuxième
partie du premier chapitre de ce manuscrit propose de généraliser ces résultats et
de décrire précisément les propriétés spectrales et les phénomèmes pseudospectraux
se produisant au voisinage d’un point de caractéristique double pour des classes
générales d’opérateurs pseudodifférentiels doublement caractéristiques. Nous mon-
trons en particulier que la géométrie propre à ces phénomènes pseudospectraux est
déterminée par les propriétés sous-elliptiques des approximations quadratiques de
ces opérateurs pseudodifférentiels doublement caractéristiques

‖〈(x,Dx)〉2(1−δ)u‖L2 ≤ C(‖qw(x,Dx)u‖L2 + ‖u‖L2),

où 〈(x,Dx)〉2 = 1+ |x|2 + |Dx|2, et qu’elle dépend directement de la perte de dérivées
maximale 0 ≤ δ < 1 par rapport au cas elliptique satisfaite par les approximations
quadratiques de ces opérateurs.

Le second chapitre de ce manuscrit regroupe plusieurs travaux sur l’hypoellipticité
et la non résolubilité de certaines classes d’opérateurs différentiels ou pseudodif-
férentiels non-autoadjoints. Nous présentons plusieurs méthodes microlocales util-
isant des techniques par multiplicateur ou d’états cohérents pour démontrer des
estimations hypoelliptiques pour des opérateurs cinétiques modèles pour les linéari-
sations des équations de Landau et Boltzmann, et pour établir des estimations sous-
elliptiques en régularité limitée pour une classe d’opérateurs pseudodifférentiels vi-
olant la condition (P ) mais satisfaisant la condition (Ψ) adjointe de la condition de
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Nirenberg-Trèves. Nous donnons également des exemples d’opérateurs différentiels
faiblement hyperboliques à coefficients réels dont la non résolubilité est conséquence
d’une violation d’une version quasi-homogène de la condition (Ψ).

Le troisième et dernier chapitre de ce manuscrit propose une étude microlocale
de l’équation de Boltzmann{

∂tf + v · ∇xf = Q(f, f),

f |t=0 = f0.

Cette équation proposée par Boltzmann en 1872 pour décrire les propriétés d’un
gaz dilué lorsque les seules interactions entre les particules sont données par les
collisions binaires inter-moléculaires, est l’une des équations majeures de la physique
statistique. L’équation de Boltzmann régit l’évolution de la densité de particules
contenue dans un gaz f = f(t, x, v) ≥ 0 à un temps t, à la position x ∈ Rd et à la
vitesse v ∈ Rd. Le terme non linéaire Q(f, f) correspond à l’opérateur de collision
de Boltzmann dérivant de l’opérateur bilinéaire

Q(g, f) =

∫
Rd

∫
Sd−1

B(v − v∗, σ)
(
g′∗f

′ − g∗f
)
dσdv∗, d ≥ 2,

où l’on use des notations standard en théorie cinétique f ′∗ = f(t, x, v′∗), f
′ = f(t, x, v′),

f∗ = f(t, x, v∗), f = f(t, x, v). Dans cette expression, v, v∗ et v′, v′∗ correspondent
aux vitesses d’une paire de particules respectivement avant et après collision. Ces
vitesses sont liées par les relations

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ,

où le paramètre σ ∈ Sd−1 appartient à la sphère unité, qui correspondent physique-
ment à des collisions binaires élastiques préservant la quantité de mouvement et
l’énergie cinétique

v + v∗ = v′ + v′∗, |v|2 + |v∗|2 = |v′|2 + |v′∗|2.

Pour un gaz monoatomique, un modèle standard de section efficace B(v− v∗, σ) est
donné par une fonction positive dépendant séparément de la vitesse relative avant
collision |v − v∗| et de l’angle de déviation θ défini par le produit scalaire

cos θ = k · σ, k =
v − v∗
|v − v∗|

.

Plus précisément, on suppose que la section efficace a la structure suivante

(0.6) B(v − v∗, σ) = |v − v∗|γb
( v − v∗
|v − v∗|

· σ
)
, γ ∈]− d,+∞[,

et l’on qualifie les molécules de maxwelliennes lorsque le paramètre γ = 0. Le second
terme composant la section efficace est un facteur angulaire singulier en zéro

(0.7) (sin θ)d−2b(cos θ) ≈
θ→0+

θ−1−2s,
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où1 0 < s < 1 est un paramètre physique correspondant à des particules interagissant
selon un potentiel sphérique inter-moléculaire répulsif de la forme

φ(ρ) =
1

ρr
, r =

1

s
> 1.

Cette singularité n’est pas intégrable en zéro∫ π
2

0

(sin θ)d−2b(cos θ)dθ = +∞,

et joue un rôle majeur quant aux propriétés qualitatives des solutions de l’équation
de Boltzmann en particulier pour que le phénomène de régularisation opère. En
effet, les propriétés régularisantes de l’équation de Boltzmann sont uniquement dues
à la grande quantité de collisions rasantes pour lesquelles l’angle de déviation est
presque nul θ ∼ 0.

On considère la linéarisation de l’équation de Boltzmann

f = µd +
√
µdg,

autour de la distribution maxwellienne

µd(v) = (2π)−
d
2 e−

|v|2
2 , v ∈ Rd.

D’après la conservation de l’énergie cinétique, cette distribution est un état d’équilibre
Q(µd, µd) = 0 et l’opérateur linéarisé de Boltzmann

L g = −µ−1/2
d Q(µd, µ

1/2
d g)− µ−1/2

d Q(µ
1/2
d g, µd),

permet de réduire l’équation de Boltzmann au problème de Cauchy suivant pour la
fluctuation autour de la distribution maxwellienne{

∂tg + v · ∇xg + L g = µ
−1/2
d Q(

√
µdg,
√
µdg),

g|t=0 = g0.

Il y a de cela plus de quarante ans Cercignani [27] mettait en évidence que pour des
molécules maxwelliennes, l’opérateur linéarisé de Boltzmann se comportait comme
un opérateur diffusif fractionnaire. À travers le temps, ces premiers résultats se
sont transformés en la conjecture suggérant que l’opérateur linéarisé de Boltzmann
se comportait essentiellement comme un laplacien fractionnaire en la variable de
vitesse [6, 8, 126]:

f 7→ Q(µd, f) ∼ −(−∆v)
sf + termes d’ordre inférieur,

où 0 < s < 1 est le paramètre structurel de la singularité (0.7). Le chapitre 3 de ce
manuscrit propose une analyse dans l’espace des phases des propriétés diffusives de
l’opérateur linéarisé de Boltzmann pour des molécules maxwelliennes. On considère
tout d’abord le cas où l’opérateur linéarisé de Boltzmann agit sur des fonctions à
symétrie radiale. Dans ce cas, nous montrons que l’opérateur linéarisé de Boltzmann
est un opérateur pseudodifférentiel

L f = lw(v,Dv)f, f ∈ Sr(Rd),

défini par un symbole admettant un développement complet dans une classe de
symboles standard jouissant d’un bon calcul symbolique. Plus précisément, à des

1La notation a ≈ b signifie que le ratio a/b est borné inférieurement et supérieurement par des
constantes strictement positives.
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termes d’ordre inférieur bornés sur L2(Rd) près, l’opérateur linéarisé de Boltzmann
agissant sur des fonctions à symétrie radiale se réduit à l’oscillateur harmonique
fractionnaire en la variable de vitesse

c0

(
1−∆v +

|v|2
4

)s
,

où 0 < s < 1 est le paramètre structurel de la singularité (0.7). Dans le cas
de l’espace physique tridimensionnel d = 3 où l’opérateur linéarisé de Boltzmann
n’agit plus nécessairement sur des fonctions à symétrie radiale, nous montrons que
l’opérateur linéarisé de Boltzmann est égal à l’opérateur linéarisé de Landau frac-
tionnaire

L = a(H,∆S2)L s
L,

où 0 < s < 1 est le paramètre apparaissant dans la condition (0.7). L’opérateur
linéarisé de Landau est un opérateur différentiel anisotrope correspondant à la linéari-
sation

LLg = −µ−1/2
3 QL(µ3, µ

1/2
3 g)− µ−1/2

3 QL(µ
1/2
3 g, µ3) = 2

(
−∆v +

|v|2
4
− 3

2

)
g−∆S2g

+
[
∆S2 − 2

(
−∆v +

|v|2
4
− 3

2

)]
P1g +

[
−∆S2 − 2

(
−∆v +

|v|2
4
− 3

2

)]
P2g,

de l’opérateur de collision de Landau

QL(g, f) = ∇v ·
(∫

R3

(|v − v∗|2 Id−(v − v∗)⊗ (v − v∗))

×
(
g(v∗)(∇vf)(v)− (∇vg)(v∗)f(v)

)
dv∗

)
.

Ce résultat permet d’expliciter l’anisotropie des propriétés diffusives de l’opérateur
linéarisé de Boltzmann et d’obtenir des estimations coercives optimales dans le cas
de molécules maxwelliennes et non-maxwelliennes. Il dévoile aussi plus avant les
liens inhérents existant entre les équations de Boltzmann et de Landau en accord
avec des résultats précédents présentant l’opérateur de Landau comme l’opérateur
de Boltzmann limite dans le cas où le paramètre s = 1.

La dernière partie du chapitre 3 propose une étude du problème de Cauchy asso-
cié à l’équation de Boltzmann spatialement homogène. Cette étude montre que pour
de petites fluctuations initiales à symétrie radiale autour de la distribution maxwelli-
enne, l’équation de Boltzmann spatialement homogène possède les mêmes propriétés
régularisantes que l’équation d’évolution associée à l’oscillateur harmonique fraction-
naire {

∂tf +Hsf = 0, H = −∆v + |v|2
4
,

f |t=0 = f0 ∈ L2(Rd),

où 0 < s < 1 est le paramètre apparaissant dans la condition (0.7). Ce résultat
met en évidence un phénomème de régularisation dans la classe de Gelfand-Shilov

S
1/2s
1/2s(R

d) pour tout temps t > 0, qui correspond à la régularité Gevrey G1/2s(Rd)

de la fluctuation et de sa transformée de Fourier.
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CHAPTER 1

Spectral properties and resolvent bounds for
pseudodifferential operators with double characteristics

1. Foreword

There has been recently a renewed interest in the analysis of the spectra and
resolvents of non-selfadjoint operators with double characteristics. This interest finds
some of its grounds in the study of the long-time behavior of evolution equations
associated to non-selfadjoint operators{

(∂t + P )u(t, x) = 0,
u(t, ·)|t=0 = u0 ∈ L2(Rn).

This is for instance the case in the analysis of kinetic equations and the study of the
trend to equilibrium in statistical physics. The Kramers-Fokker-Planck operator

P = −∆v +
|v|2
4
− n

2
+ v · ∂x −∇xV (x) · ∂v, (x, v) ∈ R2n,

with a smooth potential V ∈ C∞(Rn,R), is an example of non-selfadjoint kinetic op-
erator whose spectral and pseudospectral analysis by Hérau, Sjöstrand and Stolk [70]
has been a starting point of the present work on pseudodifferential operators with
double characteristics.

The study of doubly characteristic operators has a long and distinguished tradi-
tion in the analysis of partial differential equations [23, 24, 25, 26, 60, 63, 73, 75,
91, 109, 110, 113]. The simplest examples of such operators are given by quadratic
differential operators

Q(x,Dx) =
∑
|α+β|=2

qα,βx
αDβ

x , x ∈ Rn,

with qα,β ∈ C, Dxj = i−1∂xj , and α, β ∈ Nn. In the elliptic case, the spec-
trum of these operators has been understood and described explicitly for some
time [23, 113]. Quadratic operators are playing a basic role in the analysis of
partial differential operators with double characteristics. This is for instance the
case for general results about hypoellipticity with loss of one derivative

(1.1) ‖u‖(s+m−1) ≤ CK(‖Pu‖(s) + ‖u‖(s+m−2)), u ∈ C∞0 (K), K b Rn,

where ‖ · ‖(s) stands for the Sobolev norm Hs. Given P = pw(x,Dx) a classical
pseudodifferential operator of order m whose Weyl symbol

p(x, ξ) = pm(x, ξ) + pm−1(x, ξ) + pm−2(x, ξ) + . . . ,

admits a doubly characteristic point

pm(X0) = ∇pm(X0) = 0, X0 = (x0, ξ0) ∈ R2n,

it is natural to consider the quadratic form q which begins the Taylor expansion of the
principal symbol pm at X0, in order to investigate the properties of the operator P .

9



10 1. PSEUDODIFFERENTIAL OPERATORS WITH DOUBLE CHARACTERISTICS

Generically [73, 113], when the principal symbol vanishes exactly at the second order
at this doubly characteristic point, i.e., when the quadratic form q is elliptic, the
hypoelliptic estimate (1.1) holds for any compact K b Rn, if and only if the opposite
of the subprincipal symbol −pm−1(X0) evaluated at the doubly characteristic point
avoids the spectrum of the quadratic approximation of the principal symbol at the
doubly characteristic point qw(x,Dx).

This particular result emphasizes that a comprehensive understanding of the
properties of quadratic operators allows to account for the features of general dou-
bly characteristic operators. It also accounts for the structure of the present chapter.
The first part of this chapter is dedicated to the analysis of non-elliptic quadratic
operators, when the second deals with the study of general pseudodifferential op-
erators whose quadratic approximations at the doubly characteristic set may fail
ellipticity. More precisely, the first part of this chapter is concerned in studying
the spectral and subelliptic properties of non-elliptic quadratic operators. We intro-
duce the notion of singular space associated to a quadratic operator. The singular
space is a particular linear subspace in the phase space intrinsically defined from
the Weyl symbol of the quadratic operator. We develop an abstract theory showing
that this notion of singular space is a particularly relevant algebraic tool in order
to describe sharply the properties of non-elliptic quadratic operators. The second
part of the chapter deals with semiclassical pseudodifferential operators with double
characteristics. Building on the results obtained for quadratic operators, we study
the spectral and pseudospectral properties of these operators around their double
characteristics. Studying the pseudospectral properties refers to studying resolvent
bounds. In the non-selfadjoint case, this is a non-trivial problem, and this even when
the spectrum of the operator is fully known. Indeed, there is no a priori control of
the resolvent growth by the spectrum in the non-selfadjoint case.

The study of pseudospectrum has a recent tradition coming originally from nu-
merical analysis where, for certain problems of science and engineering involving
non-selfadjoint operators, it has been noticed that the predictions suggested by the
spectral analysis do not match with the numerical simulations. This indicates that
in some cases, the only knowledge of the spectrum of an operator is not enough to
understand sufficiently its action. To supplement this lack of information contained
in the spectrum, some new subsets of the complex plane called pseudospectra were
defined. The main idea about the definition of these new subsets is that it is inter-
esting to study not only the points where the resolvent of an operator is not defined,
i.e. the spectrum, but also where this resolvent may be large in norm. This explains
the following definition of the ε-pseudospectrum of a matrix or an operator A,

σε(A) =
{
z ∈ C, ‖(A− z)−1‖ ≥ 1

ε

}
, ε > 0,

with the convention that ‖(A − z)−1‖ = +∞ for any point z belonging to the
spectrum of the operator σ(A). There exists an abundant literature about this
notion of pseudospectrum. We refer the reader to [117, 118] and all the references
therein.

Studying the pseudospectra of an operator is studying the level lines of the norm
of its resolvent. What is interesting in studying such level lines is that it gives some
information about the spectral stability of the operator. Indeed, the pseudospectra
can be defined in an equivalent way in term of the spectrum of perturbations of the
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operator. For instance, we have for any A ∈Mn(C),

σε(A) = {z ∈ C, z ∈ σ(A+B) for some B ∈Mn(C) with ‖B‖ ≤ ε}.
It follows that a complex number z belongs to the ε-pseudospectrum of a matrix A
if and only if it belongs to the spectrum of one of its perturbations A + B with
‖B‖ ≤ ε. More generally, if A is a closed unbounded linear operator with a dense
domain on a complex Hilbert space H, the same description holds [111],

σε(A) =
⋃

B∈L(H), ‖B‖L(H)≤ε

σ(A+B),

where L(H) stands for the set of bounded linear operators on H. This second
description emphasizes the interest of studying such subsets when we aim at deter-
mining numerically the spectrum of an operator. Indeed, the discretization of the
operator and inevitable round-off errors generate some perturbations of the initial
operator. Eventually, algorithms for eigenvalues computing determine the eigenval-
ues of a perturbation of the initial operator, i.e. a value in a ε-pseudospectrum
of the initial operator but not necessarily a spectral one. This explains why it is
important in some numerical computations to understand if the spectrum lies more
or less deeply inside the ε-pseudospectra.

The study of pseudospectrum is non-trivial only for non-selfadjoint operators, or
more precisely for non-normal operators. Indeed, the classical formula

(1.2) ∀z 6∈ σ(A), ‖(A− z)−1‖ =
1

dist(z, σ(A))
,

emphasizes that the resolvent of a normal operator cannot blow up far from its
spectrum. This ensures the stability of the spectrum under small perturbations

(1.3) σε(A) = {z ∈ C : dist(z, σ(A)) ≤ ε}.
However, the formula (1.2) does not hold anymore for non-normal operators and
the resolvent of such operators may become very large in norm far from the spec-
trum. This implies that the spectra of these operators may become very unstable
under small perturbations. The rotated harmonic oscillator is an example of elliptic
quadratic operator whose spectrum is very unstable under small perturbations

P = −∂2
x + eiπ/4x2.

This feature may be illustrated by computing numerically the spectrum of the matrix
discretization

((PΨi,Ψj)L2(R))1≤i,j≤N ,

with N = 100, where (Ψj)j≥1 stands for the L2(R) Hermite basis. The black dots
correspond to the numerically computed eigenvalues. For low energies, they are in
perfect agreement with the theoretical eigenvalues

σ(P ) = {eiπ/8(2n+ 1) : n ≥ 0},
regularly spaced out onto the half-line eiπ/8R+. However, this is no more true for the
high energies. For these energies, some spectral instabilities lead to the computation
of spurious eigenvalues far away from the half-line eiπ/8R+. The geometry of the
pseudospectra for the rotated harmonic oscillator is described in the works [22,
KPS16]. These theoretical results confirm the numerical computation (Fig. 1) and
emphasize that the norm of the resolvent (P−z)−1 exhibits rapid growth far from the
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Figure 1. Numerical computation of some level lines ‖(P − z)−1‖ =
ε−1 and eigenvalues of the rotated harmonic oscillator. The right col-
umn gives the corresponding values of log10 ε.
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Figure 2. Pseudospectra shape of the rotated harmonic oscillator.
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spectrum in a region of the resolvent set whose geometry may be exactly determined.
These phenomena of strong instabilities for high energies are not peculiar to the
rotated harmonic. They were shown to be the typical behavior of any non-normal
elliptic quadratic operator [KPS17, KPS20, KPS22]. More precisely, the resolvent
of any non-normal elliptic quadratic operator

‖(q(x, hDx)− z)−1‖ = O(h−∞),

is shown to grow rapidy, as the semiclassical parameter h → 0, when the spectral
parameter z lies inside the range of the symbol q. This is linked to some proper-
ties of microlocal non-solvability of non-normal elliptic quadratic operators and to
violations of the adjoint condition to the Nirenberg-Trèves condition (Ψ):
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Condition (Ψ): A symbol p is said to satisfy the condition (Ψ) when the
imaginary part Im(ap) is not allowed to change sign from + to - along the
oriented bicharacteristics of the real part Re(ap) for any 0 6= a ∈ C∞

which allow the construction of semiclassical quasimodes [35, 75, 132, 133, KPS15,
KPS17]. Similar types of spectral instabilities were shown to occur for general
pseudodifferential operators around a doubly characteristic point when the qua-
dratic approximations of these operators at the doubly characteristic set are non-
normal [KPS18]. Starting from these early insights, the present work aims at ac-
counting for the typical phenomena occurring around the doubly characteristic set
and at providing a sharp description of the spectral and pseudospectral properties
of general pseudodifferential operators around a doubly characteristic point.

2. Quadratic differential operators

2.1. Definition of the singular space associated to a quadratic operator.
Quadratic operators are pseudodifferential operators defined in the Weyl quantiza-
tion

(1.4) qw(x,Dx)u(x) =
1

(2π)n

∫
R2n

ei(x−y)·ξq
(x+ y

2
, ξ
)
u(y)dydξ,

by symbols q(x, ξ), with (x, ξ) ∈ Rn×Rn, n ≥ 1, which are complex-valued quadratic
forms

q : Rn
x × Rn

ξ → C
(x, ξ) 7→ q(x, ξ).

These operators are non-selfadjoint differential operators with simple and fully ex-
plicit expression since the Weyl quantization of the quadratic symbol xαξβ, with
(α, β) ∈ N2n, |α + β| = 2, is the differential operator

xαDβ
x +Dβ

xx
α

2
, Dx = i−1∂x.

We know from [76] (p.425-426) that the maximal closed realization of the operator
qw(x,Dx) with domain

D(q) = {u ∈ L2(Rn) : qw(x,Dx)u ∈ L2(Rn)},
coincides with the graph closure of its restriction to the Schwartz space

qw(x,Dx) : S (Rn)→ S (Rn).

When the quadratic symbol has a non-negative real part Re q ≥ 0, the operator is
maximally accretive

Re(qw(x,Dx)u, u)L2 ≥ 0, u ∈ D(q).

Associated to a quadratic symbol q is the numerical range Σ(q) defined as the closure
in the complex plane of all its values

(1.5) Σ(q) = q(Rn
x × Rn

ξ ).

Another classical object associated to a quadratic symbol is the notion of Hamilton
map, also known as the fundamental matrix. The Hamilton map F ∈ M2n(C)
associated to the quadratic form q is the unique map defined by the identity

(1.6) q((x, ξ); (y, η)) = σ((x, ξ), F (y, η)), (x, ξ) ∈ R2n, (y, η) ∈ R2n,
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where q
(
·; ·
)

stands for the polarized form associated to the quadratic form q and σ
is the canonical symplectic form on R2n,

(1.7) σ((x, ξ), (y, η)) = ξ · y − x · η, (x, ξ) ∈ R2n, (y, η) ∈ R2n.

It follows from the definition that the real and imaginary parts of the Hamilton map
F ,

Re F =
1

2
(F + F ), Im F =

1

2i
(F − F ),

are the Hamilton maps associated respectively to the real and imaginary parts of
the quadratic symbol q. A Hamilton map is always skew-symmetric with respect to
the symplectic form. This is a consequence of the properties of skew-symmetry of
the symplectic form, and symmetry of the polarized form

(1.8) ∀X, Y ∈ R2n, σ(X,FY ) = q(X;Y ) = q(Y ;X) = σ(Y, FX) = −σ(FX, Y ).

Hitrik and the author introduced in [KPS2] the notion of singular space. The
singular space of a quadratic symbol q is defined as the linear subspace in the phase
space given by the following infinite intersection of kernels

(1.9) S =
( +∞⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n,

where Re F , Im F are respectively the real and imaginary parts of the Hamilton
map associated to q. By definition, the singular space enjoys the stability properties

(1.10) (Re F )S = {0}, (Im F )S ⊂ S.

Equivalently, the singular space may be defined as the following finite intersection
of kernels

(1.11) S =
( 2n−1⋂

j=0

Ker
[
Re F (Im F )j

])
∩ R2n,

since the Cayley-Hamilton theorem implies that all the vectors

(Im F )kX ∈ Span(X, ..., (Im F )2n−1X), X ∈ R2n, k ≥ 0,

belong to the vector space spanned by X, ..., (Im F )2n−1X.
As discussed in the following sections, the singular space is playing a basic role

in understanding the properties of non-elliptic quadratic operators. It is interesting
to notice that the computation of a singular space reduces to a fairly simple linear
algebraic calculation and, as we shall see in the following, that the partition induced
by its structure provides relevant information about the dynamical properties of the
symbol q.

Let us consider the case when the quadratic symbol q has a non-negative real
part Re q ≥ 0. In this case, we shall see that the singular space may be defined in a
third equivalent way as the subset in the phase space where all the Poisson brackets
Hk

ImqRe q are vanishing

(1.12) S = {X ∈ R2n : Hk
ImqRe q(X) = 0, k ≥ 0}.

This dynamical definition shows that the singular space is exactly the set of points
X0 ∈ R2n where the function

(1.13) t 7→ Re q(etHImqX0),
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vanishes at the infinite order at t = 0. As we shall see in the following, the partition
defined by the structure of the singular space allows to distinguish different regions
in the phase space according to the vanishing order of the function (1.13).

Lastly, when q is a quadratic form with a non-negative real part Re q ≥ 0
satisfying a condition of ellipticity on its singular space

(x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0,

this singular space may be described directly in terms of the eigenspaces of its Hamil-
ton map associated to its real eigenvalues. In this case, the set of real eigenvalues of
the Hamilton map F may be written as

σ(F ) ∩ R = {λ1, ..., λr,−λ1, ...,−λr},
with λj 6= 0, λj 6= ±λk if j 6= k. The singular space is then equal to the direct sum
of the symplectically orthogonal spaces

(1.14) S = Sλ1 ⊕σ⊥ Sλ2 ⊕σ⊥ ...⊕σ⊥ Sλr ,
where Sλj stands for the symplectic space

(1.15) Sλj = (Ker(F − λj)⊕Ker(F + λj)) ∩ R2n.

Thus, in this case, the singular space is equal to zero S = {0} if and only if the
Hamilton map F has no real eigenvalues.

A first example of quadratic operator is given by the Kramers-Fokker-Planck
operator

K = −∆v +
v2

4
− 1

2
+ v∂x −∇xV (x)∂v, (x, v) ∈ R2,

with a quadratic potential

V (x) =
1

2
ax2, a ∈ R∗.

This operator writes as

(1.16) K = qw(x, v,Dx, Dv)−
1

2
,

where

q(x, v, ξ, η) = η2 +
1

4
v2 + i(vξ − axη),

is a non-elliptic complex-valued quadratic form with a non-negative real part. The
Hamilton map of the symbol

q(x, v, ξ, η) = σ((x, v, ξ, η), F (x, v, ξ, η)),

is given by

F =


0 1

2
i 0 0

−1
2
ai 0 0 1

0 0 0 1
2
ai

0 −1
4
−1

2
i 0

 .

A simple algebraic computation shows that

Ker(Re F ) ∩Ker(Re F Im F ) ∩ R4 = {0}.
The singular space of the symbol q is therefore equal to zero

S = {0}.
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This implies that zero is the only point in the phase space where the function (1.13)
vanishes at the infinite order at t = 0. As we shall see in the following, this structure
of the singular space implies the following partition of the phase space

R4 =
[
R4 \ (Ker(Re F ) ∩ R4)

]
t
[
(Ker(Re F ) ∩ R4) \ {0}

]
t {0},

where the microlocal region R4 \ (Ker(Re F ) ∩R4) corresponds to the points where
the function (1.13) does not vanish at t = 0, whereas the microlocal region

(Ker(Re F ) ∩ R4) \ {0},
corresponds to the points where the function (1.13) vanishes exactly at the second
order at t = 0.

2.2. Spectral and smoothing properties of quadratic operators. Since
the classical works by Sjöstrand [113] and Boutet de Monvel [23], a complete de-
scription for the spectrum of elliptic quadratic operators is known and has played an
important role in the analysis of partial differential operators with double charac-
teristics. Elliptic quadratic operators are quadratic operators whose Weyl symbols
satisfy to the global ellipticity condition

(1.17) (x, ξ) ∈ R2n, q(x, ξ) = 0⇒ (x, ξ) = 0.

When this ellipticity condition holds, the numerical range Σ(q) has a specific shape
[113]. In dimension n ≥ 2, one may always find a non-zero complex number z ∈ C∗
such that Re(zq) is a positive definite quadratic form; whereas in dimension n = 1,
the same result holds true if in addition we assume that Σ(q) 6= C. The numerical
range of an elliptic quadratic form can therefore take only two shapes: C or a closed
angular sector with a vertex in 0 and an angle strictly less than π. Elliptic quadratic
operators define Fredholm operators [73, 113],

(1.18) qw(x,Dx) + z : D(q)→ L2(Rn),

where D(q) is equal to the Hilbert space

(1.19) B = {u ∈ L2(Rn) : xαDβ
xu ∈ L2(Rn), |α + β| ≤ 2},

equipped with the norm

‖u‖2
B =

∑
|α+β|≤2

‖xαDβ
xu‖2

L2(Rn).

The Fredholm index is independent of z. It is equal to 0 when Σ(q) 6= C, so it is
always equal to 0 when n ≥ 2; whereas in dimension n = 1, it can take the values
−2, 0 or 2. The exact description of the spectrum of an elliptic quadratic operator

qw(x,Dx) : B → L2(Rn),

whose numerical range satisfies Σ(q) 6= C, was given independently by Sjöstrand
and Boutet de Monvel in the 1970s [23, 113]. This spectrum is only composed of
eigenvalues with finite algebraic multiplicity

(1.20) σ(qw(x,Dx)) =
{ ∑

λ∈σ(F ),
−iλ∈Σ(q)\{0}

(rλ + 2kλ)(−iλ) : kλ ∈ N
}
,

where F is the Hamilton map of the quadratic form q and rλ is the dimension
of the space of generalized eigenvectors of F in C2n associated to the eigenvalue
λ ∈ C. Much more recently [70], the very same description of the spectrum was
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shown to hold as well for non-elliptic quadratic operators when their symbols have
non-negative real parts Re q ≥ 0 and satisfy to the following condition of subelliptic
type

(1.21) ∃0 < ε ≤ 1, ∃c > 0, c|X|2 ≤ Re q(X) + εH2
ImqRe q(X) ≤ 1

c
|X|2, X ∈ R2n.

When this condition holds, it means that the real part of the symbol might not be
positive definite. However, the iterated Poisson bracket H2

ImqRe q must be positive
at these non-zero points where the non-negative quadratic form Re q vanishes

X0 ∈ R2n, X0 6= 0, Re q(X0) = 0⇒ H2
ImqRe q(X0) > 0.

The Kramers-Fokker-Planck operator with quadratic potential (1.16) is an example
of such a non-elliptic quadratic operator satisfying the subelliptic condition

Re q + εH2
ImqRe q = (1− 2aε)

(
η2 +

v2

4

)
+ 2ε

(
ξ2 + a2x

2

4

)
� 0,

when 0 < ε� 1. Following this breakthrough, the seminal questions at the origin of
the joint work with Hitrik [KPS2] were to understand further under which general
assumptions the description of the spectrum known in the elliptic case (1.20) still
holds. In order to weaken the condition (1.21), we have introduced the notion of
singular space. More specifically, we study in [KPS2] the class of quadratic operators
qw(x,Dx) whose symbols have non-negative real parts Re q ≥ 0 and satisfy to a
condition of partial ellipticity on the phase space, namely a condition of ellipticity
on the singular space

(1.22) (x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0.

This condition of partial ellipticity is obviously weaker than the global ellipticity
condition (1.17) since S ⊂ R2n, and this strictly as soon as S 6= R2n, that is,
when the real part of the symbol is not identically equal to zero. According to the
dynamical definition of the singular space (1.12), the condition of subelliptic type
(1.21) implies that the singular space is reduced to zero. Thus, the condition (1.22)
holds as well trivially in this case.

A first geometric feature is the fact that the singular space S associated to
a complex-valued quadratic form q has always a symplectic structure1 when the
symbol q is elliptic on S. This feature allows to decompose the phase space into the
direct sum of the two symplectically orthogonal spaces

R2n = S ⊕σ⊥ Sσ⊥,
where Sσ⊥ is the orthogonal complement of the singular space in R2n with respect
to the symplectic form

Sσ⊥ = {X ∈ R2n : ∀Y ∈ S, σ(X, Y ) = 0}.
By choosing some symplectic coordinates onto the symplectic spaces S and Sσ⊥,

X = X ′ +X ′′, X = (x, ξ) ∈ R2n, X ′ = (x′, ξ′) ∈ Sσ⊥, X ′′ = (x′′, ξ′′) ∈ S,

1In the sense that the restriction of the symplectic form σ|S to the singular space is non-
degenerate.



18 1. PSEUDODIFFERENTIAL OPERATORS WITH DOUBLE CHARACTERISTICS

the first result in [KPS2] shows that the contraction semigroup generated by the
accretive quadratic operator qw(x,Dx),

(1.23)

{
∂u

∂t
(t, x) + qw(x,Dx)u(t, x) = 0,

u(t, ·)|t=0 = u0 ∈ L2(Rn),

is smoothing in every direction of the orthogonal complement of the singular space Sσ⊥.

Theorem 1.1. ([KPS2], Hitrik, KPS) Let q : Rn
x × Rn

ξ → C, n ≥ 1, be a
complex-valued quadratic form with a non-negative real part Re q ≥ 0. When the
quadratic symbol q is elliptic on its singular space

(x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0,

or more generally when its singular space S has a symplectic structure, then for all
t > 0, N ∈ N and u ∈ L2(Rn),

(1.24) (1 + |x′|2 + |Dx′ |2)Ne−tq
w(x,Dx)u ∈ L2(Rn),

if (x′, ξ′) are some linear symplectic coordinates on the symplectic space Sσ⊥.

When the singular space is equal to zero, the assumptions of Theorem 1.1 trivially
hold and the contraction semigroup is smoothing

e−tq
w(x,Dx)u ∈ S (Rn), u ∈ L2(Rn),

for any positive time t > 0.
The next result shows that the description of the spectrum known in the elliptic

case (1.20) extends to non-elliptic quadratic operators whose symbols have a non-
negative real part and enjoy ellipticity on their singular spaces.

Theorem 1.2. ([KPS2], Hitrik, KPS) Let q : Rn
x × Rn

ξ → C, n ≥ 1, be a
complex-valued quadratic form with a non-negative real part Re q ≥ 0. When the
quadratic symbol q is elliptic on its singular space

(x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0,

the spectrum of the quadratic operator qw(x,Dx) is only composed by eigenvalues
with finite algebraic multiplicity

(1.25) σ(qw(x,Dx)) =
{ ∑

λ∈σ(F ),
−iλ∈C+∪(Σ(q|S)\{0})

(
rλ + 2kλ

)
(−iλ) : kλ ∈ N

}
,

where F is the Hamilton map of the quadratic form q, rλ is the dimension of the
space of generalized eigenvectors of F in C2n associated to the eigenvalue λ ∈ C,

Σ(q|S) = q(S), C+ = {z ∈ C : Re z > 0}.

The following theorem extends the result obtained in [KPS21] by providing
some necessary and sufficient conditions for the exponential decay in time of the
contraction semigroup generated by non-elliptic quadratic operators with symplectic
singular spaces.
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Theorem 1.3. ([KPS2], Hitrik, KPS) Let q : Rn
x × Rn

ξ → C, n ≥ 1, be a
complex-valued quadratic form with a non-negative real part Re q ≥ 0. When the
quadratic symbol q is elliptic on its singular space

(x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0,

or more generally when its singular space S has a symplectic structure, then the
following assertions are equivalent:

(i) The contraction semigroup generated by the operator qw(x,Dx) decays ex-
ponentially in time

∃M > 0,∃a > 0,∀t ≥ 0, ‖e−tqw(x,Dx)‖L(L2) ≤Me−at

(ii) The real part of the symbol q is not identically equal to zero

∃(x0, ξ0) ∈ R2n, Re q(x0, ξ0) 6= 0

(iii) The singular space is distinct from the phase space S 6= R2n

We recall that the only condition (ii) is not sufficient in general for getting the
exponential decay in time of the contraction semigroup. Indeed, let us consider
the case when q(x, ξ) = x2. The quadratic operator qw(x,Dx) is the operator of
multiplication by x2 generating the contraction semigroup

e−tq
w(x,Dx)u = e−tx

2

u, t ≥ 0, u ∈ L2(Rn),

whose norm is identically equal to 1,

‖e−tqw(x,Dx)‖L(L2) = 1, t ≥ 0.

Proof. The first part in the proofs of these theorems is purely algebraic. Under
the assumptions of these theorems, the singular space has a symplectic structure
allowing to decompose the phase space into the direct sum of the two symplectically
orthogonal spaces

R2n = S ⊕σ⊥ Sσ⊥, dimRS
σ⊥ = 2n′, dimRS = 2n′′, n = n′ + n′′.

We choose some symplectic coordinates onto the symplectic spaces S and Sσ⊥,

(1.26) X = X ′ +X ′′, X = (x, ξ) ∈ R2n, X ′ = (x′, ξ′) ∈ Sσ⊥, X ′′ = (x′′, ξ′′) ∈ S.
The stability properties (1.10) holding true as well by duality for the space Sσ⊥,

(Re F )Sσ⊥ ⊂ Sσ⊥, (Im F )Sσ⊥ ⊂ Sσ⊥,

imply that the variables in S and Sσ⊥ may be tensorized. The quadratic form q may
be written as the sum of a quadratic form defined on S and another one defined
on Sσ⊥,

(1.27) q = q|S + q|Sσ⊥ ,
where the first quadratic form q|S is purely imaginary-valued, i.e., equal to

q|S = iq̃|S,
with q̃|S a real-valued quadratic form, whereas the second quadratic form q|Sσ⊥ is a
complex-valued quadratic form with a non-negative real part Re q|Sσ⊥ ≥ 0. When
the assumption of ellipticity on the singular space holds

(x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0,
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this means that q̃|S is an elliptic real-valued quadratic form, i.e., that there exists
ε0 ∈ {±1} such that ε0q̃|S is a positive definite quadratic form. Up to a new choice
of symplectic coordinates, any positive definite quadratic form can be reduced to a
harmonic oscillator. In such coordinates, the restriction of the quadratic form q|S
on the singular space reduces to the normal form

(1.28) q|S(X ′′) = iε0

n′′∑
j=1

λj(ξ
′′2
j + x′′2j ), X ′′ = (x′′, ξ′′) ∈ S,

with λj > 0. This normal form partly accounts for the structure of the spectrum
in Theorem 1.2. Regarding the second quadratic form q|Sσ⊥ , its real part fails in
general to be positive definite unless the real part of q is. However, this quadratic
form q|Sσ⊥ enjoys specific dynamical features. Indeed, the definition of the singular
space implies the following properties:

(i) The average of the real part of q|Sσ⊥ by the flow generated by the Hamilton
vector field associated to its imaginary part HImq|

Sσ⊥
,

(1.29) 〈Re q|Sσ⊥〉T (X ′) =
1

2T

∫ T

−T
(Re q|Sσ⊥)(e

tHImq|
Sσ⊥X ′)dt� 0, T > 0,

is a positive definite quadratic form on the symplectic space Sσ⊥

(ii) The sum of the non-negative quadratic forms

(1.30)
2n′−1∑
j=0

(Re q|Sσ⊥)((Im F |Sσ⊥)jX ′)� 0,

is positive definite on the symplectic space Sσ⊥

Studying the quadratic form q|Sσ⊥ reduces to studying the case when the singular
space is equal to zero. Thus, we may assume from now that q is a quadratic symbol
with a non-negative real part Re q ≥ 0 and a zero singular space S = 0. In this
case, the quadratic forms

(1.31) 〈Re q〉T (X) =
1

2T

∫ T

−T
(Re q)(etHImqX)dt� 0, T > 0

and

(1.32)
2n−1∑
j=0

Re q((Im F )jX)� 0,

are positive definite. Algebraic computations show that we have the following par-
tition of the phase space

(1.33) R2n = {0} t Λ0 t ... t Λ2n−1,

where the microlocal region

Λj = {X ∈ R2n : X ∈ Ker(Re F ) ∩ ... ∩Ker[Re F (Im F )j−1], X /∈ Ker[Re F (Im F )j]}
= {X ∈ R2n : Re q(X) = ... = Re q((Im F )j−1X) = 0, Re q((Im F )jX) > 0},

corresponds to the points X0 ∈ R2n where the function

t 7→ Re q(etHImqX0),
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vanishes at t = 0 exactly at the order 2j,

Λj = {X ∈ R2n : Re q(X) = HImqRe q(X) = ... = H2j−1
Imq Re q(X) = 0,

H2j
ImqRe q(X) > 0}.

The rest of the proof is analytic. It relies on some techniques of complex deformations
of the phase space developed by Sjöstrand, and closely follows the analysis of the
Kramers-Fokker-Planck equation led by Hérau, Sjöstrand and Stolk in [70].

In order to take advantage of the positive definiteness of the quadratic form
(1.31), we consider the real-valued quadratic form

G(X) =

∫
R
kT (t)Re q(etHImqX)dt,

with kT (t) = k
(
t

2T

)
, where k ∈ C(R\{0}) is the odd function satisfying

k(t) = 0 for |t| ≥ 1

2
, k′(t) = −1 for 0 < |t| < 1

2
.

It solves the equation
HImqG = −Re q + 〈Re q〉T .

Associated to G is a linear IR-manifold

ΛεG = eiεHG(R2n) ⊂ C2n, 0 < ε� 1,

on which the quadratic symbol q becomes elliptic, since the real part of the quadratic
form

q̃ε(X) = q(eiεHGX),

is positive definite

Re q̃ε(X) = Re q(X) + εHImqG(X) +O(ε2|X|2)

= (1− ε)Re q + ε〈Re q〉T +O(ε2|X|2)� 0,

when 0 < ε � 1. A complete description for the spectrum of the elliptic quadratic
operator q̃ε(x,Dx) is known thanks to Sjöstrand’s result [113] (see also [23]):

σ(q̃wε (x,Dx)) =
{ ∑

λ∈σ(F̃ε),
−iλ∈Σ(q̃ε)\{0}

(r̃ε,λ + 2kλ)(−iλ) : kλ ∈ N
}
,

when 0 < ε� 1. The Hamilton maps of the quadratic forms q and q̃ε are isospectral

F̃ε = e−iεHGFeiεHG .

This implies that the spectrum of the operator q̃wε (x,Dx) is actually independent of
the parameter ε when 0 < ε � 1. The core of the proof is then to establish that
the quadratic operator qw(x,Dx) has discrete spectrum, and more specifically that
the operators qw(x,Dx) and q̃wε (x,Dx), with 0 < ε � 1, share the same spectrum,
eigenvectors and generalized eigenvectors. To that end, we study the contraction
semigroups generated by these operators as Fourier integral operators on the FBI-
Bargmann side

e−tQ0 : HΦ0(Cn)→ HΦ0(Cn), e−tQ0 : HΦ̃ε
(Cn)→ HΦ̃ε

(Cn),

with
HΦ(Cn) = Hol(Cn) ∩ L2

(
Cn, e−2Φ(x)L(dx)

)
,
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where L(dx) stands for the Lebesgue measure in Cn. The key point is then to
check that the algebraic feature (1.31) implies that these contraction semigroups are
compact smoothing operators

e−tQ0 : HΦ0(Cn)→ HΦ0−α(t)|x|2(Cn), e−tQ0 : HΦ̃ε
(Cn)→ HΦ̃ε−αε(t)|x|2(Cn),

with α(t) > 0, αε(t) > 0, when t > 0. This proves that the quadratic opera-
tor qw(x,Dx) has discrete spectrum, and additional semigroup arguments allow to
check that the operators qw(x,Dx) and q̃wε (x,Dx), with 0 < ε � 1, have the same
spectrum, eigenvectors and generalized eigenvectors. �

2.3. Subelliptic properties of quadratic operators.
2.3.1. The scalar case. The Kramers-Fokker-Planck operator

K = qw(x, v,Dx, Dv)−
1

2
= −∆v +

v2

4
− 1

2
+ v∂x −∇xV (x)∂v, (x, v) ∈ R2,

with a quadratic potential

V (x) =
1

2
ax2, a ∈ R∗,

is an example of non-elliptic quadratic operator enjoying subelliptic properties [64],

(1.34) ∃C > 0, ∀u ∈ S (R2), ‖Λ2/3
x u‖2

L2 + ‖Λ2
vu‖2

L2 ≤ C(‖Ku‖2
L2 + ‖u‖2

L2),

with

Λ2
x = −∆x +

x2

4
, Λ2

v = −∆v +
v2

4
.

This global subelliptic estimate is sharp. Both indices 2/3 for the subelliptic esti-
mates in the (x, ξ) variables, and 2 for the elliptic estimates in the (v, η) variables are
optimal. This index 2/3 may be explained in term of the structure of the singular
space associated to the quadratic symbol

q(x, v, ξ, η) = η2 +
1

4
v2 + i(vξ − axη).

We recall that the singular space of this symbol is equal to zero S = 0, and that the
structure of the singular space implies the following partition of the phase space

R4 =
[
R4 \ (Ker(Re F ) ∩ R4)

]
t
[
(Ker(Re F ) ∩ R4) \ {0}

]
t {0},

according to the vanishing order of the function

(1.35) t 7→ Re q(etHImqX0), X0 ∈ R4.

As we shall see in the next theorem, the index 2/3 directly relates to the maximal
finite vanishing order of the function (1.35) over the phase space. For the Kramers-
Fokker-Planck operator with quadratic potential, this maximal finite vanishing order
is equal to 2 and occurs in the microlocal region (Ker(Re F ) ∩ R4) \ {0} ⊂ R4.

The next result shows that any quadratic operator whose symbol has a non-
negative real part and a zero singular space enjoys global subelliptic estimates of the
type

(1.36) ‖〈(x,Dx)〉2(1−δ)u‖L2 . ‖qw(x,Dx)u‖L2 + ‖u‖L2 ,

where 〈(x,Dx)〉2 = 1 + |x|2 + |Dx|2, with a sharp loss of derivatives 0 ≤ δ < 1 with
respect to the elliptic case (case δ = 0), which may be explicitly derived from the
structure of the singular space.
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Theorem 1.4. ([KPS24], KPS) Let q : Rn
x × Rn

ξ → C, n ≥ 1, be a complex-
valued quadratic form with a non-negative real part Re q ≥ 0 and a zero singular
space S = 0. Let 0 ≤ k0 ≤ 2n− 1 be the smallest integer2 satisfying

(1.37)
( k0⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n = {0}.

Then, the quadratic operator qw(x,Dx) satisfies the global subelliptic estimate

(1.38) ∃C > 0,∀u ∈ D(q), ‖〈(x,Dx)〉2/(2k0+1)u‖L2 ≤ C(‖qw(x,Dx)u‖L2 + ‖u‖L2).

The case when k0 = 0 corresponds to the elliptic case when the symbol q has a
positive definite real part. According to the previous discussion about the possible
shapes of the numerical range, any elliptic symbol with Σ(q) 6= C may be reduced
to this case. For the Kramers-Fokker-Planck operator with quadratic potential, the
integer k0 is equal to 1,

Ker(Re F ) ∩Ker(Re F Im F ) ∩ R4 = {0}.
This accounts for the index 2/3 in the global subelliptic estimate (1.34).

In the general case, let us emphasize that these estimates are global with the
sharp loss of δ = 2k0/(2k0 + 1) derivatives. This loss is in agreement with general
results about microlocal subellipticity with optimal loss of derivatives [74, 75]. In-
deed, the assumptions of Theorem 1.4 imply the following partition of the phase
space

(1.39) R2n = {0} t Λ0 t ... t Λk0 ,

where the microlocal region

Λj = {X ∈ R2n : Re q(X) = HImqRe q(X) = ... = H2j−1
Imq Re q(X) = 0,

H2j
ImqRe q(X) > 0},

corresponds to the points X0 ∈ R2n where the function

t 7→ Re q(etHImqX0),

vanishes at t = 0, exactly at the order 2j. The maximal finite vanishing order of
this function is therefore equal to 2k0. Roughly speaking, in each microlocal region
Λj, the operator microlocally reduces to the subelliptic model with large parameter
λ ≥ 1,

Dt + iλt2j,

near X0 = (x0, ξ0) ∈ Λj. This comes from the non-negativeness of the real part
Re q ≥ 0 and the averaging property (1.31), which imply that the operator is of
principal type and satisfies to the condition (P ) in all these points of finite type.
The large parameter λ is of the order of the gain

λ ∼ 〈(x0, ξ0)〉2,
in the natural symbolic calculus associated to quadratic operators

q ∈ S
(
〈(x, ξ)〉2, dx

2 + dξ2

〈(x, ξ)〉2
)
, i.e. ∀α, β ∈ Nn, |∂αx∂βξ q(x, ξ)| . 〈(x, ξ)〉2−|α|−|β|.

2Such an integer exists according to the definition (1.11).
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The standard subelliptic estimate [86] (Section 1.4) with sharp loss of derivatives

(1.40) ‖Dtu+ iλt2ju‖L2 & λ
1

2j+1‖u‖L2 ,

then accounts for the sharpness of the loss δ = 2k0/(2k0 +1) in the global subelliptic
estimate (1.38). The next result shows that Theorem 1.4 may be refined as follows:

Theorem 1.5. ([KPS24], KPS) Let q : Rn
x × Rn

ξ → C, n ≥ 1, be a complex-
valued quadratic form with a non-negative real part Re q ≥ 0. Let 0 ≤ k0 ≤ 2n− 1
be the smallest integer3 satisfying

(1.41) S =
( k0⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n.

When the quadratic symbol q is elliptic on its singular space

(x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0,

or more generally when its singular space S has a symplectic structure, then the
quadratic operator qw(x,Dx) is subelliptic in any direction of the space Sσ⊥ in the
sense that

(1.42) ∃C > 0,∀u ∈ D(q), ‖〈(x′, Dx′)〉2/(2k0+1)u‖L2 ≤ C(‖qw(x,Dx)u‖L2 + ‖u‖L2),

if (x′, ξ′) are some linear symplectic coordinates on the symplectic space Sσ⊥.

When the singular space is equal to zero, we recover the result stated in Theo-
rem 1.4. As in Theorem 1.1, we notice that regularizing properties only hold in the
microlocal directions given by the linear subspace Sσ⊥.

Before giving some insights for the proof of these two theorems, we provide some
examples of subelliptic quadratic operators with zero singular space showing that
the integer 0 ≤ k0 ≤ 2n− 1, related to the loss of derivatives δ = 2k0/(2k0 + 1), can
actually take any value in the set {0, ..., 2n− 1}, when n ≥ 1:

- Case k0 = 0: Any quadratic symbol q with Re q � 0 a positive definite real
part

- Case k0 = 1:

q(x, ξ) = ξ2
2 + x2

2 + i(x2ξ1 − x1ξ2) +
n∑
j=3

(ξ2
j + x2

j)

- Case k0 = 2p, with 1 ≤ p ≤ n− 1:

q(x, ξ) = ξ2
1 +x2

1 + i(ξ2
1 +2x2ξ1 +ξ2

2 +2x3ξ2 + ....+ξ2
p +2xp+1ξp+ξ2

p+1)+
n∑

j=p+2

(ξ2
j +x2

j)

- Case k0 = 2p+ 1, with 1 ≤ p ≤ n− 1:

q(x, ξ) = x2
1 + i(ξ2

1 + 2x2ξ1 + ξ2
2 + 2x3ξ2 + ....+ ξ2

p + 2xp+1ξp + ξ2
p+1) +

n∑
j=p+2

(ξ2
j + x2

j)

3Such an integer exists according to the definition (1.11).
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We notice that the global subelliptic estimate

‖〈(x,Dx)〉2/(4n−1)u‖L2 . ‖qw(x,Dx)u‖L2 + ‖u‖L2 ,

fulfilled for instance by the quadratic operator qw(x,Dx) whose symbol

q(x, ξ) = x2
1 + i(ξ2

1 + 2x2ξ1 + ξ2
2 + 2x3ξ2 + ....+ ξ2

n−1 + 2xnξn−1 + ξ2
n),

has a very degenerate real part, well-emphasizes some non-trivial interactions be-
tween the selfadjoint and skew-selfadjoint parts of the operator. Indeed, the imagi-
nary part has no sign property and a naive approach purely based on the accretivity
of the operator only allows to get a control of the x1 variable

‖x1u‖2
L2 = Re(qw(x,Dx)u, u)L2 ≤ ‖qw(x,Dx)u‖L2‖u‖L2 ≤ ‖qw(x,Dx)u‖2

L2 + ‖u‖2
L2 .

Starting from any of the previous examples of quadratic symbol q with a non-
negative real part and a zero singular space, other examples of quadratic forms with
a non-negative real part and a non-trivial symplectic singular space may be built
up by adding to q a purely imaginary-valued quadratic form in other symplectic
variables (x̃, ξ̃),

q(x, ξ) + iq̃(x̃, ξ̃).

In this case, the singular space is given by the space S = {(x, x̃, ξ, ξ̃) : x = ξ = 0}.

Proof. For simplicity, we consider first the case when the singular space is equal
to zero S = 0. The proof of Theorem 1.4 is a proof by multiplier and the core of
this proof is the construction of the multiplier symbol. This construction is technical
and relies on the identity

H2j
ImqRe q(X) = cjRe q((Im F )jX) > 0, cj > 0,

holding for points in the microlocal region Λj. With 0 ≤ k0 ≤ 2n − 1 the smallest
integer satisfying ( k0⋂

j=0

Ker
[
Re F (Im F )j

])
∩ R2n = {0},

the algebraic feature (1.32) reduces to

k0∑
j=0

Re q((Im F )jX)� 0.

By taking advantage of the positive definiteness of this quadratic form, we build up
a real-valued bounded symbol

g ∈ S(1, 〈X〉−
2

2k0+1dX2) i.e. ∀α ∈ N2n, |∂αXg(X)| . 〈X〉−
|α|

2k0+1 ,

satisfying to the following global estimate on the phase space

(1.43) ∃c1, c2 > 0,∀X ∈ R2n, Re q(X) + c1HImqg(X) + 1 ≥ c2〈X〉
2

2k0+1 .

The boundedness of this symbol is important to deal with a bounded multiplier. In
the case when the condition (1.21) holds, a natural choice for the multiplier would
be to take for g the quadratic symbol HImqRe q. However, this symbol is unbounded
and needs to be suitably weighted and microlocalized in order to design a consistent
multiplier. In the general case, the global construction of the symbol g is microlocally
designed according to partition (1.39).
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A key instrumental step in the proof the global subelliptic estimate with loss of
2k0/(2k0 + 1) derivatives

(1.44) ‖〈(x,Dx)〉2/(2k0+1)u‖L2 ≤ C(‖qw(x,Dx)u‖L2 + ‖u‖L2),

is to establish first the weaker subelliptic estimate

(1.45) ‖〈(x,Dx)〉1/(2k0+1)u‖L2 ≤ C(‖qw(x,Dx)u‖L2 + ‖u‖L2).

The estimate (1.44) is then derived from (1.45) through a commutator argument.
In order to prove the estimate (1.45), we use some elements of Wick calculus and
define the multiplier through the Wick quantization. A short exposition of the Wick
calculus is given in Appendix (Section 1). Standard Wick symbolic calculus allows
to write for any 0 < ε� 1,

Re(qWicku, (1− εg)Wicku)L2︸ ︷︷ ︸
Term bounded in modulus as
|·|.‖qw(x,Dx)u‖2

L2+‖u‖2
L2

= ([(1− εg)Re q +
ε

4π
HImq g︸ ︷︷ ︸

&〈X〉
2

2k0+1

]Wicku, u)L2

+
ε

4π
([∇g.∇Re q]Wicku, u)L2 +O(‖u‖2

L2)︸ ︷︷ ︸
Remainder terms bounded in modulus as

|·|.‖qw(x,Dx)u‖2
L2+‖u‖2

L2

and to derive the estimate (1.45) from the positivity property of the Wick quanti-
zation

([(1− εg)Re q +
ε

4π
HImq g]Wicku, u)L2 & ‖〈(x,Dx)〉1/(2k0+1)u‖2

L2 .

Then, the proof of Theorem 1.5 follows from the same lines after taking advantage
of the variables tensorization (1.27). �

2.3.2. Overdetermined systems of quadratic operators. In the scalar case, the
concept of singular space has proven to be a simple and relevant algebraic tool for
deriving the sharp subelliptic properties of quadratic operators. This notion may be
extended to overdetermined systems of quadratic operators for studying their global
subellipticity

(1.46) ‖〈(x,Dx)〉2(1−δ)u‖L2 .
N∑
j=1

‖qwj (x,Dx)u‖L2 + ‖u‖L2 , 0 ≤ δ < 1,

possibly arising thanks to non-trivial interactions between the different operators
composing the system. In the following statement, the intersection of kernels⋂

j=1,...,N,
(l1,...,lk)∈{1,...,N}k

Ker(Re FjIm Fl1 ...Im Flk),

is understood as ⋂
j=1,...,N

Ker Re Fj,

when k = 0.
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Theorem 1.6. ([KPS25], KPS) Let qj : Rn
x × Rn

ξ → C, n ≥ 1, 1 ≤ j ≤ N , be
a system of complex-valued quadratic forms with non-negative real parts Re qj ≥ 0.
Assume that there exists an integer k0 ≥ 0 such that

(1.47)
( ⋂

0≤k≤k0

⋂
j=1,...,N,

(l1,...,lk)∈{1,...,N}k

Ker(Re FjIm Fl1 ...Im Flk)
)
∩ R2n = {0},

with Fj the Hamilton map of the quadratic form qj. Then, the overdetermined system
of quadratic operators (qwj )1≤j≤N is subelliptic with a loss of δ = 2k0/(2k0 + 1)
derivatives, i.e., ∃C > 0,

(1.48) ∀u ∈ D(q1) ∩ ... ∩D(qN),

‖〈(x,Dx)〉2/(2k0+1)u‖L2 ≤ C
( N∑
j=1

‖qwj (x,Dx)u‖L2 + ‖u‖L2

)
.

Theorem 1.6 emphasizes non-trivial interactions between the different operators
composing the system, which cannot be derived from the result known in the scalar
case. Indeed, setting

qj(x, ξ) = x2
1 + ξ2

1 + i(ξ2
1 + xj+1ξ1), q̃j(x, ξ) = x2

1 + ξ2
1 + i(ξ2

1 + ξj+1ξ1),

with 1 ≤ j ≤ n− 1, (x, ξ) ∈ R2n, n ≥ 2, the singular space of the quadratic form

n−1∑
j=1

(λjqj + λ̃j q̃j), with λj, λ̃j ∈ R,
n−1∑
j=1

(λj + λ̃j) > 0,

is given by the non-zero vector subspace

S =
{

(x, ξ) ∈ R2n : x1 = ξ1 =
n−1∑
j=1

(λjxj+1 + λ̃jξj+1) = 0
}
.

We cannot deduce any result about the subellipticity of the scalar operator

n−1∑
j=1

(λjq
w
j (x,Dx) + λ̃j q̃

w
j (x,Dx)),

in order to prove the subellipticity of the overdetermined system composed by the
2n − 2 quadratic operators (qwj , q̃

w
k )1≤j,k≤n−1. However, denoting Fj and F̃j the

Hamilton maps of the quadratic forms qj and q̃j, one may easily check that

Ker Re Fj ∩Ker(Re FjIm Fj) ∩ R2n = {(x, ξ) ∈ R2n : x1 = ξ1 = xj+1 = 0},
Ker Re F̃j ∩Ker(Re F̃jIm F̃j) ∩ R2n = {(x, ξ) ∈ R2n : x1 = ξ1 = ξj+1 = 0}.

We deduce from Theorem 1.6 the global subelliptic estimate with a loss of 2/3
derivatives

‖〈(x,Dx)〉2/3u
∥∥
L2 .

n−1∑
j=1

(‖qwj (x,Dx)u‖L2 + ‖q̃wj (x,Dx)u‖L2) + ‖u‖L2 .

Setting now

q1(x, ξ) = x2
1 + ξ2

1 + i(x2ξ1 − x1ξ2 + x3ξ2 − x2ξ3), q2(x, ξ) = i(x3ξ1 − x1ξ3),
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with (x, ξ) = (x1, x2, x3, ξ1, ξ2, ξ3) ∈ R6. The subellipticity of the system (qw1 , q
w
2 )

may be derived from the scalar case (Theorem 1.4). Indeed, let us consider the
quadratic form q = q1 + µq2, for µ ∈ R, with Hamilton map F . Some algebraic
computations show

Ker(Re F ) = {(x, ξ) ∈ R6 : x1 = ξ1 = 0},

Ker(Re F ) ∩Ker(Re F Im F ) = {(x, ξ) ∈ R6 : x1 = ξ1 = x2 + µx3 = ξ2 + µξ3 = 0},

Ker(Re F ) ∩Ker(Re F Im F ) ∩Ker
(
Re F (Im F )2

)
= {(x, ξ) ∈ R6 : x1 = ξ1 = x2+µx3 = ξ2+µξ3 = −µx2+x3 = −µξ2+ξ3 = 0} = {0}.

Theorem 1.4 establishes the subellipticity with a loss of 4/5 derivatives

(1.49) ‖〈(x,Dx)〉2/5u‖L2 . ‖qw(x,Dx)u‖L2 + ‖u‖L2

. ‖qw1 (x,Dx)u‖L2 + ‖qw2 (x,Dx)u‖L2 + ‖u‖L2 ,

whereas Theorem 1.6 provides a sharper subelliptic estimate with a loss of 2/3
derivatives

(1.50) ‖〈(x,Dx)〉2/3u‖L2 . ‖qw1 (x,Dx)u‖L2 + ‖qw2 (x,Dx)u‖L2 + ‖u‖L2 ,

since

Ker(Re F1) = {(x, ξ) ∈ R6 : x1 = ξ1 = 0},

Ker(Re F1Im F1) = {(x, ξ) ∈ R6 : x2 = ξ2 = 0},

Ker(Re F1Im F2) = {(x, ξ) ∈ R6 : x3 = ξ3 = 0},
where F1 and F2 are the Hamilton maps of the quadratic symbols q1 and q2. This
result shows that the estimate (1.49) is sharp for the quadratic operator qw, but not
for the system of the two quadratic operators (qw1 , q

w
2 ). Obviously, more complex in-

teractions between the different operators composing the system may be emphasized
when considering operators with different real parts.

The subellipticity of overdetermined systems of pseudodifferential operators was
studied by Bolley, Camus and Nourrigat in the work [20], where is established the
microlocal subellipticity for overdetermined systems of pseudodifferential operators
with real principal symbols satisfying the Hörmander-Kohn condition. This con-
dition refers to the existence of an elliptic iterated commutator of the operators
composing the system. Regarding overdetermined systems of non-selfadjoint pseu-
dodifferential operators, the greatest achievements about microlocal subellipticity
and maximal hypoellipticity were obtained by Nourrigat in [104, 105] by the mean
of nilpotent groups representations.

In the case of a system of non-selfadjoint quadratic operators (qwj )1≤j≤N , the
natural extension of the Hörmander-Kohn condition is to request the ellipticity
of an iterated commutator of the real parts ((Re qj)

w)1≤j≤N and imaginary parts
((Im qj)

w)1≤j≤N of the operators composing the system. In the scalar case, this
natural condition holds according to the partition of the phase space (1.39). In the
system case, the situation is more complicated and the link between the algebraic
condition (1.47) and the existence of an elliptic iterated commutator of the operators
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composing the system is less obvious to highlight explicitly. More specifically, the
algebraic condition (1.47) implies the positive definiteness of the quadratic form

k0∑
k=0

∑
j=1,...,N,

(l1,...,lk)∈{1,...,N}k

Re qj(Im Fl1 ...Im FlkX)� 0.

This property implies that for any non-zero point X0 ∈ R2n, there exist 0 ≤ k ≤ k0,
j ∈ {1, ..., N} and (l1, ..., lk) ∈ {1, ..., N}k such that

Re qj(Im Fl1 ...Im FlkX0) > 0.

By considering the minimal non-negative integer k with this property, we may check
that there is no elliptic iterated commutator of order less or equal to 2k − 1 at X0

of the type

[P1, [P2, [P3, [..., [Pr, Pr+1]...]]]],

with r ≤ 2k− 1, Pl = Re qws or Pl = Im qws , where at least one Pl is equal to Re qws .
We may also check that the non-zero term

Re qj(Im Fl1 ...Im FlkX0) > 0,

actually appears when expanding the Weyl symbol at X0 of the 2kth iterated com-
mutator

[Im qwlk , [Im qwlk , [Im qwlk−1
, [Im qwlk−1

, [..., [Im qwl1 , [Im qwl1 ,Re qwj ]]]...]

= (−1)k(H2
Imqlk

...H2
Imql1

Re qj)
w.

However, contrary to the scalar case, there may be also other non-zero terms in this
expansion and it is not clear if this natural commutator associated to the term

Re qj(Im Fl1 ...Im FlkX0) > 0,

is actually elliptic at X0,

H2
Imqlk

...H2
Imql1

Re qj(X0)
?

6= 0.

Though it may be difficult to determine exactly at each point which specific commu-
tator is elliptic, it is very likely that condition (1.47) ensures that the Hörmander-
Kohn condition is fulfilled at any non-zero point of the phase space, and that these
associated elliptic commutators are all of order less or equal to 2k0. It is actually
what the loss of derivatives appearing in the estimate (1.48) suggests, and this in
agreement with the optimal loss of derivatives obtained in [20] (Theorem 1.1) for
2k0 commutators

δ = 1− 1

2k0 + 1
=

2k0

2k0 + 1
.

In conclusion, Theorem 1.6 provides an explicit and simple algebraic condition for
proving global subelliptic estimates for systems of quadratic operators. It is possible
that some of these global subelliptic estimates for systems of quadratic operators
may also be derived from the results of microlocal subellipticity and maximal hy-
poellipticity proven in [20, 104, 105], but checking the assumptions of these results
turns out to be quite difficult in practice.
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2.4. Exponential return to equilibrium. We consider the evolution equa-
tions associated with accretive non-selfadjoint quadratic operators

(1.51)

{
∂u

∂t
(t, x) + qw(x,Dx)u(t, x) = 0,

u(t, ·)|t=0 = u0 ∈ L2(Rn),

and address the problem of the exponential return to equilibrium for these systems.
The following result makes explicit the structure of the bottom of the spectrum

and the existence of a ground state of exponential type:

Theorem 1.7. ([KPS12], Ottobre, Pavliotis, KPS) Let q : Rn
x×Rn

ξ → C, n ≥ 1,
be a complex-valued quadratic form with a non-negative real part Re q ≥ 0, and a
zero singular space S = 0. Then, the first eigenvalue in the bottom of the spectrum
of the quadratic operator qw(x,Dx) given by

(1.52) µ0 =
∑

λ∈σ(F )
−iλ∈C+

−iλrλ,

has algebraic multiplicity 1 and the eigenspace

Ker(qw(x,Dx)− µ0) = Cu0,

is spanned by a ground state of exponential type

u0(x) = e−a(x) ∈ S (Rn),

where a is a complex-valued quadratic form on Rn whose real part is positive definite
Re a� 0. Furthermore, the spectral gap of the quadratic operator

σ
(
qw(x,Dx)

)
\ {µ0} ⊂ {z ∈ C : Re z ≥ Re µ0 + τ0},

is exactly given by the positive rate

(1.53) τ0 = 2 min
λ∈σ(F )
Im λ>0

Im λ > 0.

Here F stands for the Hamilton map of the quadratic form q and rλ is the dimension
of the space of generalized eigenvectors of F in C2n associated to the eigenvalue λ.

The next result establishes the property of exponential return to equilibrium and
provides an exact formula for the optimal rate of convergence:

Theorem 1.8. ([KPS12], Ottobre, Pavliotis, KPS) Let q : Rn
x×Rn

ξ → C, n ≥ 1,
be a complex-valued quadratic form with a non-negative real part Re q ≥ 0, and a
zero singular space S = 0. By using the notations introduced in (1.52) and (1.53),
we consider the operator

Q = qw(x,Dx)− µ0.

Then, for all 0 ≤ τ < τ0, there exists a positive constant C > 0 such that

∀t ≥ 0, ‖e−tQ − Π0‖L(L2) ≤ Ce−τt,

where Π0 is the rank-one spectral projection associated with the simple eigenvalue zero
of the operator Q and ‖ · ‖L(L2) stands for the norm of bounded operators on L2(Rn).
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Figure 3. The first eigenvalue in the bottom of the spectrum is not
necessarily real.
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We consider now the particular case when in addition, the quadratic operator is
real in the sense that qw(x,Dx)u is a real-valued function whenever u is a real-valued
function. Under this assumption, the first eigenvalue µ0 is necessarily real and the
quadratic form a� 0 defining the ground state

u0(x) = e−a(x) ∈ S (Rn), qw(x,Dx)u0 = µ0u0,

is positive definite. The adjoint operator qw(x,Dx)
∗ is the quadratic operator

qw(x,Dx),

which also satisfies the assumptions of both Theorems 1.7 and 1.8. In this case, µ0

is the first eigenvalue in the bottom of the spectrum for both quadratic operators
qw(x,Dx) and qw(x,Dx)

∗. We know from Theorem 1.7 that the eigenspaces asso-
ciated with this eigenvalue are one-dimensional with ground states of exponential
type. We assume further that the two operators have the same ground state

(1.54) Ker(qw(x,Dx)− µ0) = Ker(qw(x,Dx)
∗ − µ0) = Cu0 ⊂ S (Rn),

with u0(x) = e−a(x), x ∈ Rn, where a � 0 is a positive definite quadratic form on
Rn. Under these assumptions, the rank-one spectral projection Π0 is orthogonal:

Theorem 1.9. ([KPS12], Ottobre, Pavliotis, KPS) Let q : Rn
x×Rn

ξ → C, n ≥ 1,
be a complex-valued quadratic form with a non-negative real part Re q ≥ 0, and a
zero singular space S = 0. Assume that the quadratic operator qw(x,Dx) is real and
satisfies to assumption

Ker(qw(x,Dx)− µ0) = Ker(qw(x,Dx)
∗ − µ0).

By using the notations introduced in (1.52) and (1.53), we consider the operator

Q = qw(x,Dx)− µ0.
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Then, for all 0 ≤ τ < τ0, there exists a positive constant C > 0 such that

∀t ≥ 0,∀u ∈ L2(Rn), ‖e−tQu− cuu0‖L2(Rn) ≤ Ce−τt‖u‖L2(Rn),

where cu is the L2(Rn) scalar product of u and u0/‖u0‖2
L2(Rn),

cu = ‖u0‖−2
L2(Rn)(u, u0)L2(Rn).

Proof. Under the assumptions of Theorem 1.8, the quadratic operator qw(x,Dx)
enjoys the global subelliptic estimate

‖〈(x,Dx)〉2/(2k0+1)u‖L2 ≤ C(‖qw(x,Dx)u‖L2 + ‖u‖L2),

where 0 ≤ k0 ≤ 2n− 1 is the smallest integer satisfying( k0⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n = {0}.

This estimate is shown to extend as

(1.55) ∃C > 0,∀u ∈ D(q), ∀ν ∈ R,

‖〈(x,Dx)〉2/(2k0+1)u‖2
L2 ≤ C(‖qw(x,Dx)u− iνu‖2

L2 + ‖u‖2
L2).

Then, some functional analysis arguments allow to derive from this estimate the
localization of the spectrum

(1.56) ∃c, C > 0,

{z ∈ C : Re z ≥ −1/2, Re z + 1 ≤ c|z + 1|
1

2k0+1} ∩ σ(qw(x,Dx)) = ∅,
together with the following resolvent estimate

(1.57) ‖(qw(x,Dx)− z)−1‖ ≤ C|z + 1|−
1

2k0+1 ,

for all z ∈ C such that Re z ≥ −1/2, Re z + 1 ≤ c|z + 1|
1

2k0+1 . We introduce two
complex contours γ and γ̃. Both contours are given by the curve

Re z =
1

C
|Im z|1/(2k0+1),

with C > 0, in the region where Re z > b, with b = Re µ0 + τ . In the region where
Re z ≤ b, the contour γ = γint ∪ γext is given by the equation Re z = b, while γ̃ joins
the two points b + iC2k0+1b2k0+1 and b− iC2k0+1b2k0+1, further to the left so that γ̃
is entirely to the left of the spectrum of the quadratic operator qw(x,Dx), while γ
only has the first eigenvalue µ0 to its left. The resolvent estimate (1.57) allows to
derive the following identities

e−tq
w(x,Dx) =

1

2πi

∫
γ̃

e−tz(z − qw(x,Dx))
−1dz

= e−µ0tΠ0 +
1

2πi

∫
γ

e−tz(z − qw(x,Dx))
−1dz

and after further estimates to establish Theorem 1.8. �
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Figure 4
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2.4.1. Example 1 : The Kramers-Fokker-Planck operator with quadratic poten-
tial. The spectrum of the Kramers-Fokker-Planck operator

K = −∆v +
v2

4
− 1

2
+ v∂x −∇xV (x)∂v, (x, v) ∈ R2,

with the quadratic potential

V (x) =
1

2
ax2, a ∈ R∗,

is given by {
(2k1 + 1)

λ1

i
+ (2k2 + 1)

λ2

i
− 1

2
, k1, k2 ≥ 0

}
,

where

λ1 =
i+ i
√

1− 4a

4
, λ2 =

i− i
√

1− 4a

4
, when a > 0,

λ1 =
−i+ i

√
1− 4a

4
, λ2 =

i+ i
√

1− 4a

4
, when a < 0.

When a > 0, the lowest eigenvalue of the Kramers-Fokker-Planck operator is µ̃0 = 0,
whereas when a < 0, this lowest eigenvalue is equal to

µ̃0 =

√
1− 4a

2
− 1

2
> 0.

The spectral gap τ0 > 0 is equal to
√

1− 4a− 1

2
,

1−
√

1− 4a

2
,

1

2
,

when respectively

a < 0, 0 < a ≤ 1/4, a > 1/4.
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The lowest eigenvalue is always real. This is consistent with the fact that the
Kramers-Fokker-Planck operator is real. Further calculations allow to determine
explicitly the ground state Ku0 = µ̃0u0. When a > 0, it is the usual Maxwellian

u0(x, v) = e−
1
4
ax2− v

2

4 = e−
1
2

( v
2

2
+V (x)) ∈ S (R2),

whereas when a < 0, the ground state is given by

u0(x, v) = e
a
4

√
1−4ax2−axv−

√
1−4a
4

v2 ∈ S (R2).

The assumption

Ker
(
qw(x,Dx)− µ0

)
= Ker

(
qw(x,Dx)

∗ − µ0

)
= Cu0 ⊂ S (R2),

holds true only if a > 0. Theorems 1.7 and 1.8 therefore apply whenever a 6= 0,
whereas Theorem 1.9 only applies when a > 0.

2.4.2. Example 2 : Chain of oscillators. This example comes from the series of
works [48, 49, 50, 66, 67]. It is a model describing a chain of two oscillators
coupled with two heat baths at each side. The particles are described by their
respective position and velocity (xj, yj) ∈ R2d. For each oscillator, the particles
are submitted to an external force derived from a real-valued potential Vj(xj) and a
coupling between the two oscillators derived from a real-valued potential Vc(x2−x1).
We denote the full potential

V (x) = V1(x1) + V2(x2) + Vc(x2 − x1), x = (x1, x2) ∈ R2d,

y = (y1, y2) ∈ R2d the velocities and z = (z1, z2) ∈ R2d the variables describing
the state of the particles in each of the heat baths. In each bath, the particles
are submitted to a coupling with the nearest oscillator, a force given by the fric-
tion coefficient γ and a thermal diffusion at the temperature Tj. We denote w1, w2

two standard d-dimensional Brownian motions and w = (w1, w2). The system of
equations describing this model is given by

(1.58)



dx1 = y1dt
dx2 = y2dt
dy1 = −∂x1V (x)dt+ z1dt
dy2 = −∂x2V (x)dt+ z2dt
dz1 = −γz1dt+ γx1dt−

√
2γT1dw1

dz2 = −γz2dt+ γx2dt−
√

2γT2dw2.

Setting T1 = α1h/2, T2 = α2h/2, the corresponding equation for the density of
particles is

(1.59) h∂tf +
γ

2
α1(−h∂z1)

(
h∂z1 +

2

α1

(z1 − x1)
)
f

+
γ

2
α2(−h∂z2)

(
h∂z2 +

2

α2

(z2 − x2)
)
f +

(
yh∂x − (∇xV (x)− z)h∂y

)
f = 0.

Define

Φ(x, y, z) = V (x) +
y2

2
+
z2

2
− zx, Mα =

1

C
e−

2Φ
αh ,

with α > 0, C > 0. When the temperatures are the same α = α1 = α2, the function
Mα is the Maxwellian of the process. In the general case when temperatures may

be different, the functionMα is used to define the weighted space L2(e−
2Φ
αhdxdydz).
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In order to work in the flat L2 space, the unknown is changed as f =M1/2
α u. Then,

the new equation for the unknown u is

(1.60) h∂tu+
γ

2
α1

(
− h∂z1 +

1

α
(z1 − x1)

)(
h∂z1 +

( 2

α1

− 1

α

)
(z1 − x1)

)
u+

γ

2
α2

(
−h∂z2+

1

α
(z2−x2)

)(
h∂z2+

( 2

α2

− 1

α

)
(z2−x2)

)
u+
(
yh∂x−(∇xV (x)−z)h∂y

)
u = 0.

We consider the case when external potentials are quadratic. For simplicity, we may
assume that h = 1, γ = 2, d = 1 and take

(1.61) V1(x1) =
1

2
ax2

1, V2(x2) =
1

2
bx2

2, Vc(x1 − x2) =
1

2
c(x1 − x2)2,

with a, b, c ∈ R. The equation (1.60) writes as

∂tu+ qw(X,DX)u− 2u = 0, X = (x, y, z) ∈ R6,

where qw(X,DX) is the quadratic operator with symbol

q = α1ζ
2
1 + α2ζ

2
2 + β1(z1 − x1)2 + β2(z2 − x2)2 + i

[
2δ1ζ1(z1 − x1) + 2δ2ζ2(z2 − x2)

+ y1ξ1 + y2ξ2 − η1

(
(a+ c)x1 − cx2 − z1

)
− η2

(
− cx1 + (b+ c)x2 − z2

)]
,

with

β1 =
α1

α

( 2

α1

− 1

α

)
, β2 =

α2

α

( 2

α2

− 1

α

)
, δ1 =

α1

α
− 1, δ2 =

α2

α
− 1,

where the notations ξ, η, ζ stand respectively for the dual variables of x, y, z. The
condition

α ≥ 1

2
max(α1, α2),

appearing in [66] exactly ensures that this quadratic symbol has a non-negative
real part Re q ≥ 0. The work [66] studies the case with identical temperatures
α = α1 = α2. In this case, the operator enjoys a supersymmetric structure. The
supersymmetry is a particularly convenient structure which simplifies considerably
the analysis of the splitting between the two smallest real parts of the eigenvalues
and the analysis of the tunneling effect. When the temperatures are different, it was
shown that the operator may fail this supersymmetric structure for certain (non-
quadratic) external potentials [67]. However, this supersymmetry still holds in the
case of quadratic external potentials with different temperatures. Indeed, let us
consider the case with possibly different temperatures α1 6= α2 and assume that

α >
1

2
max(α1, α2), α1 > 0, α2 > 0.

Some algebraic computations show that the Hamilton map satisfies to

Ker(Re F ) ∩ R12 = {(x, y, z, ξ, η, ζ) ∈ R12 : ζ = 0, x = z},
Ker(Re F )∩Ker(Re F Im F )∩R12 = {(x, y, z, ξ, η, ζ) ∈ R12 : y = η = ζ = 0, x = z},

Ker(Re F ) ∩Ker(Re F Im F ) ∩Ker
(
Re F (Im F )2

)
∩ R12

= {y = ξ = η = ζ = 0, x = z, (a+ c− 1)x1− cx2 = 0,−cx1 + (b+ c− 1)x2 = 0}.
When the condition

(1.62) (a+ c− 1)(b+ c− 1)− c2 6= 0,
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holds, the singular space is equal to zero after intersecting exactly k0 +1 kernels with
here 0 ≤ k0 = 2 ≤ 11. The condition (1.62) corresponds exactly to the assumption
V (x) − x2/2 is a Morse function required in the work [66] (Lemma 6.1) to ensure
that the needed dynamical conditions hold. The other conditions ∂αxVj(x) = O(1),
when |α| ≥ 2, for j = 1, 2, c; and |∇xV (x) − x| ≥ 1/C when |x| ≥ C, are also
satisfied for quadratic potentials fulfilling condition (1.62). When this condition
holds, Theorems 1.7 and 1.8 apply both for the operator qw and its adjoint (qw)∗ =
qw. This implies in particular that the first eigenvalues of these operators have
algebraic multiplicity 1 with eigenspaces

(1.63) Ker(qw − µ0) = CMα1,α2 , Ker((qw)∗ − µ̃0) = CM̃α1,α2 ,

spanned by ground states of exponential type

(1.64) Mα1,α2(x, y, z) = e−a(x,y,z) ∈ S (R6), M̃α1,α2(x, y, z) = e−ã(x,y,z) ∈ S (R6),

where a, ã are complex-valued quadratic forms on R6 whose real parts are positive
definite. The operator

qw(X,DX)u = 2u+ α1

(
− ∂z1 +

1

α
(z1 − x1)

)(
∂z1 +

( 2

α1

− 1

α

)
(z1 − x1)

)
u+

α2

(
− ∂z2 +

1

α
(z2− x2)

)(
∂z2 +

( 2

α2

− 1

α

)
(z2− x2)

)
u+

(
y∂x− (∇xV (x)− z)∂y

)
u,

and its adjoint are real. It implies that the quadratic forms a, ã are positive definite.
Furthermore, the first eigenvalues µ0, µ̃0 are necessarily real and equal µ0 = µ̃0. This
proves the existence of a Maxwellian in the general case when the temperatures may
be different α1 6= α2. We deduce from [67] (Theorem 1.2) that the operator qw − µ0

also enjoys a supersymmetric structure in the case of different temperatures.

3. Resolvent bounds for doubly characteristic pseudodifferential
operators

As discussed in the previous section, studying the long-time behavior of the
evolution problem associated to a non-selfadjoint operator{

(∂t + P )u(t, x) = 0,
u(t, ·)|t=0 = u0 ∈ L2(Rn),

requires to study the spectrum of this operator, but also to establish sharp bounds for
its resolvent, since there is no a priori control of the resolvent growth by the spectrum
in the non-selfadjoint case. The semiclassical Kramers-Fokker-Planck operator

P = −h2∆v +
v2

4
− n

2
h+ v · h∂x −∇xV (x) · h∂v, (x, v) ∈ R2n,

with general (not necessarily quadratic) potential V ∈ C∞(Rn,R) is an example
of non-elliptic non-selfadjoint kinetic operator whose spectral and pseudospectral
properties have been thoroughly studied by Hérau, Sjöstrand and Stolk [70]. More
generally, these authors establish some accurate resolvent estimates and provide a
precise description of the spectrum near the imaginary axis for doubly characteristic
pseudodifferential operators of Kramers-Fokker-Planck type:

Let m ≥ 1 be a smooth order function

(1.65) ∃C0 ≥ 1, N0 > 0, m(X) ≤ C0〈X − Y 〉N0m(Y ), X, Y ∈ R2n,
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and S(m) the symbol class

S(m, dX2) = {p ∈ C∞(R2n,C) : ∀α ∈ N2n, ∃Cα > 0,∀X ∈ R2n,

|∂αXp(X)| ≤ Cαm(X)}.
Let P be the semiclassical pseudodifferential operator

P = pw0 (x, hDx)u(x) =
1

(2π)n

∫
R2n

ei(x−y)·ξp0

(x+ y

2
, hξ
)
u(y)dydξ, 0 < h ≤ 1,

whose Weyl symbol p0(x, ξ) ∈ S(m) has a non-negative real part Re p0 ≥ 0, and
finitely many characteristic points

p−1
0 ({0}) = {X1, X2, ..., XN}.

All the characteristic points are assumed to be doubly characteristic

p0(Xj) = ∇p0(Xj) = 0, 1 ≤ j ≤ N,

and the quadratic approximations of the symbol at these points

p0(Xj + Y ) = qj(Y ) +O(Y 3), when Y → 0,

are required to satisfy the condition of subelliptic type (1.21),

(1.66) ∃0 < εj ≤ 1, cj > 0,

cj|X|2 ≤ Re qj(X) + εjH
2
Imqj

Re qj(X) ≤ 1

cj
|X|2, X ∈ R2n.

Notice that the sign assumption Re p0 ≥ 0 implies that these quadratic forms have
non-negative real parts Re qj ≥ 0. When equipped with the domain

H(m) = (mw(x, hDx))
−1(L2(Rn)),

with 0 < h� 1, the operator P is a closed densely defined operator on L2(Rn).
Under additional assumptions of subellipticity at infinity, the first result in [70]

provides a localization of the spectrum of P in a h-neighborhood of the doubly
characteristic point z = 0. Let Ω ⊂ C be a fixed neighborhood of the union of the
spectra of the quadratic operators associated to the quadratic approximations of the
symbol at doubly characteristic points

N⋃
j=1

σ(qwj (x,Dx)) ⊂ Ω.

We recall that the description of the spectrum (1.20) holds true when the quadratic
approximations satisfy to the subelliptic condition (1.66). Then, for any C > 0,
there exist some positive constants 0 < h0 ≤ 1, C0 > 0 such that for all 0 < h ≤ h0,
|z| ≤ C, z 6∈ Ω,

(1.67) h‖u‖L2 ≤ C0‖Pu− hzu‖L2 , u ∈ S (Rn).

This resolvent estimate shows that the spectrum of P in any h-ball of the doubly
characteristic point z = 0, is localized in a h-neighborhood of the union of the
spectra of its quadratic approximations at doubly characteristic points. The second
result in [70] shows that sharp resolvent estimates may also be derived in a partic-
ular parabolic region of the resolvent set outside any h-ball centered in zero. More
specifically, it is shown that there exist some positive constants c, C0 > 0 such that,
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for any C ≥ 1, there exists h0 > 0 so that for all 0 < h ≤ h0, Re z ≤ c|z|1/3h2/3,
|z| ≥ Ch,

(1.68) h2/3|z|1/3‖u‖L2 ≤ C0‖Pu− zu‖L2 , u ∈ S (Rn).

Lastly, when the operator satisfies the additional assumption

u ∈ L2(Rn), (P + 1)u ∈ S (Rn)⇒ u ∈ S (Rn),

this pseudospectral picture is completed by the following result about the spectrum:
for any C > 0, when 0 < h� 1, the spectrum of P in the h-ball D(0, Ch) is discrete
with eigenvalues satisfying to the semiclassical expansions

λj,k(h) ∼ h(µj,k + h1/Nj,kµj,k,1 + h2/Nj,kµj,k,2 + ...),

where the leading terms µj,k are the eigenvalues of the quadratic operator qwj (x,Dx)
located in the fixed ball D(0, C), and Nj,k is the dimension of the corresponding gen-
eralized eigenspace. These results provide a sharp picture of the spectral and pseu-
dospectral properties of pseudodifferential operators of Kramers-Fokker-Planck type
around a doubly characteristic point. Drawing the inspiration from this analysis, the

Figure 5. The estimate h2/3|z|1/3‖u‖L2 ≤ C0‖Pu− zu‖L2 is fulfilled
when z belongs to the dark grey region of the figure, whereas the
estimate h‖u‖L2 ≤ C0‖Pu− zu‖L2 is fulfilled in the light grey one.

Im z

Re z0

Ch

C0

starting point of the two works with Hitrik [KPS3, KPS4] was to understand how
this spectral and pseudospectral picture may be extended to more general classes of
doubly characteristic operators.

In these works, we study semiclassical pseudodifferential operators

P = Pw(x, hDx, h)u(x) =
1

(2π)n

∫
R2n

ei(x−y)·ξP
(x+ y

2
, hξ, h

)
u(y)dydξ, 0 < h ≤ 1,
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whose Weyl symbols P (x, ξ, h) admit semiclassical asymptotic expansions

(1.69) P (x, ξ;h) ∼
+∞∑
j=0

pj(x, ξ)h
j, pj ∈ S(m),

with a principal symbol having a non-negative real part

(1.70) Re p0 ≥ 0,

and finitely many characteristic points

(1.71) p−1
0 ({0}) = {X1, X2, ..., XN}.

As before, all the characteristic points are assumed to be doubly characteristic

(1.72) p0(Xj) = ∇p0(Xj) = 0, 1 ≤ j ≤ N,

and qj stands for the quadratic approximation of the principal symbol

p0(Xj + Y ) = qj(Y ) +O(Y 3), when Y → 0,

at the doubly characteristic point Xj. Contrary to the Kramers-Fokker-Planck op-
erator, these operators are not allowed to fail ellipticity both microlocally and at
infinity. In order to focus further on the doubly characteristic features, the assump-
tions at infinity are simplified by requesting the ellipticity of the real part of the
principal symbol

(1.73) ∃C > 0,∀|X| ≥ C, Re p0(X) ≥ m(X)

C
.

This assumption ensures that for 0 < h� 1, the analytic family of operators

P − z : H(m)→ L2(Rn),

is Fredholm of index 0. An application of the analytic Fredholm theory allows to
conclude that the spectrum of P in a small but fixed neighborhood of the doubly
characteristic point z = 0, is discrete and consists of eigenvalues with finite algebraic
multiplicity.

By elaborating on the singular space theory described in the previous section,
we may weaken the assumptions on the quadratic approximations at the doubly
characteristic points and extend the resolvent estimate (1.67) as follows:

Theorem 1.10. ([KPS3], Hitrik, KPS) Let P = Pw(x, hDx, h) be a semiclassi-
cal pseudodifferential operator whose Weyl symbol P (x, ξ, h) satisfies to the assump-
tions (1.69), (1.70), (1.71), (1.72) and (1.73). When all the quadratic approximations
qj are elliptic on their associated singular spaces

(1.74) X ∈ Sj, qj(X) = 0⇒ X = 0, 1 ≤ j ≤ N,

then, for any constant C > 1 and fixed neighborhood Ωj ⊂ C of the spectrum4 of the
quadratic operator qwj (x,Dx),

σ(qwj (x,Dx)) ⊂ Ωj,

there exist some positive constants 0 < h0 ≤ 1, C0 > 0 such that for all 0 < h ≤ h0,
|z| ≤ C satisfying

z − p1(Xj) /∈ Ωj, 1 ≤ j ≤ N,

4This spectrum is described in Theorem 1.2.
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we have

(1.75) h‖u‖L2 ≤ C0‖(P − hz)u‖L2 , u ∈ S (Rn),

where p1(Xj) stands for the value of the subprincipal symbol at the doubly charac-
teristic point Xj.

Let us recall that the condition (1.74) weakens the condition (1.66), since the sin-
gular space is equal to zero when the latter holds. We also notice that the localization
of the spectrum depends on the properties of both the principal and subprincipal
symbols. More precisely, the spectrum of P in any h-ball of the doubly character-
istic point z = 0, is localized in a h-neighborhood of the union of the spectra of its
quadratic approximations shifted by the value of the subprincipal symbol at these
doubly characteristic points

N⋃
j=1

{p1(Xj) + σ(qwj (x,Dx))}.

As for the Kramers-Fokker-Planck operator, this pseudospectral picture in any h-
ball of the doubly characteristic point z = 0, may be completed by the following
result about the spectrum:

Theorem 1.11. ([KPS4], Hitrik, KPS) Let P = Pw(x, hDx, h) be a semiclassi-
cal pseudodifferential operator whose Weyl symbol P (x, ξ, h) satisfies to the assump-
tions (1.69), (1.70), (1.71), (1.72) and (1.73). When all the quadratic approximations
qj are elliptic on their associated singular spaces

(1.76) X ∈ Sj, qj(X) = 0⇒ X = 0, 1 ≤ j ≤ N,

then, for any C > 0, there exists 0 < h0 ≤ 1 such that for all 0 < h ≤ h0,
the spectrum of the operator P in the open ball D(0, Ch) is given by eigenvalues
satisfying to the semiclassical expansions

(1.77) zj,k ∼ h(λj,k + p1(Xj) + h1/Nj,kλj,k,1 + h2/Nj,kλj,k,2 + . . .), 1 ≤ j ≤ N,

where λj,k are the eigenvalues of the quadratic operator qwj (x,Dx) located in the fixed
ball D(0, C), and Nj,k is the dimension of the corresponding generalized eigenspace.

Lastly, in order to generalize the resolvent estimate (1.68), we need to introduce
the remainder terms

(1.78) rj(Y ) = p0(Xj + Y )− qj(Y ), 1 ≤ j ≤ N,

and make a technical geometrical assumption about the ranges of these symbols. We
assume the existence of a closed angular sector Γ with vertex at 0 and a neighborhood
V of the origin in R2n such that

(1.79) rj(V ) \ {0} ⊂ Γ \ {0} ⊂ {z ∈ C : Re z > 0}, 1 ≤ j ≤ N.

The resolvent estimate (1.68) and the geometry of the parabolic region where it
holds, directly relate to the subelliptic properties of the quadratic approximations
at doubly characteristic points:
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Figure 6. Range of the symbol rj.

Im z

Re z0

Γ \ {0}

rj(V ) \ {0}

Theorem 1.12. ([KPS4], Hitrik, KPS) Let P = Pw(x, hDx, h) be a semiclassi-
cal pseudodifferential operator whose Weyl symbol P (x, ξ, h) satisfies to the assump-
tions (1.69), (1.70), (1.71), (1.72), (1.73) and (1.79). Assume that all the quadratic
forms qj have zero singular spaces Sj = {0}. Let 0 ≤ kj ≤ 2n − 1 be the smallest
integers such that

(1.80)
( kj⋂
l=0

Ker
[
Re Fj(Im Fj)

l
])
∩ R2n = {0},

where Fj is the Hamilton map of qj. Then, for any constant c0 > 0 sufficiently
small, there exist positive constants 0 < h0 ≤ 1, C ≥ 1, C0 > 0 such that for all
0 < h ≤ h0, u ∈ S (Rn), z ∈ Ωh,

(1.81) h
2k0

2k0+1 |z|
1

2k0+1‖u‖L2 ≤ C0‖Pu− zu‖L2 ,

with 0 ≤ k0 = maxj=1,...,N kj ≤ 2n− 1,

Ωh =
{
z ∈ C : Re z ≤ 1

C
h

2k0
2k0+1 |z|

1
2k0+1 , Ch ≤ |z| ≤ c0

}
.

The term h
2k0

2k0+1 |z|
1

2k0+1 increases when the spectral parameter z moves away
from the origin in the region where Ch ≤ |z| ≤ c0. When the spectral parameter is
of magnitude h, we recover the semiclassical estimate (1.75). Let us emphazise that
the resolvent estimate

(P − z)−1 = O(h
− 2k0

2k0+1 |z|−
1

2k0+1 ) : L2(Rn)→ L2(Rn),

and the geometry of the parabolic region where it holds, directly relate to the max-
imal loss of 2k0/(2k0 + 1) derivatives appearing in the global subelliptic estimates
enjoyed by all the quadratic approximations of the operator at doubly characteristic
points

‖〈(x,Dx)〉2/(2k0+1)u‖L2 . ‖qwj (x,Dx)u‖L2 + ‖u‖L2 , 1 ≤ j ≤ N.
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Figure 7. Set Ωh.
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Re z = 1
C
h

2k0
2k0+1 |z|

1
2k0+1

Ωh

These results show that the singular space theory allows to sharply account for

Figure 8. The estimate h
2k0

2k0+1 |z|
1

2k0+1‖u‖L2 ≤ C0‖Pu− zu‖L2 is ful-
filled when z belongs to the dark grey region of the figure, whereas
the estimate h‖u‖L2 ≤ C0‖Pu−zu‖L2 is fulfilled in the light grey one.

Im z

Re z0
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C0

the spectral and pseudospectral properties of pseudodifferential operators around a
doubly characteristic point.
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Proof. The proofs of Theorems 1.10 and 1.11 follow the analysis of the Kramers-
Fokker-Planck equation led by Hérau, Sjöstrand and Stolk [70], and rely on some
techniques of compact complex deformations of the phase space. The key point in
generalizing this machinery is to take advantage of the geometrical features (1.27),
(1.28), (1.29), (1.30) enjoyed by the quadratic approximations of the doubly charac-
teristic operator. By elaborating on these algebraic properties, we may build up a
C∞0 (R2n,R) weight function Gε supported in a neighborhood of the doubly charac-
teristic set

supp Gε ⊂ {X ∈ R2n : dist(X, p−1
0 (0)) ≤ 1/C1}, C1 > 1, 0 < ε� 1,

and satisfying to the estimates

(i) Gε = O(ε), ∂2Gε = O(1)
(ii) ∇Gε = O(dist(X, p−1

0 (0))) when dist(X, p−1
0 (0)) ≤ ε1/2

(iii) ∇Gε = O(ε1/2) when dist(X, p−1
0 (0)) ≥ ε1/2

This bounded weight function is devised in order to get second order ellipticity on a
compact complex deformation of the phase space near the doubly characteristic set
for an analytic extension of the principal symbol

|p̃0(X + iδHGε(X))| ≥ δ

C2

min[dist(X, p−1
0 (0))2, ε], C2 > 1, 0 < δ � 1,

when dist(X, p−1
0 (0)) ≤ 1/C, and full ellipticity outside of a ε1/2-neighborhood of

the doubly characteristic set

Re
((

1− iC3
δε

dist(X, p−1
0 (0))2

)
p̃0(X + iδHGε(X))

)
≥ δε

C2

, C3 6= 0,

when dist(X, p−1
0 (0)) ≥ ε1/2. The resolvent estimate (1.75) is microlocally derived

successively in a tiny neighborhood of the doubly characteristic set

dist(X, p−1
0 (0)) ≤ ε1/2,

with ε = Ah, A � 1, and then in the exterior region dist(X, p−1
0 (0)) ≥ ε1/2, while

Theorem 1.11 is proven by solving a Grushin problem. For Theorem 1.12, we mostly
rely on the subelliptic properties of the quadratic approximations of the doubly
characteristic operator

‖〈(x,Dx)〉2/(2kj+1)u‖L2 . ‖qwj (x,Dx)u‖L2 + ‖u‖L2 , 1 ≤ j ≤ N.

Indeed, starting from the construction of the real-valued symbol

gj ∈ S(1, 〈X〉−
2

2kj+1dX2),

performed in the quadratic case (1.43),

∃c1,j, c2,j > 0,∀X ∈ R2n, Re qj(X) + c1,jHImqjgj(X) + 1 ≥ c2,j〈X〉
2

2kj+1 ,

we may devise a real-valued weight function gh compactly supported in the phase
space satisfying

(1.82) Re p0(X) + h(HImp0 gh)(X) + c1h ≥ c2h
2k0

2k0+1 min
[
c3, dist(X, p−1

0 (0))
] 2

2k0+1 ,

with c1, c2, c3 > 0, when 0 < h� 1. Building on this estimate, standard microlocal
techniques allow to derive the semiclassical resolvent estimate (1.81). �
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The picture drawn so far for the pseudospectral properties of pseudodifferen-
tial operators around a doubly characteristic point, has been recently completed by
Viola [127, 128]. In these works, the author studies the case when the spectral
parameter z enters deeper into the numerical range and may grow slightly more
rapidly than the semiclassical parameter h outside of the parabolic region Ωh. His
result shows that polynomial resolvent bounds still hold in a larger h(log log h−1)1/n-
neighborhood of the doubly characteristic point. More precisely, under the assump-
tions of Theorem 1.12 with a single doubly characteristic point X1 ∈ R2n, Viola
shows that, for any ρ > 0, there exist positive constants C0, C1 > 0 such that the
resolvent

(P − z)−1 : L2(Rn)→ L2(Rn),

exists and satisfies to the bound

‖(P − z)−1‖L(L2) = O(h−1−ρ),

when 0 < h� 1, as long as the spectral parameter obeys

|z| ≤ 1

C0

h
(

log log
1

h

)1/n

, dist(z, σ(qw1 (x,Dx))) ≥ he
− 1
C1

(log log 1
h

)1/n

.

The next figure5 is an illustration of a typical region in the complex plane where this
resolvent estimate holds, for decreasing value of h.

The circles surrounding the spectral values of the quadratic operator qw1 (x,Dx) cor-
respond to the forbidden region

dist(z, σ(qw1 (x,Dx))) < he
− 1
C1

(log log 1
h

)1/n

.

By coming back to the resolvent estimate (1.81), we notice that the estimate

(1.83) h
2k0

2k0+1‖u‖L2 ≤ C0‖Pu− zu‖L2 ,

holds true at the boundary of the parabolic set Ωh, when

Re z ≤ c1h
2k0

2k0+1 ,
∣∣∣|Im z| − c0

2

∣∣∣ ≤ c1,

with 0 < c1 � 1. By using semigroups techniques, this resolvent estimate was
improved by Sjöstrand [114] as

(1.84) |Re z|‖u‖L2 ≤ C0‖Pu− zu‖L2 ,

5Courtesy of Joe Viola.
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when

−c1 ≤ Re z ≤ −h
2k0

2k0+1 ,
∣∣∣|Im z| − c0

2

∣∣∣ ≤ c1,

and

(1.85) h
2k0

2k0+1‖u‖L2 ≤ C0 exp
(C0

h
(Re z)

2k0+1
2k0

+

)
‖Pu− zu‖L2 ,

when

−h
2k0

2k0+1 ≤ Re z ≤ c1

(
h log

1

h

) 2k0
2k0+1

,
∣∣∣|Im z| − c0

2

∣∣∣ ≤ c1.

For Re z ∼ h
2k0

2k0+1 , we recover the estimate (1.83). Furthermore, this result shows
that the spectral parameter may enter logarithmically deeper into the numerical
range outside of the parabolic region Ωh,

Re z ∼
(
h log

1

h

) 2k0
2k0+1

,

while keeping a polynomial resolvent bound

‖(P − z)−1‖L(L2) = O(h
− 2k0

2k0+1
−ρ0), ρ0 > 0.

It would be most interesting to study if this logarithmic incursion inside the numer-
ical range holds all along the boundary of the parabolic set Ωh, when Ch ≤ |z| ≤ c0.
Besides, the exponent 2k0/(2k0 + 1) for the semiclassical parameter h is known to
be sharp and to be directly related to the subelliptic properties of the quadratic
approximations of the doubly characteristic operator (Theorem 1.12). It would be
most interesting to investigate the sharpness of the exponent 2k0/(2k0 + 1) for the
logarithmic improvement in the term(

h log
1

h

) 2k0
2k0+1

,

and to study if it may be related to critical indices for the possible Gevrey hypoellip-
ticity of the quadratic approximations of the doubly characteristic operator. Another
direction of current investigation is to study further the pseudospectral properties
of the operator P in the h-neighborhood of the set

N⋃
j=1

{p1(Xj) + σ(qwj (x,Dx))}.

First results in this direction in a joint work with Parmeggiani indicate that we
can refine the pseudospectral picture in this particular part of the resolvent set by
relating it to some results of hypoellipticity with big loss of derivatives [KPS14].

4. Works in progress and perspectives

In some applications, the operator depends explicitly on a set of parameters and
it is interesting to try to maximize the rate of return to equilibrium τ0,

∀ 0 ≤ τ < τ0,∃C > 0,∀t ≥ 0, ‖e−tP − Π0‖L(L2) ≤ Ce−τt,

by tuning the parameters in order to lead the system the most rapidly to equilib-
rium. For a general pseudodifferential operator with a doubly characteristic point, a
strategy to address this problem is to consider first the same optimization problem
by substituting to the doubly characteristic operator, its quadratic approximation at



46 1. PSEUDODIFFERENTIAL OPERATORS WITH DOUBLE CHARACTERISTICS

the doubly characteristic point. In the quadratic case, we notice from Theorem 1.7
that this optimization problem is reduced to a simpler maximization problem in
numerical linear algebra thanks to the formula

τ0 = 2 min
λ∈σ(F )
Im λ>0

Im λ > 0,

where F is Hamilton map of the quadratic approximation. The dependence of the
Hamilton map with respect to the parameters may be derived explicitly and this
simple maximization problem may be solved numerically in order to determine the
right asymptotics of the parameters which optimize the rate of return to equilibrium.
When these asymptotics are disclosed, a semiclassical problem may be set up and the
theory developped in this chapter may be used in order to get sharp quantitative
estimates for the rate of return to equilibrium for the original pseudodifferential
operator in these asymptotics. In a work in progress, this strategy is implemented for
studying the Fokker-Planck operator associated to a finite-dimensional Markovian
approximation of the non-Markovian generalized Langevin equation in Rn,

(1.86) ẍ = −∇xV (x)−
∫ t

0

γ(t− s)ẋ(s)ds+ F (t),

where V (x) is a smooth confining potential and F (t) a mean zero stationary Gaussian
process with autocorrelation function γ in accordance to the fluctuation-dissipation
theorem

〈F (t)⊗ F (s)〉 = β−1γ(t− s)In,
where β > 0 stands for the inverse temperature and In the identity matrix.



CHAPTER 2

Solvability and hypoelliptic estimates for some classes of
non-selfadjoint operators

1. Anisotropic hypoelliptic estimates for Landau-type operators

This section presents the work [KPS1] about the hypoellipticity of a particular
class of inhomogeneous kinetic equations whose study is motivated by the lineariza-
tion of the Landau equation

(2.1) ∂tf + v · ∇xf = QL(f, f), x, v ∈ Rn,

around the Maxwellian equilibrium distribution

µn(v) = (2π)−
n
2 e−

|v|2
2 .

The Landau collision operator is defined as

(2.2) QL(g, f) = ∇v ·
(∫

Rn
a(v − v∗)(g(t, x, v∗)(∇vf)(t, x, v)

− (∇vg)(t, x, v∗)f(t, x, v))dv∗

)
,

where a = (ai,j)1≤i,j≤n stands for the non-negative symmetric matrix

(2.3) a(v) = (|v|2 Id−v ⊗ v)|v|γ ∈Mn(R), −n < γ < +∞.
As discussed in Chapter 3 (Section 4), the linearization of the Landau equation
around the Maxwellian equilibrium distribution

f = µn +
√
µng,

reduces to the equation for the fluctuation

(2.4) ∂tg + v · ∇xg + LLg = µ−1/2
n QL(

√
µng,

√
µng),

with the linearized operator

LLg = −µ−1/2
n QL(µn, µ

1/2
n g)− µ−1/2

n QL(µ1/2
n g, µn).

The linearized Landau operator is known [36, 61, 71] to be an accretive unbounded
symmetric operator on L2(Rn

v ) (acting in the velocity variable),

(LLg, g)L2(Rnv ) ≥ 0,

satisfying

(2.5) (LLg, g)L2(Rnv ) = 0⇔ g = Pg,

where P is the L2-orthogonal projection onto the space of collisional invariants

N = Span
{
µ1/2
n , v1µ

1/2
n , ..., vnµ

1/2
n , |v|2µ1/2

n

}
.

47
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Furthermore, the linearized Landau operator enjoys specific coercive estimates [61,
100, 101]:

(2.6) ∃Cγ > 0, (LLg, g)L2(Rnv ) ≥ Cγ|||g −Pg|||2γ,
where ||| · |||γ is the anisotropic norm

|||g|||2γ = ‖〈v〉 γ2 Πv∇vg‖2
L2(Rnv ) + ‖〈v〉1+ γ

2 (1− Πv)∇vg‖2
L2(Rnv ) + ‖〈v〉1+ γ

2 g‖2
L2(Rnv ),

with
〈v〉 =

√
1 + |v|2, Πv∇vg =

( v
|v| · ∇v

) v
|v| .

For Maxwellian molecules γ = 0, the linearized Landau operator is given by

LLf = (n−1)
(
−∆v+

|v|2
4
−n

2

)
f−∆Sn−1f+

[
∆Sn−1−(n−1)

(
−∆v+

|v|2
4
−n

2

)]
P1f

+
[
−∆Sn−1 − (n− 1)

(
−∆v +

|v|2
4
− n

2

)]
P2f, f ∈ S (Rn),

see Chapter 3, Proposition 3.9, where

∆Sn−1 =
1

2

∑
1≤j,k≤n
j 6=k

(vj∂k − vk∂j)2,

stands for the Laplace-Beltrami operator on the unit sphere Sn−1 and Pk the orthog-
onal projections onto the Hermite basis described in Appendix (Section 2). In the
3-dimensional case, the linearized Landau operator with Maxwellian molecules is a
pseudodifferential operator

LLf =
1

(2π)3

∫
R6

ei(v−y)·ξl
(v + y

2
, ξ
)
f(y)dydξ,

whose Weyl symbol is anisotropic and satisfies to

(2.7) l(v, ξ) = 2
(
|ξ|2 +

|v|2
4
− 3

2

)
+ |v ∧ ξ|2 − 3

2
mod S−∞(R6),

with S−∞(R2n) = ∩m∈RSm(R2n), where Sm(R2n), m ∈ R, is the symbol class

∀(α, β) ∈ N2n,∃Cαβ > 0,∀(v, ξ) ∈ R2n, |∂αv ∂βξ a(v, ξ)| ≤ Cα,β〈(v, ξ)〉2m−|α|−|β|.
In the work [KPS1], we consider the class of linear Landau-type operators

(2.8) P = iv ·Dx +Dv · λ(v)Dv + (v ∧Dv) · µ(v)(v ∧Dv) + F (v), x, v ∈ R3,

that is

P = i

3∑
j=1

vjDxj +
3∑
j=1

Dvjλ(v)Dvj + (v2Dv3 − v3Dv2)µ(v)(v2Dv3 − v3Dv2)

+(v3Dv1−v1Dv3)µ(v)(v3Dv1−v1Dv3)+(v1Dv2−v2Dv1)µ(v)(v1Dv2−v2Dv1)+F (v),

with Dx = i−1∂x, Dv = i−1∂v and γ ∈ [−3, 1]. The diffusion is given by smooth
positive functions λ, µ and F satisfying for all α ∈ N3,

(2.9) ∃Cα > 0,∀v ∈ R3,

|∂αv λ(v)|+ |∂αv µ(v)| ≤ Cα〈v〉γ−|α|, |∂αv F (v)| ≤ Cα〈v〉γ+2−|α|,

(2.10) ∃C > 0,∀v ∈ R3, λ(v) ≥ C〈v〉γ, µ(v) ≥ C〈v〉γ, F (v) ≥ C〈v〉γ+2.
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The evolution equations associated to linear Landau-type operators are kinetic mod-
els for the analysis of the linearized spatially inhomogeneous Landau equation with
general molecules

∂t + v · ∇x + LL.

Indeed, they are natural extensions for general molecules of the phase space structure
known in the Maxwellian case (2.7). Furthermore, their accretivity is consistent with
the coercive estimates satisfied by the linearized Landau operator (2.6),

(2.11) Re(Pu, u)L2 = ‖λ(v)
1
2Dvu‖2

L2 + ‖µ(v)
1
2 (v ∧Dv)u‖2

L2 + ‖F (v)
1
2u‖2

L2 ≥ 0,

when u ∈ S (R6
x,v), thanks to the anisotropic diffusion due to the presence of the

cross product term v ∧Dv.
By denoting (ξ, η) the dual variables of (x, v), we notice that the diffusion of

linear Landau-type operators only occurs in the variables (v, η), but not in the other
directions, and that the cross product term v ∧ Dv improves this diffusion in the
directions of the phase space where the variables v and η are orthogonal. On the
other hand, there is a lack of diffusion in the spatial derivativeDx. However, we prove
that the regularization process in both space and velocity variables still occurs. This
phenomenon of hypoellipticity is due to non-trivial interactions between the diffusive
and transport parts of these operators.

The next result provides sharp global hypoelliptic estimates both in the spa-
tial and velocity derivatives in a Sobolev scale whose structure is related to the
anisotropies of the diffusion and some iterated commutators.

Theorem 2.1. ([KPS1], Hérau, KPS) Let P be the linear Landau-type operator
defined in (2.8). Then, there exists a positive constant C > 0 such that for all
u ∈ S (R6

x,v),

(2.12) ‖〈v〉γ+2u‖2
L2 + ‖〈v〉γ|Dv|2u‖2

L2 + ‖〈v〉γ|v ∧Dv|2u‖2
L2

+ ‖〈v〉γ/3|Dx|2/3u‖2
L2 + ‖〈v〉γ/3|v ∧Dx|2/3u‖2

L2 ≤ C(‖Pu‖2
L2 + ‖u‖2

L2),

respectively for all u ∈ S (R7
t,x,v),

(2.13) ‖〈v〉γ+2u‖2
L2 + ‖〈v〉γ|Dv|2u‖2

L2 + ‖〈v〉γ|v ∧Dv|2u‖2
L2

+ ‖〈v〉γ/3|Dx|2/3u‖2
L2 + ‖〈v〉γ/3|v ∧Dx|2/3u‖2

L2 ≤ C(‖∂tu+ Pu‖2
L2 + ‖u‖2

L2),

where the notation ‖·‖L2 stands for the L2(R6
x,v)-norm, respectively for the L2(R7

t,x,v)-
norm.

The terms controlled in these estimates are sharp and have an anisotropic struc-
ture similar to the diffusion term. More specifically, the presence of the two cross
products v ∧Dv and v ∧Dx in

‖〈v〉γ|v ∧Dv|2u‖2
L2 + ‖〈v〉γ/3|v ∧Dx|2/3u‖2

L2 ,

improves the regularity estimates provided by the terms

‖〈v〉γ|Dv|2u‖2
L2 + ‖〈v〉γ/3|Dx|2/3u‖2

L2 ,

in the directions of the phase space where either, v and Dv, or v and Dx are orthog-
onal. The anisotropic feature and the different indices are optimal. Indeed, these
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hypoelliptic estimates split up into two parts. For instance, the first part of the
estimate (2.12),

(2.14) ‖〈v〉γ+2u‖2
L2 + ‖〈v〉γ|Dv|2u‖2

L2 + ‖〈v〉γ|v ∧Dv|2u‖2
L2 ≤ C(‖Pu‖2

L2 + ‖u‖2
L2),

is purely provided by the diffusion term of the linear Landau-type operator. Its
left-hand-side has the very same anisotropic structure and asymptotic growth as the
diffusion term

Dv · λ(v)Dv + (v ∧Dv) · µ(v)(v ∧Dv) + F (v).

On the other hand, the most interesting result in Theorem 2.1 is the anisotropic
regularity estimate in the spatial derivative Dx,

(2.15) ‖〈v〉γ/3|Dx|2/3u‖2
L2 + ‖〈v〉γ/3|v ∧Dx|2/3u‖2

L2 ≤ C(‖Pu‖2
L2 + ‖u‖2

L2).

This second estimate is also optimal in term of the index 2/3 appearing in its left-
hand-side. Indeed, the optimality of this index 2/3 is suggested by general results
about microlocal hypoellipticity with optimal loss of derivatives established in [20]
(Corollary 1.3) or [54]. Let us recall the general result about microlocal hypoellip-
ticity proved by Bolley, Camus and Nourrigat in [20] (Theorem 1.1, Corollary 1.3):

Let (Aj)1≤j≤l be a system of properly supported classical pseudodifferential op-
erators on an open subset Ω of Rn of arbitrary real orders m1, · · · ,ml. Suppose that
Aj−A∗j has order mj−1 for all 1 ≤ j ≤ l. Let (x0, ξ0) ∈ T ∗(Ω)\0 be such that there
is a commutator of length r, Y = (adAi1) · · · (adAir−1)Air which is elliptic of order
mi1 + · · ·+mir − r+1 at (x0, ξ0). Then the following implication holds for all s ∈ R:
If u ∈ D′(Ω) and Aju ∈ Hs−mj(x0, ξ0), j = 1, · · · , l, then u ∈ Hs−1+1/r(x0, ξ0). As
a corollary, one obtains that if all the mj are equal then Σl

1A
∗
jAj is hypoelliptic at

(x0, ξ0) with loss of 2(1− r−1) derivatives.
When each Aj is a real vector field, this is a microlocal version of the cele-

brated Hörmander’s theorem on the hypoellipticity of sums of squares [72]. A sim-
pler proof of the Hörmander’s theorem, but with less precise information about the
loss of derivatives, was given by Kohn [80], whereas optimal estimates for the loss
of derivatives were obtained, in the case of real vector fields, by Rothschild and
Stein [112].

The linear Landau-type operators are non-selfadjoint operators for which these
general results of hypoellipticity do not apply. We derive the hypoellipticity of linear
Landau-type operators from non-trivial mixing interactions between their diffusion
and transport parts, in particular from the ellipticity of commutators of length 3 of
their diffusion and transport parts. This explains that the optimal loss of derivatives
expected in this case is 2(1−1/3) = 4/3. The order 2 associated to the diffusion term
and the regularity estimate with respect to the velocity derivative Dv must therefore
be substituted by an order 2 − 4/3 = 2/3 in the regularity estimate with respect
to the spatial derivative Dx. The anisotropic structure of the hypoelliptic estimate
(2.15) directly relates to the anisotropic structure of the elliptic commutators of
length 3.

Proof. The Kohn’s method is the simplest and most flexible way for proving
hypoellipticity. However, it does not provide sharp loss of derivatives. In order to
obtain the optimal loss of derivatives, more subtle microlocal and geometric meth-
ods are needed. Here, the proof of Theorem 2.1 relies on a general method by
multiplier which allows to prove hypoellipticity with optimal loss of 4/3 deriva-
tives. This method was used by Hérau, Sjöstrand and Stolk in their work on the
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Kramers-Fokker-Planck equation [70]. This approach was also extended to get op-
timal hypoelliptic (subelliptic) estimates with loss of 2(1 − (2k + 1)−1) derivatives
for more degenerate classes of quadratic differential operators [KPS24, KPS25].

In order to prove Theorem 2.1, we consider the class of generalized linear Landau-
type operators

(2.16) P = iv ·Dx +
n∑

j,k=1

DvjAj,k(v)Dvk + F (v),

where x, v ∈ Rn, γ ∈ [−3, 1]. Here A(v) = (Aj,k(v))1≤j,k≤n stands for a positive
definite symmetric matrix with real-valued smooth entries verifying

(2.17) |∂αvAj,k(v)| . 〈v〉γ+2−|α|, α ∈ Nn, 1 ≤ j, k ≤ n,

and F is a smooth positive function satisfying

(2.18) F (v) & 〈v〉γ+2 and |∂αv F (v)| . 〈v〉γ+2−|α|, α ∈ Nn.

We assume that the matrix A factorizes smoothly as

(2.19) A(v) = B(v)TB(v),

where B(v) is a matrix with real-valued smooth entries verifying

(2.20) |∂αvBj,k(v)| . 〈v〉 γ2 +1−|α|, α ∈ Nn, 1 ≤ j, k ≤ n,

and B(v)T denotes its adjoint. Moreover, we assume that there exists c > 0 such
that

(2.21) A(v)η · η = |B(v)η|2 ≥ c〈v〉γ|η|2, v, η ∈ Rn.

The linear Landau-type operators are generalized linear Landau-type operators when
taking

(2.22) B(v) =


√
λ(v) −v3

√
µ(v) v2

√
µ(v)

v3

√
µ(v)

√
λ(v) −v1

√
µ(v)

−v2

√
µ(v) v1

√
µ(v)

√
λ(v)

 ,

with λ and µ being the functions defined in (2.9) and (2.10), since

(2.23) |B(v)η|2 = |
√
λ(v)η+

√
µ(v)v∧η|2 = |

√
λ(v)η|2+|

√
µ(v)v∧η|2 ≥ c〈v〉γ|η|2.

The Weyl symbol of a generalized linear Landau-type operator writes as

iv.ξ + |B(v)η|2 + F (v) + lower order terms.

Setting

p̃ = iv.ξ + |B(v)η|2 + F (v),

we take advantage of the ellipticity in the variables (v, η) of the real part of this
principal symbol

Re p̃ = |B(v)η|2 + F (v).

The main point is then to control the ξ variable. This control cannot be derived
from the ellipticity of the principal symbol, but it comes from the ellipticity in
the ξ variable of the iterated commutator of the operators defined by the real and
imaginary parts of the principal symbol

[(Im p̃)w, [(Re p̃)w, (Im p̃)w]].
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The Weyl symbol of this iterated commutator is given by the Poisson brackets

−{Im p̃, {Re p̃, Im p̃}} = {Im p̃, {Im p̃,Re p̃}} = 2|B(v)ξ|2.
This suggests to introduce the symbol

(2.24) λ =
(
1 + |B(v)ξ|2 + |B(v)η|2 + F (v)

)1/2
,

which defines an anisotropic Sobolev scale related to the anisotropies of the diffusion
and the elliptic iterated Poisson bracket. We aim at establishing sharp hypoelliptic
estimates with loss of 4/3 derivatives in this anisotropic Sobolev scale

(2.25) ‖(λ2/3)wu‖2
L2 . ‖Pu‖2

L2 + ‖u‖2
L2 .

A key step is to prove first the weaker hypoelliptic estimate

(2.26) ‖(λ1/3)wu‖2
L2 . ‖Pu‖2

L2 + ‖u‖2
L2 .

The estimate (2.25) is then derived from (2.26) through a commutator argument.
For simplicity only, we consider the case when F (v) = 〈v〉γ+2. In order to prove
(2.26), the phase space is split in two different regions. In the first microlocal region
where the diffusion is strong enough to control the weight λ2/3,

Re p̃ & λ2/3,

the hypoelliptic estimate (2.26) purely relies on the diffusion of the generalized linear
Landau-type operator

Re(Pu, u) = ‖B(v)∇vu‖2
L2 +

∥∥〈v〉 γ2 +1u
∥∥2

L2 ,

whereas in the second microlocal region where the diffusion is weaker than the weight
λ2/3,

Re p̃ . λ2/3,

we need to take advantage of the ellipticity of the commutator’s symbol

{Im p̃, {Im p̃,Re p̃}} = 2|B(v)ξ|2.
To that end, we use a multiplier defined by a real-valued symbol g. This multiplier
method is designed to produce the good term HIm p̃g. The natural choice is then
to take for g the symbol {Im p̃,Re p̃}. This can be achieved after weighting and
microlocalizing this symbol in order to give rise to a bounded operator

(2.27) g =
{Im p̃,Re p̃}

2λ4/3
ψ

(
Re p̃

λ2/3

)
= −B(v)ξ ·B(v)η

λ4/3
ψ

( |B(v)η|2 + F (v)

λ2/3

)
,

where ψ is a C∞0 (R, [0, 1]) cutoff function satisfying ψ = 1 on [−1, 1] and supp ψ ⊂
[−2, 2]. This symbol actually gives rise to a bounded operator since

g ∈ S(1, dv2 + dη2),

uniformly with respect to the parameter ξ ∈ Rn. However, because of the anisotropy
of the generalized linear Landau-type operator which accounts for the difference
between the lower and upper bounds in the estimate

〈v〉γ|η|2 . |B(v)η|2 . 〈v〉γ+2|η|2,
the symbol g belongs to a gainless symbol class. To handle this difficulty, we use some
elements of Wick calculus and define the multiplier through the Wick quantization.
A short exposition of the Wick calculus is given in Appendix (Section 1). By denoting
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‖ · ‖L2 the L2(Rn
v ) norm and working on the Fourier side in the position variable, we

may write for any 0 < ε� 1,

Re(Pu, (1− εgWick)u) = ‖B(v)∇vu‖2
L2 +

∥∥〈v〉 γ2 +1u
∥∥2

L2︸ ︷︷ ︸
Diffusion terms

− εRe
(
iv · ξu, gWicku

)︸ ︷︷ ︸
Interesting term when
|B(v)η|2+F (v).λ2/3

− εRe
( n∑
j,k=1

DvjAj,k(v)Dvku, g
Wicku

)
− εRe

(
〈v〉γ+2u, gWicku

)
︸ ︷︷ ︸

Remainder terms

,

with some remainder terms controlled by the diffusion∣∣∣( n∑
j,k=1

DvjAj,k(v)Dvku, g
Wicku

)∣∣∣+|(〈v〉γ+2u, gWicku)| . ‖B(v)∇vu‖2
L2+

∥∥〈v〉 γ2 +1u
∥∥2

L2 .

Indeed, we have

− εRe(iξ · vu, gWicku) = −εRe(iξ · vWicku, gWicku)

= −ε(Re(gWick(iξ · v)Wick)u, u) = ε
1

4π
({ξ · v, g}Wicku, u),

where

{ξ · v, g} =
|B(v)ξ|2
λ4/3

ψ

( |B(v)η|2 + 〈v〉γ+2

λ2/3

)
︸ ︷︷ ︸

Good term

+ Remainder terms,

with some remainder terms uniformly controlled w.r.t. ξ by the diffusion

|Remainder terms| . 1 + |B(v)η|2 + 〈v〉γ+2.

The good term provides a control of the weight λ2/3,

|B(v)ξ|2
λ4/3

ψ

( |B(v)η|2 + 〈v〉γ+2

λ2/3

)
& λ2/3,

in the second microlocal region where

Re p̃ = |B(v)η|2 + 〈v〉γ+2 . λ2/3.

The proof of the hypoelliptic estimate (2.26) is then completed by using some prop-
erties of the Wick calculus and other standard microlocal techniques. �

An alternative proof of Theorem 2.1 was recently given by Alexandre [5]. This
proof avoids the use of pseudodifferential calculus and relies on arguments originally
introduced by Bouchut [21] and Perthame [108]. This second approach has the
advantage to be simpler and to require less regularity for the coefficients of the
operator. The phase space method is more complicated, but also much more general.
It accounts for the structure of the left-hand-side terms in the estimates (2.12),
(2.13), and can be easily adapted to other kinetic models as shown for instance in
the recent work [68] with a transport part involving an external potential.
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Regarding the Kramers-Fokker-Planck operator for which this phase space method
was originally introduced [70], there are still many open questions about its hypoel-
liptic properties

K = −∆v +
v2

4
− n

2
+ v · ∂x −∇xV (x) · ∂v, (x, v) ∈ R2n,

for a general potential V ∈ C∞(Rn,R), and some conjectures about its link with the
Witten Laplacian

∆
(0)
Φ
2

= −∆ +
1

4
|∇Φ|2 − 1

2
∆Φ,

where

Φ(x, v) =
v2

2
+ V (x).

The work [64] emphasizes that the properties of the Kramers-Fokker-Planck operator
and those of the Witten Laplacian are closely related. Indeed, the property

(1 +K)−1 is a compact operator⇒ (1 + ∆
(0)
Φ
2

)−1 is a compact operator,

holds for any smooth potential V ∈ C∞(Rn,R), whereas the reverse implication was
shown to hold [69] for general elliptic potential satisfying

|∂αxV (x)| ≤ Cα〈x〉2µ−|α|,
1

C
〈x〉2µ ≤ 1 + |V (x)| ≤ C〈x〉2µ, µ ≥ 1.

A key progress in analyzing the compactness of the resolvent of the Kramers-Fokker-
Planck operator was later made in [64], where the global hypoelliptic estimate

∃C > 0,∀u ∈ S (R2n), ‖Λ1/4u‖2
L2 ≤ C

(
‖Ku‖2 + ‖u‖2

)
,

with

Λ2 = 1 + ∆
(0)
Φ
2

,

is established for potentials V ∈ C∞(Rn,R) satisfying

∃M,C ≥ 1,∀α ∈ Nn, |α| ≥ 1,∃Cα > 0,∀x ∈ Rn, |∂αxV (x)| ≤ Cα〈∇V (x)〉 ≤ C〈x〉M ,
and the coercivity condition

∃M,C ≥ 1,∀x ∈ Rn, 〈∇V (x)〉 ≥ 1

C
〈x〉1/M .

This global hypoelliptic estimate implies that the Kramers-Fokker-Planck operator
has a compact resolvent if and only if the Witten Laplacian enjoys the same property.
In view of this result, Helffer and Nier conjecture that the equivalence of compactness

(1 +K)−1 is a compact operator⇔ (1 + ∆
(0)
Φ
2

)−1 is a compact operator,

holds for any smooth potential V ∈ C∞(Rn,R). So far, this conjecture is largely left
open and it is not known if it holds for some potentials whose Hessian is not dom-
inated at infinity by the gradient. This is for instance the case of the polynomial
potential V−(x1, x2) = −x2

1x
2
2, for which the resolvent of the Witten Laplacian is

compact, but the compactness of the resolvent of the Kramers-Fokker-Planck oper-
ator is still open. It would be most interesting to tackle this Helffer-Nier conjecture
for general classes of potentials as polynomial potentials and in its full generality.
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2. Hypoelliptic estimates for a linear model of the non-cutoff
Boltzmann equation

This section presents the results of the works [KPS5, KPS10] about the hy-
poelliptic properties of a linear model of the Boltzmann equation without angular
cutoff. As discussed in Chapter 3 (Section 1), the non-cutoff Boltzmann operator

Q(g, f) =

∫
Rd

∫
Sd−1

B(v − v∗, σ)
(
g′∗f

′ − g∗f
)
dσdv∗, d ≥ 2,

with

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ, σ ∈ Sd−1,

whose cross section

B(v − v∗, σ) = |v − v∗|γb
( v − v∗
|v − v∗|

· σ
)
, γ ∈]− d,+∞[,

satisfies to the assumption1

(2.28) ∃0 < s < 1, (sin θ)d−2b(cos θ) ≈
θ→0+

θ−1−2s,

enjoys diffusive properties. It was noticed forty years ago by Cercignani [27] that the
linearized Boltzmann operator with Maxwellian molecules behaves like a fractional
diffusive operator. Over the time, this point of view transformed into the following
widespread heuristic conjecture on the diffusive behavior of the Boltzmann operator
as a flat fractional Laplacian [6, 8, 126]:

f 7→ Q(µd, f) ∼ −(−∆v)
sf + lower order terms,

where

µd(v) = (2π)−
d
2 e−

|v|2
2 , v ∈ Rd,

with 0 < s < 1 being the parameter appearing in the singularity assumption (2.28).
This conjecture is discussed in Chapter 3. For now, we only consider the linear
operator

(2.29) P = ∂t + v · ∇x + a(t, x, v)(−∆̃v)
s, t ∈ R, x, v ∈ Rd,

which is a simplified model for the non-cutoff spatially inhomogeneous Boltzmann
equation

∂tf + v · ∇xf = Q(f, f).

Here 0 < s < 1 and a denotes a C∞b (R2d+1) function satisfying

(2.30) ∃a0 > 0,∀(t, x, v) ∈ R2d+1, a(t, x, v) ≥ a0 > 0.

The notation C∞b (R2d+1) stands for the space of C∞(R2d+1) functions whose deriva-

tives of any order are bounded over R2d+1 and (−∆̃v)
s is the Fourier multiplier with

symbol

(2.31) F (η) = |η|2sw(η) + |η|2(1− w(η)), η ∈ Rd,

with | · | being the Euclidean norm, w a C∞(Rd) function satisfying 0 ≤ w ≤ 1,
w(η) = 1 if |η| ≥ 2, w(η) = 0 if |η| ≤ 1. This linear model has the particular
structure

Transport part in the (t, x) variables + Elliptic part in the v variable

1The notation a ≈ b means a/b is bounded from above and below by fixed positive constants.
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We aim at studying the regularizing properties of this linear model and estab-
lishing hypoelliptic estimates with optimal loss of derivatives with respect to the
t, x, v variables.

When a = a0 > 0 is constant and s = 1, this operator relates to the Kolmogorov
equation. In a 1934 Annals of Mathematics two-page paper (written in German)
“zur Theorie der Brownschen Bewegung” [81], Kolmogorov introduced a model for
the one-dimensional Brownian motion with the equation

(2.32) Ku =
∂u

∂t
− v∂u

∂x
− ∂2u

∂v2
= f, x =position, v =speed.

Introducing the (divergence-free) real vector fields X0 = ∂t − v∂x, X1 = ∂v, we note
that

K = X0 +X∗1X1

and that the tangent space is equal to the Lie algebra generated by X0, X1, since
∂x = [X0, X1]. According to a 1967 Hörmander’s result [72, 75], this operator is
micro-hypoelliptic, i.e. with C∞ wavefront sets, WFu = WF (Ku). To elaborate on
this result, one may ask various questions:

- What is the loss of derivatives with respect to the elliptic case ?
- What type of a priori estimates can be used to prove hypoellipticity ?

These questions can be addressed by straightening the flow of the vector field X0

through the change of variables
t = τ

x = x1 − τx2,

v = x2

we get


∂
∂τ

= ∂
∂t
− v ∂

∂x
= X0

∂
∂x1

= ∂
∂x

∂
∂x2

= −t ∂
∂x

+ ∂
∂v

and X1 = τ∂x1 + ∂x2 ,

so that

(2.33) K = ∂τ︸︷︷︸
skew-adjoint

−(τ∂x1 + ∂x2)2︸ ︷︷ ︸
selfadjoint ≥0

.

One may solve explicitly that ODE with parameters. By using the Fourier transform
with respect to the x1, x2 variables, this reduces to

K̃ =
d

dτ
+ (ξ2 + τξ1)2.

It is interesting to look at the family of parabolas τ 7→ (ξ2 + τξ1)2, for ξ2
1 + ξ2

2 = 1,
and to check as a good graphic way to explain the property of hypoellipticity that,
although the minimum of all these functions is always zero (except for ξ2 = ±1, ξ1 =
0), their envelope has a positive minimum. More specifically, for ξ1 6= 0, the operator

K̃ =
d

dτ
+ ξ1

2
(
τ +

ξ2

ξ1

)2

= i(DX − iλX2), X = τ +
ξ2

ξ1

, λ = ξ1
2, DX = i−1∂X ,

satisfies to the standard sharp subelliptic estimate

‖K̃v‖L2 & λ1/3‖v‖L2 = |ξ1|2/3‖v‖L2 ,

with L2(Rτ ) norms. This subelliptic estimate is derived by splitting up the L2(RX)-
norm

λ1/3

∫
R
|u(X)|2dX = λ1/3

∫
{λX2>λ1/3}

|u(X)|2dX + λ1/3

∫
{λX2≤λ1/3}

|u(X)|2dX.
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0

By using that
|{X ∈ R, λX2 ≤ λ1/3}| ≤ 2λ−1/3,

it follows, with L2(RX)-norms, that

λ1/3‖u‖2
L2 ≤

∫
R
λX2|u(X)|2dX + 2 sup

X∈R
|u(X)|2

≤ Re((DX − iλX2)u,−iu)L2 + 2 sup
X∈R
|u(X)|2.

By denoting H the Heaviside function, a direct computation gives

2 Re((DX − iλX2)u,−iH(T −X)u)L2 ≥ |u(T )|2

⇒ 2‖(DX − iλX2)u‖L2‖u‖L2 ≥ sup
X∈R
|u(X)|2

and thus

λ1/3‖u‖2
L2 ≤ 5‖(DX − iλX2)u‖L2‖u‖L2 ⇒ λ1/3‖u‖L2 . ‖(DX − iλX2)u‖L2 .

Finally, we deduce from the accretivity

Re(K̃v, v)L2 = ‖(ξ2 + τξ1)v‖2
L2 ,

the following sharp estimate with respect to the derivative D1,

‖u‖L2 + ‖Ku‖L2 & ‖|D1|2/3u‖L2 + ‖(D2 + τD1)u‖L2 , D1 = i−1∂x1 , D2 = i−1∂x2 ,

with L2(Rτ,x1,x2) norms.
Regarding the kinetic model (2.29), the existence and the C∞ regularity for the

solutions to the Cauchy problem of linear and semi-linear equations associated with
this operator were proven in [97]. Chen, Li and Xu also investigated the Gevrey
hypoelliptic properties of this operator. More specifically, they established in [33]
(Proposition 2.1) the following hypoelliptic estimate:

Let K be a compact subset of R2d+1. For any r ≥ 0, there exists a positive
constant CK,r > 0 such that for any u ∈ C∞0 (K),

(2.34) ‖u‖r+δ ≤ CK,r(‖Pu‖r + ‖u‖r),
with ‖ · ‖r standing for the Hr(R2d+1) Sobolev norm and

(2.35) δ = max
(s

4
,
s

2
− 1

6

)
> 0.
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The notation C∞0 (K) stands for the set of C∞0 (R2d+1) functions with support in K.
This hypoelliptic estimate with loss of

max(2s, 1)− δ > 0,

derivatives is then a key instrumental ingredient for their investigation of the Gevrey
hypoellipticity of the operator P . However, this hypoelliptic estimate (2.34) is not
optimal. In [KPS5], we establish hypoelliptic estimates with optimal loss of deriva-
tives with respect to the exponent 0 < s < 1 of the fractional Laplacian (−∆̃v)

s.
More specifically, we show that the operator P is hypoelliptic with a loss of

max(4s2, 1)

(2s+ 1)
> 0,

derivatives, that is, that the hypoelliptic estimates (2.34) hold with the new positive
gain

(2.36) δ =
2s

2s+ 1
> 0,

which improves for any 0 < s < 1 the gain provided by (2.35),

2s

2s+ 1
> max

(s
4
,
s

2
− 1

6

)
.

Theorem 2.2. ([KPS5], Lerner, Morimoto, KPS) Let P be the operator defined
in (2.29), K be a compact subset of R2d+1 and r ∈ R. Then, there exists a positive
constant CK,r > 0 such that for all u ∈ C∞0 (K),

(2.37) ‖(1 + |Dt|
2s

2s+1 + |Dx|
2s

2s+1 + |Dv|2s)u‖r ≤ CK,r
(
‖Pu‖r + ‖u‖r

)
,

with Dt = i−1∂t, Dx = i−1∂x, Dv = i−1∂v, ‖ · ‖r being the Hr(R2d+1) Sobolev norm.

This hypoelliptic estimate (2.37) is optimal in term of the exponents of the
derivative terms appearing in the left-hand-side, namely, 2s/(2s+1) for the regularity
in the time and space variables and 2s for the regularity in the velocity variable.
Theorem 2.2 is a natural extension for the values of the parameter 0 < s < 1 of the
well-known optimal hypoelliptic estimates with loss of 4/3 derivatives known for the
Kolmogorov operator, case s = 1, (see [21, 31, 108]),

‖(1 + |Dt|2/3 + |Dx|2/3 + |Dv|2)u‖r ≤ CK,r
(
‖Pu‖r + ‖u‖r

)
.

The exponent 2s for the regularity in the velocity variable has the same growth as
the diffusive part of the kinetic operator (2.29) and the optimality of the exponent
2s/(2s+1) for the regularity in the time and space variables may be checked through
a simple scaling argument.

As a consequence of these optimal hypoelliptic estimates, we obtain the following
result where we write

f ∈ Hs
loc,(t0,x0)(R2d+1

t,x,v ),

if there exists an open neighborhood U of the point (t0, x0) in Rd+1 such that
φ(t, x)f ∈ Hs(R2d+1

t,x,v ) for any φ ∈ C∞0 (U).
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Corollary 2.3. ([KPS5], Lerner, Morimoto, KPS) Let P be the operator de-
fined in (2.29) and N ∈ N. If u ∈ H−N(R2d+1

t,x,v ) and Pu ∈ Hr
loc,(t0,x0)(R

2d+1
t,x,v ) with

r ≥ 0, then there exists an integer k ≥ 1 such that

1

〈v〉ku ∈ H
r+ 2s

2s+1

loc,(t0,x0)(R
2d+1
t,x,v ),

where 〈v〉 = (1 + |v|2)1/2. In particular, if u ∈ H−N(R2d+1) and Pu ∈ H∞(R2d+1)
then u ∈ C∞(R2d+1).

This result allows to recover the C∞ hypoellipticity proved in [97] (Theorem 1.2)
with now the optimal loss of derivatives. The equation (2.29) is not a classical
pseudodifferential equation since the coefficient v in (2.29) is unbounded and the
fractional Laplacian (−∆̃v)

s is a classical pseudo-differential operator in the velocity
variable v but not in all the variables t, x, v. This accounts for parts of the difficulties
encountered when studying this kinetic operator in particular when using cutoff
functions in the velocity variable. This also accounts for the weight 〈v〉−k appearing
in the statement of Corollary 2.3.

Proof. The proof of Theorem 2.2 is relying on microlocal techniques developed
by Lerner for proving energy estimates by using the Wick calculus [87]. They extend
a method used by Trèves [119] to handle this type of estimates. The strategy of the
proof is the following:

- Step 1. Consider the problem as an evolution equation along the characteristic
curves of ∂t + v · ∂x by straightening this vector field in order, after re-
labeling the variables, to reduce the study to the analysis of the operator
with normal form

iDt + a(t,Dx2 , Dx1 + tDx2)F (x2 − tx1).

- Step 2. Derive a priori estimates for the one-dimensional first-order differential op-
erator

iDt + a(t, ξ2, ξ1 + tξ2)F (x2 − tx1),

depending on the parameters x1, x2, ξ1, ξ2 ∈ Rd. This step uses the same
approach as the one used above for deriving the subelliptic estimate for the
operator DX − iλX2.

- Step 3. Deduce from the a priori estimates satisfied by the one-dimensional first-
order differential operator with parameters some a priori estimates for the
operator

iDt +
[
a(t, ξ2, ξ1 + tξ2)F (x2 − tx1)

]Wick
,

defined by using the Wick quantization the symbol

a(t, ξ2, ξ1 + tξ2)F (x2 − tx1).

A short exposition of the Wick calculus is given in Appendix (Section 1).
- Step 4. Thanks to the link between the Wick and the standard quantizations, con-

trol some remainder terms in order to come back to the standard quantiza-
tion and derive a priori estimates for the original operator

iDt + a(t,Dx2 , Dx1 + tDx2)F (x2 − tx1).

�
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An alternative proof of Theorem 2.2 was recently given by Alexandre [4] for
specific positive functions a. This proof relies on averaging regularity type arguments
following techniques originally introduced by Bouchut [21] and Perthame [108].

3. Explicit examples of nonsolvable weakly hyperbolic operators with
real coefficients

This section presents the work [KPS19] which provides some explicit examples
of nonsolvable weakly hyperbolic operators with real coefficients. These examples
are given by the following two operators, with (t, x, y) ∈ R3,

L1 = ∂t(∂t + y∂x) + ∂y,

L2 = ∂2
t −H(−y)|y|k∂2

x + ∂y, k ≥ 1, H = 1lR+ ,

where the notation 1lR+ stands for the characteristic function of the set R+. Both
examples are weakly hyperbolic operators in two-space-dimensions. The operator
L1 has affine coefficients and the operator L2 has coefficients in Ck−1. Egorov
gave in [53] an example of a nonsolvable weakly hyperbolic operator in one-space-
dimension with a quite complicated expression. Although these examples are 2-
space-dimensional, it is particularly worth noticing the simplicity of their expres-
sions.

Let us recall some results about the solvability of pseudodifferential operators
with real principal symbols. Let L be a classical pseudodifferential operator on
an open set Ω of Rn with a real-valued principal symbol am. When the doubly
characteristic set

Σ2 = {(x, ξ) ∈ Ṫ ∗(Ω) : am(x, ξ) = 0, dξam(x, ξ) = 0},
is empty, the operator L is of strong-real-principal-type and local solvability with a
loss of one derivative holds [75] (Theorem 26.1.7). Local solvability with a loss of one
derivative holds as well for doubly characteristic pseudodifferential operators with
real principal symbols whose subprincipal symbols asm−1 have non-zero imaginary
parts

(2.38) am(x, ξ) = 0, dξam(x, ξ) = 0⇒ Im asm−1(x, ξ) 6= 0,

on the doubly characteristic set [89] (Theorem 1.1). This is for instance the case of
most of the operators of the type

AB + C,

where A,B,C are smooth real vector fields in R3 such that A, B and [A,B] are
linearly independent, which have been shown to be locally solvable in [120]. When
the set

Σ̃2 = {(x, ξ) ∈ Ṫ ∗(Ω) : am(x, ξ) = 0, dξam(x, ξ) = 0, Im asm−1(x, ξ) = 0},
is non-empty, different situations can occur. Local solvability may hold. This is for
instance the case of some operators of the type AB + C. However, local solvability
may also fail as shown by the work of Mendoza and Uhlmann [92], which provides a
necessary condition for local solvability of a class of doubly characteristic operators:
let P be a classical, properly supported operator on an open set X in Rn whose
principal symbol p is real and factorizes microlocally, i.e., near any point in T ∗X \0,
p = p1p2 with pj real valued, C∞ and homogeneous. Assume that the doubly
characteristic set is an involutive submanifold of codimension 2 and that at doubly
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characteristic points, the Hamilton vector fields Hp1 , Hp2 and the cone direction are
independent. Then, the condition:

Sub(P): The imaginary part of the subprincipal symbol of P does not
change sign at the doubly characteristic point ν0 along either the bicharac-
teristics of the symbol p1, or those of p2

is necessary for the local solvability of the operator P at the doubly characteristic
point ν0. This condition is analogous to the condition (P) of Nirenberg-Trèves [103].
More generally, we recall that local solvability for principal-type pseudodifferential
operators is equivalent [38, 75] to the condition (Ψ):

Condition (Ψ): The homogeneous principal symbol p satisfies that Im(ap)
does not change sign from - to + along the oriented bicharacteristics of
Re(ap) for any 0 6= a ∈ C∞

Here both operators L1 and L2 have non-empty set Σ̃2. The operator L1 is
defined in the standard quantization, or in the Weyl quantization, by the symbol

p(t, x, y; τ, ξ, η) = −τ(τ + yξ) + iη,

with the real-valued principal symbol p2 = −τ(τ + yξ). The doubly characteristic
set

Σ2(L1) = {(t, x, y; τ, ξ, η) ∈ Ṫ ∗(R3) : y = τ = 0, (ξ, η) 6= (0, 0)}
∪ {(t, x, y; τ, ξ, η) ∈ Ṫ ∗(R3) : τ = ξ = 0, η 6= 0},

is not empty and is an involutive submanifold of codimension 2 near the point
ν0 = (t0, x0, 0; 0, 1, 0) ∈ Σ2(L1), t0, x0 ∈ R,(

TνΣ2(L1)
)σ

= {(t, x, y; τ, ξ, η) ∈ R6 : x = y = τ = ξ = 0}
⊂ TνΣ2(L1) = {(t, x, y; τ, ξ, η) ∈ R6 : y = τ = 0},

for all ν in a neighbourhood of ν0 in Σ2(L1). Setting q = −τ and s = τ + yξ, the
Hamilton vector fields Hq, Hs and the radial vector field at points in Σ2(L1) near
ν0,

Hq = − ∂

∂t
, Hs =

∂

∂t
− ξ ∂

∂η
, r = ξ

∂

∂ξ
+ η

∂

∂η
,

are independent. The imaginary part of the subprincipal symbol ps1 = iη does change
sign at the first order in 0 along the bicharacteristic of the symbol s,{

γ′(t) = Hs(γ(t)),
γ(0) = ν0,

since

Im ps1(ν0) = 0,
d

dt

[
Im ps1(γ(t))

]∣∣
t=0

= {s, Im ps1}(γ(t))
∣∣
t=0

= −1 6= 0.

The condition Sub(P) is therefore violated and the nonsolvability at ν0 ∈ Σ2(L1)
follows from [92] (Theorem 1.2). This induces that the operator L1 is nonsolvable
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in any neighbourhood of 0 in R3. In order to prove the nonsolvability in any neigh-
bourhood of 0 for the operator with Ck−1 coefficients L2, we build a quasimode to
show that no a priori estimates of the following type could hold:

(2.39) ∃C0 > 0,∃N0 ∈ N,∃V0 an open neighbourhood of 0 in R3 such that

∀u ∈ C∞0 (V0), C0‖L∗2u‖(k−3) ≥ ‖u‖(−N0),

where ‖·‖(s) stands for the Hs(R3) Sobolev norm. This implies that there do not
exist an integer N0 ∈ N and an open neighbourhood V0 of 0 in R3 such that for all
f ∈ HN0(V0), there exists u ∈ H−k+3(R3) solving

L2u = f,

on V0 (L2u is well defined for u ∈ H−k+3(R3)). Indeed, if it was the case, we would
have using similar arguments as in [75] (Lemma 26.4.5) that for all v ∈ C∞0 (V0),

(2.40) |(f, v)L2(V0)| = |(L2u, v)| = |(u, L∗2v)| ≤ ‖u‖(−k+3)‖L∗2v‖(k−3).

Define

Tv : HN0(V0) → C
f 7→ (f, v)L2(V0),

for v in C∞0 (V0). It follows from the previous estimate that for all f in HN0(V0),
there exists u ∈ H−k+3(R3) such that

sup
v∈W
|Tv(f)| ≤ ‖u‖(−k+3) < +∞,

with W = {v ∈ C∞0 (V0), ‖L∗2v‖(k−3) ≤ 1}. Since Tv is a bounded linear form for v in
W , we deduce from the uniform boundedness principle that there exists a positive
constant C0 > 0 such that

sup
v∈W
‖Tv‖ ≤ C0 < +∞.

It follows that for all f ∈ HN0(V0) and v ∈ C∞0 (V0), ‖L∗2v‖(k−3) ≤ 1,

|(f, v)L2(V0)| ≤ C0‖f‖(N0),

which induces by homogeneity that for all f ∈ HN0(V0) and v ∈ C∞0 (V0),

(2.41) |(f, v)L2(V0)| ≤ C0‖f‖(N0)‖L∗2v‖(k−3).

By using that ‖Tv‖ = ‖v‖(−N0) for all v in C∞0 (V0), we finally obtain from (2.41)
that the following estimate

∀v ∈ C∞0 (V0), C0‖L∗2v‖(k−3) ≥ ‖v‖(−N0),

would hold and reach a contradiction.
The operator L2 is defined in the standard quantization, or in the Weyl quanti-

zation, by the symbol

p = iη + (θk(y)ξ2 − τ 2) = i(η + i(τ 2 − θk(y)ξ2)),

where θk is the Ck−1(R,R) function

θk(y) = (−1)kykH(−y), k ≥ 1.
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The principal symbol p2 = θk(y)ξ2 − τ 2 is a real Ck−1 symbol whose doubly charac-
teristic set

Σ2(L2) = {(t, x, y; τ, ξ, η) ∈ Ṫ ∗(R3) : τ = 0, y ∈ R+}
∪ {(t, x, y; τ, ξ, η) ∈ Ṫ ∗(R3) : τ = ξ = 0},

is not empty. This set contains some points (t, x, 0; 0,±1, 0) ∈ Σ2(L2), where the
imaginary part of the subprincipal symbol ps1 = iη vanishes. Furthermore, we notice
that the symbol p violates a quasi-homogeneous version of the condition (Ψ), since
the function y 7→ τ 2 − θk(y)ξ2 changes sign from − to +, if y increases, whenever
τξ 6= 0. This property of sign change allows to construct a quasimode

uλ(t, x, y) =
1

(2π)2

∫
R2

ei(xξ+tτ)ψλ(τ, ξ)χ0(λµ(y + (τξ−1)
2
k ))e−Φ1(τ,ξ,y)dτdξ, λ ≥ 1,

with a non-negative phase function

Φ1(τ, ξ, y) =

∫ y

−(τξ−1)
2
k

(τ 2 − θk(s)ξ2)ds ≥ 0,

showing that no a priori estimates of the type (2.39) could hold. Notice that a
violation of a quasi-homogeneous version of the condition (Ψ) does not always imply
nonsolvability. A nice example of such an operator violating a quasi-homogeneous
version of the condition (Ψ), but satisfying (2.38) so locally solvable, is given in [34].

4. Subelliptic estimates for operators with limited smoothness

This section presents the work [KPS23] about the subellipticity of a class of
non-selfadjoint pseudodifferential operators with limited smoothness.

In this work, we study the sharp regularity for the symbols of a standard class
of subelliptic pseudodifferential operators

(2.42) hDt + iqw(t, x, hDx),

which is needed to derive the global semiclassical subelliptic a priori estimate

(2.43) ∃C > 0,∃ 0 < h0 ≤ 1,∀u ∈ C∞0 (Rt × Rn
x),∀ 0 < h < h0,

‖hDtu+ iqw(t, x, hDx)u‖L2(Rn+1) ≥ Ch
N
N+1‖u‖L2(Rn+1).

The main result in [KPS23] provides a proof of this global subelliptic estimate under
the smoothness assumption

(2.44) q(t, x, ξ) ∈ C2[n/2]+4
b (Rt × Rn

x × Rn
ξ ,R),

where [n/2] is the integer part of n/2 and Cn
b stands for the space of Cn functions

which are bounded as well as all their derivatives up to the order n. This class
of operators is quite general since any principal-type operator can be microlocally
reduced to the normal form (2.42) after left and right multiplications by elliptic
Fourier integral operators. To ensure the subellipticity of this operator, we assume
that the symbol

p(t, x, τ, ξ) = τ + iq(t, x, ξ),

satisfies the condition (Ψ):

Condition (Ψ): The symbol p satisfies that Im(ap) does not change sign from
+ to - along the oriented bicharacteristics of Re(ap) for any 0 6= a ∈ C∞
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For the normal form p(t, x, τ, ξ) = τ + iq(t, x, ξ), the condition (Ψ) is equivalent to
the assumption

q(t,X) > 0, s > t⇒ q(s,X) ≥ 0.

This hypothesis means that for all X ∈ R2n, the function t 7→ q(t,X) can only
change sign in the right sense, i.e. from negative values to positive ones. We also
assume that for all X ∈ R2n, the function t 7→ q(t,X) only vanishes in a fixed
compact set [−A,A], A > 0, exactly N times, N ≥ 1, and that these roots are some
Lipschitz functions with respect to the variable X. More precisely, we assume that

(2.45) ∃A > 0, inf
|t|≥A,X∈R2n

|q(t,X)| > 0,

(2.46) ∃N ≥ 1,∀t ∈ [−A,A],∀X ∈ R2n, q(t,X) = e(t,X)
N∏
j=1

(t− αj(X)),

where e is a positive function on R2n+1 satisfying

(2.47) M0 = inf
|t|≤A,X∈R2n

e(t,X) > 0,

and αj are some real-valued Lipschitz functions on R2n satisfying

(2.48) ‖αj‖L∞(R2n) ≤ A, j = 1, ..., N.

Under additional smoothness assumptions on the function e, the hypothesis (2.46)
implies that for all points in the phase space, there exists a non-vanishing iterated
Poisson brackets

H l
Rep Im p(t, x, τ, ξ) 6= 0, 0 ≤ l ≤ N.

This means that all the points of the numerical range p(R2n+2) are of finite order
with an order bounded above by the integer N . Let us underline that the operator
(2.42) does not need to satisfy the condition (P ):

Condition (P ): The symbol p satisfies that Im(ap) does not change sign
along the bicharacteristics of Re(ap) for any 0 6= a ∈ C∞

as it is the case for the class of pseudodifferential operators studied by Dencker,
Sjöstrand and Zworski in [39] (Theorem 1.4), where the function q is assumed to
keep a sign.

A reading of the chapter 27 in the book by Hörmander [75] shows that there exists
a complete theory for the microlocal subellipticity of pseudodifferential operators.
This is a subtle and complex theory which distinguishes several types of subelliptic
models, whether or not, the condition (P ) is fulfilled. When the condition (P ) holds,
the proof of the subellipticity is a sharp and difficult result but its complexity is still
relatively reasonable compared to the proof of the general subelliptic case when only
the condition (Ψ) is fulfilled. This is well-emphasized by Hörmander’s comments in
the Fields medallists’ lectures [77]:

“For the scalar case, Egorov [51] found necessary and sufficient conditions for
subellipticity with less of δ derivatives; the proof of sufficiency was completed in
[74]. A slight modification of the presentation is given in [75], but it is still very
complicated technically. Another approach which also covers systems operating on
scalars has been given by Nourrigat [104] (see also the book [65] by Helffer and
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Nourrigat), but it is also far from simple so the study of subelliptic operators may
not be in a final form.”

As an illustration, the differential operators

L = Dt + it2k(Dx + x2lt2m+1Λ), (t, x) ∈ R2, k, l ≥ 1, m ≥ 0, Λ ≥ 1,

are some examples of subelliptic operators violating the condition (P ). Despite
the simplicity of their expressions and up to your knowledge, no other proof than
mimicking the proof of general case is known for proving their subellipticity

∀u ∈ C∞0 (R2),∀Λ ≥ 1, ‖Dtu+it2k(Dx+x
2lt2m+1Λ)u‖L2 ≥ CΛ

1
(2k+1)(2l+1)+(2m+1)‖u‖L2 .

Unfortunately, the subelliptic model (2.42) does not cover the general subelliptic
case since there is a strong assumption on the Lipschitz regularity for the roots of
the functions t 7→ q(t,X). However, despite this restiction, the result in [KPS23]
presents a double interest: the first being to provide an estimate for the regularity
needed to obtain such subelliptic estimates, the second to give a proof for the subel-
lipticity of a class of pseudodifferential operators violating the condition (P ) which
remains relatively reasonable compared to the proof of the general case.





CHAPTER 3

Phase space analysis of the non-cutoff Boltzmann equation

This chapter presents the results obtained in the works [KPS7, KPS8, KPS9,
KPS11]. We study in [KPS7] the spectral and phase space properties of the lin-
earized non-cutoff Kac collision operator. The non-cutoff Kac operator is a kinetic
model for the non-cutoff radially symmetric Boltzmann operator with Maxwellian
molecules. The linearization of the non-cutoff Kac operator around a Maxwellian
distribution is shown to be a function of the harmonic oscillator and to be equal to
a fractional power of the harmonic oscillator up to some lower order terms. Related
results for the non-cutoff radially symmetric Boltzmann operator are also proven.
In [KPS8], we study the non-cutoff Boltzmann and Landau collision operators lin-
earized around a normalized Maxwellian distribution. For Maxwellian molecules, we
prove that the linearized non-cutoff Boltzmann operator is equal to a fractional power
of the linearized Landau operator. This extends the result obtained in [KPS7] in the
radially symmetric case. Furthermore, we provide the exact anisotropic phase space
structure for both the linearized non-cutoff Boltzmann and Landau operators, and
display explicitly the sharp anisotropic coercive estimates satisfied by the linearized
non-cutoff Boltzmann operator for both Maxwellian and non-Maxwellian molecules.
In [KPS9], we study the smoothing properties of the Cauchy problem associated to
the radially symmetric spatially homogeneous non-cutoff Boltzmann equation with
Maxwellian molecules in a close-to-equilibrium framework. This Cauchy problem
is shown to enjoy the same Gelfand-Shilov regularizing properties as the Cauchy
problem defined by the evolution equation associated to a fractional harmonic oscil-
lator. Related regularizing results for the Cauchy problem associated to the spatially
homogeneous Landau equation with Maxwellian molecules are given in [KPS11].

1. Preliminaries

1.1. The Boltzmann equation. The Boltzmann equation describes the be-
haviour of a dilute gas when the only interactions taken into account are binary
collisions [28]. It reads as the equation

(3.1)

{
∂tf + v · ∇xf = Q(f, f),

f |t=0 = f0,

for the density distribution of the particles f = f(t, x, v) ≥ 0 at time t, having
position x ∈ Rd and velocity v ∈ Rd. The Boltzmann equation derived in 1872
is one of the fundamental equations in mathematical physics and, in particular, a
cornerstone of statistical physics.

The term appearing in the right-hand-side of this equation Q(f, f) is the so-called
Boltzmann collision operator associated to the Boltzmann bilinear operator

(3.2) Q(g, f) =

∫
Rd

∫
Sd−1

B(v − v∗, σ)(g′∗f
′ − g∗f)dσdv∗, d ≥ 2,

67
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with the standard shorthand f ′∗ = f(t, x, v′∗), f
′ = f(t, x, v′), f∗ = f(t, x, v∗), f =

f(t, x, v). In this expression, v, v∗ and v′, v′∗ are the velocities in Rd of a pair of
particles respectively before and after the collision. They are connected through the
formulas

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ,

where the parameter σ ∈ Sd−1 belongs to the unit sphere. Those relations corre-
spond physically to elastic collisions with the conservations of momentum and kinetic
energy in the binary collisions

v + v∗ = v′ + v′∗, |v|2 + |v∗|2 = |v′|2 + |v′∗|2,
where |·| is the Euclidean norm on Rd. The Boltzmann equation is said to be spatially
homogeneous when the density distribution of the particles does not depend on the
position variable

(3.3)

{
∂tf = Q(f, f),

f |t=0 = f0.

For monatomic gas, a standard model of cross sections B(v− v∗, σ) is given by non-
negative functions which depend separately on the relative velocity |v − v∗| and on
the deviation angle θ defined through the scalar product in Rd,

cos θ = k · σ, k =
v − v∗
|v − v∗|

.

The cross sections are assumed to be supported on the set where k ·σ ≥ 0, i.e. where
0 ≤ θ ≤ π

2
. More specifically, they are assumed to have the following structure

(3.4) B(v − v∗, σ) = Φ(|v − v∗|)b
( v − v∗
|v − v∗|

· σ
)
,

with the kinetic factor

(3.5) Φ(|v − v∗|) = |v − v∗|γ, γ ∈]− d,+∞[.

The molecules are said to be Maxwellian when the parameter γ = 0. The second
term appearing in the cross sections is a factor related to the deviation angle with a
singularity

(3.6) (sin θ)d−2b(cos θ) ≈
θ→0+

θ−1−2s,

for1 some 0 < s < 1. Notice that this singularity is not integrable∫ π
2

0

(sin θ)d−2b(cos θ)dθ = +∞.

This non-integrability plays a major role regarding the qualitative behaviour of the
solutions of the Boltzmann equation and this feature is essential for the smoothing ef-
fect to be present. Indeed, as first observed by Desvillettes for the Kac equation [41],
grazing collisions that account for the non-integrability of the angular factor near
θ = 0 do induce smoothing effects for the solutions of the non-cutoff Kac equation,
or more generally for the solutions of the non-cutoff Boltzmann equation. On the
other hand, these solutions are at most as regular as the initial data, see e.g. [130],

1The notation a ≈ b means a/b is bounded from above and below by fixed positive constants.
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when the cross section is assumed to be integrable, or after removing the singularity
by using a cutoff function (Grad’s angular cutoff assumption).

The physical motivation for considering this specific structure of cross sections is
derived from particles interacting according to a spherical intermolecular repulsive
potential of the form

φ(ρ) =
1

ρr
, r > 1,

with ρ being the distance between two interacting particles. In the physical 3-
dimensional space R3, the cross section satisfies the above assumptions with

s =
1

r
∈]0, 1[, γ = 1− 4s ∈]− 3, 1[.

Further details on the physics background and the derivation of the Boltzmann
equation may be found in the extensive expositions [28, 126].

1.2. The Kac equation. The Kac operator is a one-dimensional collision model
for the radially symmetric Boltzmann operator with Maxwellian molecules defined
as a finite part integral, see e.g [KPS7],

(3.7) K(g, f) =

∫
|θ|≤π

4

β(θ)

(∫
R
(g′∗f

′ − g∗f)dv∗

)
dθ,

with f ′∗ = f(t, x, v′∗), f
′ = f(t, x, v′), f∗ = f(t, x, v∗), f = f(t, x, v), where the

relations between pre and post collisional velocities given by

(3.8) v′ = v cos θ − v∗ sin θ, v′∗ = v sin θ + v∗ cos θ, v, v∗ ∈ R,
follow from the conservation of the kinetic energy in the binary collisions

v2 + v2
∗ = v′2 + v′2∗

and where the cross section is an even non-negative function satisfying

(3.9) β ≥ 0, β ∈ L1
loc(0, 1), β(−θ) = β(θ).

As for the Boltzmann operator, the main assumption concerning the cross-section is
the presence of a non-integrable singularity for grazing collisions

(3.10) β(θ) ≈θ→0|θ|−1−2s,

with 0 < s < 1.

1.3. The linearized Boltzmann operator. We consider the linearization of
the Boltzmann equation

f = µd +
√
µdg,

around the Maxwellian equilibrium distribution

(3.11) µd(v) = (2π)−
d
2 e−

|v|2
2 , v ∈ Rd.

Since Q(µd, µd) = 0 by the conservation of the kinetic energy, the Boltzmann oper-
ator Q(f, f) can be split into three terms

Q(µd +
√
µdg, µd +

√
µdg) = Q(µd,

√
µdg) +Q(

√
µdg, µd) +Q(

√
µdg,
√
µdg),

whose linearized part is Q(µd,
√
µdg) +Q(

√
µdg, µd). Setting

(3.12) L g = −µ−1/2
d Q(µd, µ

1/2
d g)− µ−1/2

d Q(µ
1/2
d g, µd),
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the original Boltzmann equation (3.1) is reduced to the Cauchy problem for the
fluctuation

(3.13)

{
∂tg + v · ∇xg + L g = µ

−1/2
d Q(

√
µdg,
√
µdg),

g|t=0 = g0.

The Boltzmann operator is local in the time and position variables and from now
on, we consider it as acting only in the velocity variable. This linearized operator
is known [28] to be an unbounded symmetric operator on L2(Rd

v) (acting in the
velocity variable) such that its Dirichlet form satisfies

(L g, g)L2(Rdv) ≥ 0.

Setting

Pg = (a+ b · v + c|v|2)µ
1/2
d ,

with a, c ∈ R, b ∈ Rd, the L2-orthogonal projection onto the space of collisional
invariants

(3.14) N = Span
{
µ

1/2
d , v1µ

1/2
d , ..., vdµ

1/2
d , |v|2µ1/2

d

}
,

we have

(3.15) (L g, g)L2(Rd) = 0⇔ g = Pg.

It was noticed forty years ago by Cercignani [27] that the linearized Boltzmann
operator with Maxwellian molecules behaves like a fractional diffusive operator. Over
the time, this point of view transformed into the following widespread heuristic
conjecture on the diffusive behavior of the Boltzmann operator as a flat fractional
Laplacian [3, 6, 8, 106, 107, 126]:

f 7→ Q(µd, f) ∼ −(−∆v)
sf + lower order terms,

with 0 < s < 1 being the parameter appearing in the singularity assumption (3.6).
See [KPS5, 97, 98] for works related to this simplified model of the non-cutoff
Boltzmann equation. This heuristics was the starting point of the series of works
[KPS7, KPS8] studying the exact phase space structure of the linearized non-
cutoff Boltzmann operator and its diffusive properties. The linearized non-cutoff
Boltzmann operator enjoys coercive estimates which play a basic role when studying
the Cauchy problem [8, 9, 10, 58]. For general molecules, sharp coercive estimates
in the weighted isotropic Sobolev spaces Hk

l (Rd) were proven in [9, 10, 58, 99, 101]:

(3.16) ‖(1−P)g‖2
Hs
γ
2

+ ‖(1−P)g‖2
L2
s+

γ
2

. (L g, g)L2(Rd) . ‖(1−P)g‖2
Hs
s+

γ
2

,

where

Hk
l (Rd) =

{
f ∈ S ′(Rd) : (1 + |v|2)

l
2f ∈ Hk(Rd)

}
, k, l ∈ R.

These estimates are sharp in this isotropic scale but the Boltzmann operator is
a truly anisotropic operator. This accounts in general for the difference between
the lower and upper bounds in (3.16). In the recent works [10, 58, 59], sharp
coercive estimates for the linearized non-cutoff Boltzmann operator were proven
independently. In [10], these sharp coercive estimates established in the three-
dimensional setting d = 3 (Theorem 1.1 in [10]),

(3.17) |||(1−P)f |||2γ . (L f, f)L2 . |||(1−P)f |||2γ, f ∈ S (R3),
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involve the anisotropic norm

(3.18) |||f |||2γ =

∫
R3
v×R3

v∗×S2
σ

|v−v∗|γb(cos θ)((µ3)∗(f
′−f)2+f 2

∗ (
√
µ′3−
√
µ3)2)dvdv∗dσ,

whereas in [58, 59], coercive estimates involving the anisotropic norms

‖f‖2
Ns,γ = ‖f‖2

L2
γ+2s

+

∫
Rd

∫
Rd
〈v〉 γ+2s+1

2 〈v′〉 γ+2s+1
2
|f(v)− f(v′)|2
d(v, v′)d+2s

1ld(v,v′)≤1dvdv
′,

where

d(v, v′) =

√
|v − v′|2 +

1

4
(|v|2 − |v′|2)2,

were derived and a model of a fractional geometric Laplacian on a lifted paraboloid in
Rd+1 was heuristically suggested for interpreting the anisotropic diffusive properties
of the Boltzmann collision operator. These coercive estimates are sharp but the
diffusion seems difficult to analyze from the phase space view point. In [KPS8],
these coercive estimates are made explicit and a sharp description of the anisotropy
inherent to the diffusive properties of the linearized non-cutoff Boltzmann operator
is given.

2. Spectral and phase space analysis of the linearized non-cutoff Kac
operator

We consider the non-cutoff Kac collision operator (3.7) whose cross section sat-
isfies to the assumptions (3.9) and (3.10). As before for the Boltzmann equation, we
consider the fluctuation around the normalized Maxwellian distribution

µ1(v) = (2π)−
1
2 e−

v2

2 , v ∈ R,

by setting

f = µ1 +
√
µ1h.

Since K(µ1, µ1) = 0 by conservation of the kinetic energy, we may write

K(µ1 +
√
µ1h, µ1 +

√
µ1h) = K(µ1,

√
µ1h) +K(

√
µ1h, µ1) +K(

√
µ1h,
√
µ1h)

and consider the linearized Kac operator

(3.19) Kh = K1h+K2h,

with

(3.20) K1h = −µ−1/2
1 K(µ1, µ

1/2
1 h), K2h = −µ−1/2

1 K(µ
1/2
1 h, µ1).

The first result gives an operator-theoretical formula expressing the first part of
the linearized non-cutoff Kac operator as a function of the contraction semigroup
generated by the one-dimensional harmonic oscillator

(3.21) H = −∆v +
v2

4
.

A reminder on classical notations and formulas for the harmonic oscillator and the
Hermite functions is given in Appendix (Section 2).
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Proposition 3.1. ([KPS7], Lerner, Morimoto, KPS, Xu) The first part of the
linearized non-cutoff Kac operator defined by

K1f = −µ−1/2
1 K(µ1, µ

1/2
1 f),

is equal to

K1 =

∫ π
4

−π
4

β(θ)
[
1− (sec θ)

1
2 exp(−H ln(sec θ))

]
dθ,

where H is the one-dimensional harmonic oscillator (3.21) so that

(3.22) K1 =
∑
k≥1

(∫ π
4

−π
4

β(θ)(1− (cos θ)k)dθ
)
Pk,

where the projections Pk onto the Hermite basis are described in Appendix (Section
2).

The integrals appearing in the formula (3.22) are well-defined since the L1 sin-
gularity at 0 of the function β is erased by the factor (1− (cos θ)k) vanishing at the
second order. This first result shows that K1 is an unbounded nonnegative operator
on L2(R) which is diagonal in the Hermite basis. Furthermore, the domain of the
operator K1 can be taken as

(3.23) D =
{
u ∈ L2(R),

∑
k≥0

k2s‖Pku‖2
L2 < +∞

}
= {u ∈ L2(R), Hsu ∈ L2(R)}.

Proof. The operator K1 = Opwa is considered as a pseudodifferential operator
and its Weyl symbol is computed explicitly. It is noticeable that this computation
can be performed explicitly. In addition to the Bobylev formula2, this calculation
only requires the computations of the Fourier transformations of Gaussian terms.
The Weyl symbol of the operator K1 is shown to be a function of the Weyl symbol
of the harmonic oscillator

a = f
(
ξ2 +

v2

4

)
.

Furthermore, its specific structure allows to deduce from the Mehler formula [76],

exp−tH = Opw
(exp

[
− 2 tanh( t

2
)(ξ2 + v2

4
)
]

cosh( t
2
)

)
,

the operator-theoretical formula in Proposition 3.1. �

The next proposition provides an operator-theoretical formula expressing the
second part of the linearized non-cutoff Kac operator as a function of the spectral
projections of the one-dimensional harmonic oscillator:

2Formula providing an explicit expression for the Fourier transform of the Boltzmann collision
operator.
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Proposition 3.2. ([KPS7], Lerner, Morimoto, KPS, Xu) The second part of
the linearized non-cutoff Kac operator defined by

K2f = −µ−1/2
1 K(µ

1/2
1 f, µ1),

is equal to

K2 = −
+∞∑
l=1

(∫ π
4

−π
4

β(θ)(sin θ)2ldθ
)
P2l.

Furthermore, there exist some positive constants c1, c2 > 0 such that

(3.24) 0 ≤ −K2 ≤ c1 exp−c2H,
where H is the one-dimensional harmonic oscillator (3.21) and Pk are the spectral
projections onto the Hermite basis described in Appendix (Section 2).

The L1 singularity at 0 of the function β is erased by the factor (sin θ)2l which
vanishes at order 2l ≥ 2. The operator K2, as well as HNL2 for any N ∈ N, is a
trace class operator on L2(R).

Proof. The proof of Proposition 3.2 follows the same lines as the proof of
Proposition 3.1 by using generalizations of the Mehler formula proven in [122]. �

As the first part of the linearized non-cutoff Kac operator, the second part K2

is also diagonal in the Hermite basis. We therefore obtain the following spectral
decomposition of the linearized non-cutoff Kac operator:

Proposition 3.3. ([KPS7], Lerner, Morimoto, KPS, Xu) The linearized non-
cutoff Kac operator defined by

Kf = −µ−1/2
1 K(µ1, µ

1/2
1 f)− µ−1/2

1 K(µ
1/2
1 f, µ1),

is a non-negative unbounded operator on L2(R) with domain D defined in (3.23). It
is diagonal in the Hermite basis

(3.25) K =
∑
k≥1

λkPk,

with a discrete spectrum only composed by the non-negative eigenvalues

(3.26) λ2k+1 =

∫ π
4

−π
4

β(θ)(1− (cos θ)2k+1)dθ ≥ 0, k ≥ 0,

(3.27) λ2k =

∫ π
4

−π
4

β(θ)(1− (cos θ)2k − (sin θ)2k)dθ ≥ 0, k ≥ 1,

satisfying to the asymptotic estimates

(3.28) λk ≈ ks when k → +∞.
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The lowest eigenvalue zero corresponds to the fact that the Maxwellian distribu-
tion µ1 is an equilibrium

Kµ1/2
1 = −µ−1/2

1 K(µ1, µ1)− µ−1/2
1 K(µ1, µ1) = 0,

by conservation of the kinetic energy. We shall now relate these operator-theoretical
properties to the phase space structure of the linearized non-cutoff Kac operator. To
that end, we define for any m ∈ R, the symbol classes Sm(R2d) as the set of smooth
functions a(v, ξ) from Rd × Rd into C satisfying to the estimates

(3.29) ∀(α, β) ∈ N2d,∃Cαβ > 0, ∀(v, ξ) ∈ R2d,

|∂αv ∂βξ a(v, ξ)| ≤ Cα,β〈(v, ξ)〉2m−|α|−|β|,

with 〈(v, ξ)〉 =
√

1 + |v|2 + |ξ|2. We consider the Weyl quantization of symbols in
the class Sm(R2d),

(3.30) aw(v,Dv)u =
1

(2π)d

∫
R2d

ei(v−y)·ξa
(v + y

2
, ξ
)
u(y)dydξ.

We notice in particular that the Weyl symbol of the d-dimensional harmonic oscil-
lator

|ξ|2 +
|v|2
4
∈ S1(R2d),

is a first order symbol in this symbolic calculus. The symbol class S−∞(R2d) denotes
the class ∩m∈RSm(R2d). We define the Sobolev space

(3.31) Bm(Rd) = {u ∈ L2(Rd), Hmu ∈ L2(Rd)}
=
{
u ∈ L2(Rd),

∑
k≥1

k2m‖Pku‖2
L2 < +∞

}
, m ≥ 0

and B−m(Rd) as the dual space of Bm(Rd). It follows from the general theory of
Sobolev spaces attached to a pseudodifferential calculus (see e.g. Section 2.6 in [88])
that

∀m ∈ R, Bm(Rd) = {u ∈ S ′(Rd) : ∀a ∈ Sm(R2d), awu ∈ L2(Rd)}.
For definiteness, we now make the following choice for the cross section

(3.32) β(θ) =
| cos θ

2
|

| sin θ
2
|1+2s

, |θ| ≤ π

4
.

With that choice, we get a more precise equivalent than in Proposition 3.3,

(3.33) λk ∼ c0k
s when k → +∞ with c0 =

21+s

s
Γ(1− s),

where Γ stands for the Gamma function.

Theorem 3.4. ([KPS7], Lerner, Morimoto, KPS, Xu) Under the assumption
(3.32), the linearized non-cutoff Kac operator

K = lw(v,Dv),
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is a pseudodifferential operator whose Weyl symbol l(v, ξ) is real-valued, belongs to
the symbol class Ss(R2) with the following asymptotic expansion: there exists a se-
quence of real numbers (ck)k≥1 such that

∀N ≥ 1, l(v, ξ) ≡ c0

(
1+ξ2+

v2

4

)s
−d0+

N∑
k=1

ck

(
1+ξ2+

v2

4

)s−k
mod Ss−N−1(R2),

where the positive constant c0 > 0 is defined in (3.33) and

d0 =
21+s(2 +

√
2)s

s
> 0.

Proof. These estimates are derived directly on the explicit expression of the
Weyl symbol of the linearized non-cutoff Kac operator. �

This result shows that the linearized non-cutoff Kac operator is a pseudodiffer-
ential operator whose principal symbol is the same as for the fractional harmonic
oscillator

c0

(
1−∆v +

v2

4

)s
.

According to standard results about the phase space structure of the powers of posi-
tive elliptic pseudodifferential operators (see e.g. Section 4.4 in [64]), we notice that
the linearized non-cutoff Kac operator is equal to the fractional harmonic oscillator

c0

(
1−∆v +

v2

4

)s
,

up to a bounded operator on L2(R). Let us underline that the fractional power
0 < s < 1 of the harmonic oscillator only relates to structure of the singularity (3.10),
whereas the different constants d0, (ck)k≥0 appearing in the asymptotic expansion

(3.34) l(v, ξ) ∼ c0

(
1 + ξ2 +

v2

4

)s
− d0 +

+∞∑
k=1

ck

(
1 + ξ2 +

v2

4

)s−k
,

may be computed explicitly and depend directly on the exact expression chosen for
the angular factor (3.32). This asymptotic expansion provides a complete description
of the phase space structure of the linearized non-cutoff Kac operator. The two
parts K1 and K2 account very differently in the way the linearized non-cutoff Kac
operator acts. The first part K1 is a pseudodifferential operator whose Weyl symbol
l1 accounts for all the asymptotic expansion of the symbol l,

l1(v, ξ) ∼ c0

(
1 + ξ2 +

v2

4

)s
− d0 +

+∞∑
k=1

ck

(
1 + ξ2 +

v2

4

)s−k
,

whereas the symbol of the operator K2 belongs to the symbol class S−∞(R2). This
shows that K2 is a smoothing operator in any direction of the phase space

‖〈v〉N1K2f‖HN2 (R) . ‖f‖L2(R),

for all N1, N2 ∈ N, f ∈ S (R) and that K2 defines a compact operator on L2(R).
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3. Spectral and phase space analysis of the linearized non-cutoff radially
symmetric Boltzmann operator

We consider the linearized non-cutoff Boltzmann operator defined in (3.12) with
Maxwellian molecules

L f = −µ−1/2
d Q(µd, µ

1/2
d f)− µ−1/2

d Q(µ
1/2
d f, µd),

acting on the radially symmetric Schwartz space on Rd with d ≥ 2,

(3.35) Sr(Rd) =
{
f ∈ S (Rd) : ∀v ∈ Rd, ∀A ∈ O(d), f(v) = f(Av)

}
=
{
f(|v|)

}
f even
f∈S (R)

,

where O(d) stands for the orthogonal group of Rd. We recall that the case of
Maxwellian molecules corresponds to the case when γ = 0 in the kinetic factor (3.5)
and that the non-negative cross section b(cos θ) is assumed to be supported where
cos θ ≥ 0 and to satisfy the assumption (3.6). We define the following function

(3.36) β(θ) = |Sd−2|| sin 2θ|d−2b(cos 2θ) ≈
θ→0
|θ|−1−2s.

The first result gives an operator-theoretical formula expressing the first part of the
linearized non-cutoff radially symmetric Boltzmann operator as a function of the
contraction semigroup generated by the d-dimensional harmonic oscillator:

Proposition 3.5. ([KPS7], Lerner, Morimoto, KPS, Xu) When it acts on the
function space Sr(Rd), the first part of the linearized non-cutoff Boltzmann operator
with Maxwellian molecules defined by

L1f = −µ−1/2
d Q(µd, µ

1/2
d f),

is equal to

(3.37) L1 =

∫ π
4

−π
4

β(θ)
[
1− (sec θ)

d
2 exp(−H ln(sec θ))

]
dθ,

where β is the function defined in (3.36) and H = −∆v + |v|2
4

is the d-dimensional
harmonic oscillator so that

(3.38) L1 =
∑
k≥1

(∫ π
4

−π
4

β(θ)(1− (cos θ)k)dθ
)
Pk,

where the projections Pk onto the Hermite basis are described in Appendix (Sec-
tion 2).

Proof. Thanks to the similarity between the Bobylev formulas for the Kac op-
erator and the radially symmetric Boltzmann operator, the proof of Proposition 3.5
follows from the same lines as Proposition 3.1. �

As for the first part of the linearized non-cutoff Kac operator, the domain of the
operator L1 can be taken as

D =
{
u ∈ L2(Rd),

∑
k≥0

k2s‖Pku‖2
L2 < +∞

}
(3.39)

= {u ∈ L2(Rd), Hsu ∈ L2(Rd)}.
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Similarly to the second part of the linearized non-cutoff Kac operator, the next
proposition provides an operator-theoretical formula expressing the second part of
the linearized non-cutoff radially symmetric Boltzmann operator as a function of the
spectral projections of the harmonic oscillator.

Proposition 3.6. ([KPS7], Lerner, Morimoto, KPS, Xu) When it acts on the
function space Sr(Rd), the second part of the linearized non-cutoff Boltzmann oper-
ator with Maxwellian molecules defined by

L2f = −µ−1/2
d Q(µ

1/2
d f, µd),

is equal to

(3.40) L2 = −
∑
l≥1

(∫ π
4

−π
4

β(θ)(sin θ)2ldθ
)
P2l,

where β is the function defined in (3.36) and Pk are the spectral projections onto
the Hermite basis described in Appendix (Section 2). Furthermore, there exist some
positive constants c1, c2 > 0 such that

(3.41) 0 ≤ −L2 ≤ c1 exp−c2H,
where H = −∆v + |v|2

4
is the d-dimensional harmonic oscillator.

Proof. Thanks to the similarity between the Bobylev formulas for the Kac op-
erator and the radially symmetric Boltzmann operator, the proof of Proposition 3.6
follows from the same lines as Proposition 3.2. �

Collecting the two previous results and using the fact that P2k+1f = 0 when k ≥
0, f ∈ Sr(Rd), we recover in the radially symmetric case the spectral diagonalization
obtained in [129] for the linearized Boltzmann operator:

Corollary 3.7. ([KPS7], Lerner, Morimoto, KPS, Xu) When it acts on the
function space Sr(Rd), the linearized non-cutoff Boltzmann operator with Maxwellian
molecules

L f = −µ−1/2
d Q(µd, µ

1/2
d f)− µ−1/2

d Q(µ
1/2
d f, µd),

is equal to

L =
∑
k≥1

(∫ π
4

−π
4

β(θ)(1− (sin θ)2k − (cos θ)2k)dθ
)
P2k,

where β is the function defined in (3.36) and Pk are the spectral projections onto the
Hermite basis described in Appendix (Section 2). Furthermore, the estimates

(3.42)

∫ π
4

−π
4

β(θ)(1− (sin θ)2k − (cos θ)2k)dθ ≈ ks when k → +∞,

are satisfied and imply the following coercive estimates

(3.43) ‖H s
2 (1−P)f‖2

L2 . (L f, f)L2 . ‖H s
2 (1−P)f‖2

L2 ,

for f ∈ Sr(Rd), where H = −∆v + |v|2
4

is the d-dimensional harmonic oscillator.
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The results of Propositions 3.5, 3.6 and Corollary 3.7 (except for (3.42) and
(3.43)) hold true as well for the cutoff case when β is integrable. For definiteness,
we shall now make the following choice for the cross section

(3.44) β(θ) = |Sd−2|| sin 2θ|d−2b(cos 2θ) =
| cos θ

2
|

| sin θ
2
|1+2s

.

With that choice, we get as before a more precise equivalent than in Corollary 3.7∫ π
4

−π
4

β(θ)(1− (sin θ)2k − (cos θ)2k)dθ ∼ c0(2k)s,

when k → +∞, where the positive constant c0 > 0 is defined in (3.33).

Theorem 3.8. ([KPS7], Lerner, Morimoto, KPS, Xu) Under the assumption
(3.44), the linearized non-cutoff Boltzmann operator with Maxwellian molecules act-
ing on the radially symmetric function space Sr(Rd) is equal to a pseudodifferential
operator

L f = lw(v,Dv)f, f ∈ Sr(Rd),

whose Weyl symbol l(v, ξ) is real-valued, belongs to the symbol class Ss(R2d) with the
following asymptotic expansion: there exists a sequence of real numbers (ck)k≥1 such
that ∀N ≥ 1,

l(v, ξ) ≡ c0

(
1 + |ξ|2 +

|v|2
4

)s
− d0 +

N∑
k=1

ck

(
1 + |ξ|2 +

|v|2
4

)s−k
mod Ss−N−1(R2d),

where | · | is the Euclidean norm, c0 > 0 is the positive constant defined in (3.33)
and

d0 =
21+s(2 +

√
2)s

s
> 0.

Proof. The operator L = lw(v,Dv) defined in Corollary 3.7, is considered as
a pseudodifferential operator and its Weyl symbol is computed explicitly. The es-
timates of Theorem 3.8 are then derived directly on the explicit expression of this
symbol. �

This result shows that when acting on the function space Sr(Rd), the linearized
non-cutoff Boltzmann operator with Maxwellian molecules is a pseudodifferential
operator whose principal symbol is the same as for the fractional harmonic oscillator

c0

(
1−∆v +

|v|2
4

)s
.

For Maxwellian molecules, this accounts for the exact diffusive structure of the lin-
earized non-cutoff radially symmetric Boltzmann operator and shows that this op-
erator is equal to the fractional harmonic oscillator

c0

(
1−∆2

v +
|v|2
4

)s
,

up to a bounded operator on L2(Rd). The phase space structure of the linearized
non-cutoff Boltzmann operator was first investigated in [106, 107], but these results
were somehow controversial (see remarks in [44, 79]). In these works, the linearized
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non-cutoff Boltzmann operator with Maxwellian molecules satisfying the assumption
(3.6) with s = 1/4, was shown to be a pseudodifferential operator whose symbol in
the standard quantization satisfies to the following estimates

∃c1, c2 > 0, Re p(v, ξ) > c1(|ξ|2 + |v|2)
1
4 − c2,

|p(v, ξ)| . 〈v〉 1
2 〈ξ〉 1

2 , ∀α, β ∈ N3, |α|+ |β| ≥ 1, |∂αv ∂βξ p(v, ξ)| . 〈(v, ξ)〉
1
2 .

From a microlocal view point, these estimates are of a limited interest since the
above estimates only point out that the symbol p belongs to a gainless symbol class
without any asymptotic calculus. In the radially symmetric case, the situation is
much more favorable since the Weyl symbol of the linearized non-cutoff Boltzmann
operator with Maxwellian molecules belongs to Ss(R2d) which is a standard symbol
class enjoying nice symbolic calculus (see Lemma 2.2.18 in [88]). Indeed, the function
space Sm(R2d) which writes with Hörmander’s convention as

S
(
〈(v, ξ)〉2m, |dv|

2 + |dξ|2
〈(v, ξ)〉2

)
,

is a symbol class with gain λ = 〈(v, ξ)〉2 in the symbolic calculus

a1︸︷︷︸
∈Sm1

]w a2︸︷︷︸
∈Sm2

= a1a2︸︷︷︸
∈Sm1+m2

+
1

2i
{a1, a2}︸ ︷︷ ︸
∈Sm1+m2−1

+...

As for the linearized non-cutoff Kac operator, the two operators L1 and L2 defined
in Propositions 3.5, 3.6 account very differently in the way the operator lw(v,Dv)
acts on functions. The first part L1 is a pseudodifferential operator whose Weyl
symbol accounts for all the asymptotic expansion of the symbol l,

l1(v, ξ) ∼ c0

(
1 + |ξ|2 +

|v|2
4

)s
− d0 +

+∞∑
k=1

ck

(
1 + |ξ|2 +

|v|2
4

)s−k
,

whereas the symbol of the operator L2 belongs to the class S−∞(R2d). This shows
that L2 is a smoothing operator in any direction of the phase space

‖〈v〉N1L2f‖HN2 (Rd) . ‖f‖L2(Rd),

for all N1, N2 ∈ N, f ∈ S (Rd) and that L2 defines a compact operator on L2(Rd).

4. Phase space and functional calculus for the linearized Landau and
Boltzmann operators

We consider the non-cutoff Boltzmann collision operator (3.2) whose cross sec-
tion satisfies to the assumptions (3.4), (3.5) and (3.6). We recall that the physical
motivation for considering this specific structure of cross sections is derived from
particles interacting according to a spherical intermolecular repulsive potential of
the form

φ(ρ) = ρ−r, r > 1,

with ρ being the distance between two interacting particles. In the physical 3-
dimensional space R3, the cross section satisfies the assumptions with s = 1

r
∈]0, 1[

and γ = 1 − 4s ∈] − 3, 1[. For Coulomb potential r = 1, i.e. s = 1, the Boltzmann
operator is not well defined [125]. In this case, the Landau operator is substituted
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to the Boltzmann operator [126] in the equation (3.1). The Landau equation was
first written by Landau in 1936 [82]. It is similar to the Boltzmann equation

(3.45)

{
∂tf + v · ∇xf = QL(f, f),

f |t=0 = f0,

with a different collision operator QL. Indeed, in the case of long-distance inter-
actions, collisions occur mostly for grazing collisions. When all collisions become
concentrated near θ = 0, one obtains by the grazing collision limit asymptotic
[15, 18, 37, 40, 123] the Landau collision operator

(3.46) QL(g, f) = ∇v ·
(∫

Rd
a(v − v∗)(g(t, x, v∗)(∇vf)(t, x, v)

− (∇vg)(t, x, v∗)f(t, x, v))dv∗

)
,

where a = (ai,j)1≤i,j≤d stands for the non-negative symmetric matrix

(3.47) a(v) = (|v|2 Id−v ⊗ v)|v|γ ∈Md(R), −d < γ < +∞.
The Landau operator is understood as the limiting Boltzmann operator in the case
when s = 1 in the singularity assumption (3.6). In the work [KPS8], we confirm
this feature and prove that for Maxwellian molecules, the linearized non-cutoff Boltz-
mann operator is actually equal to the fractional linearized Landau operator with
exponent exactly given by the singularity parameter 0 < s < 1.

As for the Boltzmann operator, we consider the linearization of the Landau
equation (3.45) by considering the fluctuation

f = µd +
√
µdg,

around the Maxwellian equilibrium distribution

µd(v) = (2π)−
d
2 e−

|v|2
2 .

Since QL(µd, µd) = 0, the collision operator QL(f, f) can be split into three terms

QL(µd +
√
µdg, µd +

√
µdg) = QL(µd,

√
µdg) +QL(

√
µdg, µd) +QL(

√
µdg,
√
µdg),

whose linearized part is QL(µd,
√
µdg) +QL(

√
µdg, µd). Setting

LLg = −µ−1/2
d QL(µd, µ

1/2
d g)− µ−1/2

d QL(µ
1/2
d g, µd),

the original Landau equation (3.45) is reduced to the Cauchy problem for the fluc-
tuation

(3.48)

{
∂tg + v · ∇xg + LLg = µ

−1/2
d QL(

√
µdg,
√
µdg),

g|t=0 = g0.

As for the Boltzmann operator, the Landau collision operator is local in the time
and position variables and from now on, we consider it as acting only in the velocity
variable. The linearized operator LL is known [36, 61, 71] to be an unbounded
symmetric operator on L2(Rd

v) (acting in the velocity variable) such that its Dirichlet
form satisfies

(LLg, g)L2(Rdv) ≥ 0.

We also have

(3.49) (LLg, g)L2(Rd) = 0⇔ g = Pg,
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where P is the L2-orthogonal projection onto the space of collisional invariants

N = Span
{
µ

1/2
d , v1µ

1/2
d , ..., vdµ

1/2
d , |v|2µ1/2

d

}
= Span

{
Ψ0,Ψe1 , ...,Ψed ,

d∑
j=1

Ψ2ej

}
,

where (Ψα)α∈Nd stands for the orthonormal basis of L2(Rd) composed by the eigen-
functions of the d-dimensional harmonic oscillator

H = −∆v +
|v|2
4
,

described in Appendix (Section 2).
The following result (probably well-known) provides an explicit expression for

the linearized Landau operator with Maxwellian molecules:

Proposition 3.9. ([KPS8], Lerner, Morimoto, KPS, Xu) The linearized Lan-
dau operator with Maxwellian molecules

LLf = −µ−1/2
d QL(µd,

√
µd f)− µ−1/2

d QL(
√
µd f, µd),

acting on the Schwartz space S (Rd) is equal to

LL = (d− 1)
(
−∆v +

|v|2
4
− d

2

)
−∆Sd−1 +

[
∆Sd−1 − (d− 1)

(
−∆v +

|v|2
4
− d

2

)]
P1

+
[
−∆Sd−1 − (d− 1)

(
−∆v +

|v|2
4
− d

2

)]
P2,

where ∆Sd−1 stands for the Laplace-Beltrami operator on the unit sphere Sd−1 and Pk
the orthogonal projections onto the Hermite basis described in Appendix (Section 2).

Proof. Explicit computation of the linearized Landau operator with Maxwellian
molecules. �

The Laplace-Beltrami operator on the unit sphere Sd−1 is a sum of squares of
vector fields in Rd given by the differential operator

∆Sd−1 =
1

2

∑
1≤j,k≤d
j 6=k

(vj∂k − vk∂j)2.

In the 3-dimensional case, the Laplace-Beltrami operator on the unit sphere S2 may
be considered as a pseudodifferential operator

∆S2f = (Opwa)f =
1

(2π)3

∫
R6

ei(v−y)·ξa
(v + y

2
, ξ
)
f(y)dydξ,

whose Weyl symbol is the anisotropic symbol

(3.50) a(v, ξ) =
3

2
− |v ∧ ξ|2.

We now restrict our study to the three-dimensional setting d = 3. For

σ = (cos β sinα, sin β sinα, cosα) ∈ S2,
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with α ∈ [0, π], β ∈ [0, 2π), the real spherical harmonics Y m
l (σ) with l ∈ N, −l ≤

m ≤ l, are defined as Y 0
0 (σ) = (4π)−1/2 and for any l ≥ 1,

Y m
l (σ) =



(
2l+1
4π

)1/2

Pl(cosα) if m = 0,(
2l+1
2π

(l−m)!
(l+m)!

)1/2

Pm
l (cosα) cosmβ if m = 1, ..., l,(

2l+1
2π

(l+m)!
(l−m)!

)1/2

P−ml (cosα) sinmβ if m = −l, ...,−1,

where Pl stands for the l-th Legendre polynomial and Pm
l the associated Legendre

functions of the first kind of order l and degree m. The family (Y m
l )l≥0,−l≤m≤l

constitutes an orthonormal basis of the space L2(S2, dσ) with dσ being the surface
measure on S2. We consider for any n, l ≥ 0, −l ≤ m ≤ l,

(3.51) ϕn,l,m(v) = 2−3/4
( 2n!

Γ(n+ l + 3
2
)

)1/2( |v|√
2

)l
L

[l+ 1
2

]
n

( |v|2
2

)
e−
|v|2

4 Y m
l

( v
|v|
)
,

where L
[l+ 1

2
]

n are the generalized Laguerre polynomials. The family (ϕn,l,m)n,l≥0,|m|≤l
is an orthonormal basis of L2(R3) composed by eigenvectors of the harmonic oscil-
lator and the Laplace-Beltrami operator on the unit sphere S2,

(3.52)
(
−∆v +

|v|2
4
− 3

2

)
ϕn,l,m = (2n+ l)ϕn,l,m, −∆S2ϕn,l,m = l(l + 1)ϕn,l,m.

The space of collisional invariants may be expressed throughout this basis as

N = Span
{
ϕ0,0,0, ϕ0,1,−1, ϕ0,1,0, ϕ0,1,1, ϕ1,0,0

}
.

According to Proposition 3.9, the linearized Landau operator is diagonal in the
L2(R3) orthonormal basis (ϕn,l,m)n,l≥0,|m|≤l,

(3.53) LLϕn,l,m = λL(n, l,m)ϕn,l,m, n, l ≥ 0, −l ≤ m ≤ l,

where λL(0, 0, 0) = λL(0, 1, 0) = λL(0, 1,±1) = λL(1, 0, 0) = 0, λL(0, 2,m) = 12, and
for 2n+ l > 2,

(3.54) λL(n, l,m) = 2(2n+ l) + l(l + 1).

The linearized non-cutoff Boltzmann operator with Maxwellian molecules (3.12)
whose cross section satisfies to the assumptions (3.4), (3.5) and (3.6) with γ = 0,
is also diagonal in the very same orthonormal basis (ϕn,l,m)n,l≥0,|m|≤l. In the cutoff
case i.e. when

b(cos θ) sin θ ∈ L1([0, π/2]),

it was shown in [129] (see also [19, 28, 47]) that

(3.55) Lϕn,l,m = λB(n, l,m)ϕn,l,m, n, l ≥ 0, −l ≤ m ≤ l,

with

(3.56) λB(n, l,m) = 4π

∫ π
4

0

b(cos 2θ) sin(2θ)

×
(
1 + δn,0δl,0 − Pl(cos θ)(cos θ)2n+l − Pl(sin θ)(sin θ)2n+l

)
dθ,

where Pl are the Legendre polynomials. These algebraic relations easily extend to
the non-cutoff case and the diagonalization (3.55) holds true as well in this case.
The eigenvalues λB(n, l,m) are all non-negative and satisfy to

(3.57) λL(n, l,m) = 0⇔ λB(n, l,m) = 0.
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By using classical results on special functions [83, 115], we prove in [KPS8] (The-
orem 2.2) that the eigenvalues of the linearized non-cutoff Boltzmann operator
λB(n, l,m) have the same growth as the fractional eigenvalues of the linearized Lan-
dau operator λL(n,m, l)s: ∃c0 > 0, ∀n, l ≥ 0, −l ≤ m ≤ l,

(3.58)
1

c0

λL(n, l,m)s ≤ λB(n, l,m) ≤ c0λL(n, l,m)s.

According to (3.54) and (3.56), the eigenvalues λL(n, l,m) and λB(n, l,m) only de-
pend on the non-negative parameters 2n + l, l(l + 1). We therefore deduce from
these estimates the following result:

Theorem 3.10. ([KPS8], Lerner, Morimoto, KPS, Xu) In the case of Maxwellian
molecules γ = 0, there exists

A = a(H,∆S2) : L2(R3)→ L2(R3),

a positive bounded isomorphism defined by the functional calculus of the two com-
muting operators H and ∆S2,

∃c > 0,∀f ∈ L2(R3), c‖f‖2
L2 ≤

(
a(H,∆S2)f, f

)
L2 ≤

1

c
‖f‖2

L2 ,

such that
L = a(H,∆S2)L s

L.

By using that the Hermite functions are Schwartz functions, Proposition 3.9 and
(3.50) shows that the Weyl symbol of linearized Landau operator

LL = lw(v,Dv),

satisfies to

(3.59) l(v, ξ) = 2
(
|ξ|2 +

|v|2
4
− 3

2

)
+ |v ∧ ξ|2 − 3

2
mod S−∞(R6).

According to (3.15), (3.49), (3.50) and (3.58), we obtain the following coercive esti-
mates:

Theorem 3.11. ([KPS8], Lerner, Morimoto, KPS, Xu) In the case of Maxwellian
molecules γ = 0, the linearized non-cutoff Boltzmann operator satisfies to the fol-
lowing coercive estimates for all f ∈ S (R3),

(L f, f)L2 + ‖f‖2
L2 ∼

∥∥∥(Opw
(
|ξ|2 +

|v|2
4

)) s
2
f
∥∥∥2

L2
+
∥∥(Opw(|ξ ∧ v|2)

) s
2f
∥∥2

L2

and

‖H s
2 (1−P)f‖2

L2 + ‖(−∆S2)
s
2 (1−P)f‖2

L2

. (L f, f)L2 . ‖H s
2 (1−P)f‖2

L2 + ‖(−∆S2)
s
2 (1−P)f‖2

L2 .

Here the two operators(
Opw

(
|ξ|2 +

|v|2
4

)) s
2

and
(
Opw(|ξ ∧ v|2)

) s
2 ,

are defined through functional calculus.
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We now consider the general three-dimensional case when the molecules are not
necessarily Maxwellian, that is, when the parameter γ in the kinetic factor (3.5) may
range over the interval ]− 3,+∞[. In this case, the linearized non-cutoff Boltzmann
operator satisfies to the following weighted coercive estimates:

Theorem 3.12. ([KPS8], Lerner, Morimoto, KPS, Xu) In the case of general
molecules γ ∈] − 3,+∞[, the linearized non-cutoff Boltzmann operator satisfies to
the following coercive estimates for all f ∈ S (R3),

(L f, f)L2 ∼
∥∥∥(Opw

(
|ξ|2+

|v|2
4

)) s
2 〈v〉 γ2 (1−P)f

∥∥∥2

L2
+
∥∥(Opw(|ξ∧v|2)

) s
2 〈v〉 γ2 (1−P)f

∥∥2

L2 ,

and

‖H s
2 〈v〉 γ2 (1−P)f‖2

L2 + ‖(−∆S2)
s
2 〈v〉 γ2 (1−P)f‖2

L2

. (L f, f)L2 . ‖H s
2 〈v〉 γ2 (1−P)f‖2

L2 + ‖(−∆S2)
s
2 〈v〉 γ2 (1−P)f‖2

L2 .

Proof. These coercive estimates are a direct byproduct of the coercive esti-
mates established in the Maxwellian case (Theorem 3.11) and the link between the
Maxwellian and non-Maxwellian cases highlighted in [10]. It follows from the equiv-
alence between the norm |||·|||0 in the Maxwellian case and the norm |||·|||γ for general
molecules γ ∈]− 3,+∞[ proven in [10] (Proposition 2.4):

|||f |||γ ∼ |||〈v〉
γ
2 f |||0.

�

5. Gelfand-Shilov regularizing properties of the Boltzmann and Landau
equations

5.1. The spatially homogeneous non-cutoff Boltzmann equation. We
consider the linearized non-cutoff Boltzmann operator with Maxwellian molecules

L f = −µ−1/2
3 Q(µ3, µ

1/2
3 f)− µ−1/2

3 Q(µ
1/2
3 f, µ3),

acting on the radially symmetric Schwartz space

(3.60) Sr(R3) =
{
f ∈ S (R3), ∀v ∈ R3,∀A ∈ O(3), f(v) = f(Av)

}
=
{
f(|v|)

}
f even
f∈S (R)

,

where O(3) stands for the orthogonal group of R3. We recall that the case of
Maxwellian molecules corresponds to the case when γ = 0 in the kinetic factor
(3.5) and that the non-negative cross section b(cos θ) is assumed to be supported
where cos θ ≥ 0 and to satisfy the assumption (3.6).

When f ∈ L2(R3) is a radial function, we notice from (3.52) that the following
scalar products

(3.61) (f, ϕn,l,m)L2 = 0, n, l ≥ 0, −l ≤ m ≤ l, (l,m) 6= (0, 0),

are zero, implying that P2nf = (f, ϕn,0,0)L2ϕn,0,0. When acting on radial functions,
the linearized non-cutoff Boltzmann operator with Maxwellian molecules is therefore
given by (Corollary 3.7),

(3.62) L f =
+∞∑
n=1

λ2n(f, ϕn,0,0)L2ϕn,0,0,
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with

(3.63) λ2 = 0, λ2n =

∫ π
4

−π
4

β(θ)(1− (cos θ)2n − (sin θ)2n)dθ ≥ 0, n ≥ 2.

Following the Bobylev’s theory [19], the Cauchy problem associated to the non-cutoff
radially symmetric spatially homogeneous Boltzmann equation with Maxwellian
molecules {

∂tg + L g = µ
−1/2
3 Q(

√
µ3g,
√
µ3g),

g|t=0 = g0,

may be solved explicitly for any small initial radial L2-fluctuation around the stan-
dard Maxwellian distribution. In [19] (p. 215), Bobylev constructs explicit global
radial solutions for initial radial L2-fluctuations

f0 = µ3 +
√
µ3g0, g0 =

+∞∑
n=2

bn(0)ϕn,0,0,

satisfying

(3.64) sup
n≥2

n

√√√√|bn(0)|
√

π1/2 n!

2Γ(n+ 3
2
)
<

3

7
,

and establishes the exponential return to equilibrium for the density distribution of
the particles

f = µ3 +
√
µ3g,

in the L∞(R3
v)-norm

∃C > 0,∀t ≥ 0, ‖f(t)− µ3‖L∞ ≤ Ce−λ4t.

In [KPS9], we do not request the specific structure (3.64) and perform the con-
struction of explicit global radial solutions for any sufficiently small initial radial L2-
fluctuation. The main novelty in [KPS9] relates to the property of exponential con-
vergence to zero for the fluctuation which is established in a specific weighted space
emphasizing that the non-cutoff radially symmetric spatially homogeneous Boltz-

mann equation enjoys regularizing properties in the Gelfand-Shilov space S
1/2s
1/2s(R

3)

for any positive time. We refer the reader to Appendix (Section 3) for the definition
and the characterization of the Gelfand-Shilov regularity.

Regarding the smoothing features of the Boltzmann equation, the non-cutoff
spatially homogeneous Boltzmann equation is known to enjoy a S (Rd)-regularizing
effect for the weak solutions to the Cauchy problem [46]. Regarding the Gevrey
regularity, Ukai showed in [121] that the Cauchy problem for the Boltzmann equa-
tion has a unique local solution in Gevrey classes. Then, Desvillettes, Furioli and
Terraneo proved in [42] the propagation of Gevrey regularity for solutions of the
Boltzmann equation with Maxwellian molecules. For mild singularities γ + 2s < 1,
Morimoto and Ukai proved in [95] the G1/2s-Gevrey regularity of smooth Maxwellian
decay solutions to the Cauchy problem of the spatially homogeneous Boltzmann
equation with a modified kinetic factor Φ(|v − v∗|) = 〈v − v∗〉γ. This result for
mild singularities was recently extended by Zhang and Yin [131] for the standard
kinetic factor Φ(|v − v∗|) = |v − v∗|γ. In [96], Morimoto, Ukai, Xu and Yang have
established the property of G1/s-Gevrey smoothing effect for the weak solutions to
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the Cauchy problem associated to the linearized spatially homogeneous Boltzmann
equation with Maxwellian molecules when 0 < s < 1. On the other hand, Lekrine
and Xu proved in [84] the property of G1/2s′-Gevrey smoothing effect for the weak
solutions to the Cauchy problem associated to the radially symmetric spatially ho-
mogeneous Boltzmann equation with Maxwellian molecules for any 0 < s′ < s, when
the singularity is mild 0 < s < 1/2. This result was then completed by Glangetas
and Najeme who established in [56] the analytic smoothing effect in the case when
1/2 < s < 1.

Setting

(3.65) α2n,2m =
√
C2n

2n+2m

(∫ π
4

−π
4

β(θ)(sin θ)2n(cos θ)2mdθ
)
, n ≥ 1, m ≥ 0,

(3.66) α0,2m = −
(∫ π

4

−π
4

β(θ)(1− (cos θ)2m)dθ
)
, m ≥ 1, α0,0 = 0,

where Ck
n = n!

k!(n−k)!
stands for the binomials coefficients, we consider the infinite

system of differential equations

(3.67)


∂tb0(t) = 0,

∀n ≥ 1, ∂tbn(t) + λ2nbn(t) = α0,2nb0(t)bn(t)

+
∑
k+l=n
k≥1,l≥0

α2k,2l

√
(2k + 2l + 1)

(2k + 1)(2l + 1)
bk(t)bl(t),

where λ2n stands for the eigenvalue of the linearized radially symmetric Boltzmann
operator (3.63). This system is triangular

(3.68)



∀t ≥ 0, b0(t) = b0(0),
∀t ≥ 0, b1(t) = b1(0),

∀n ≥ 2,∀t ≥ 0, ∂tbn(t) + λ2n(1 + b0(0))bn(t)

=
∑
k+l=n
k≥1,l≥1

α2k,2l

√
(2k + 2l + 1)

(2k + 1)(2l + 1)
bk(t)bl(t),

since the (n+1)th equation is a linear differential equation for the function bn with a
right-hand-side involving only the functions (bk)1≤k≤n−1. This system may therefore
be explicitly solved while solving a sequence of linear differential equations. This
allows to solve explicitly the non-cutoff radially symmetric spatially homogeneous
Boltzmann equation:

Theorem 3.13. ([KPS9], Lerner, Morimoto, KPS, Xu) Let 0 < δ < 1 be a
positive constant. There exists a positive constant ε0 > 0 such that if g0 ∈ N⊥ is
a radial L2(R3)-function satisfying ‖g0‖L2 ≤ ε0, then the Cauchy problem for the
fluctuation associated to the non-cutoff spatially homogeneous Boltzmann equation
with Maxwellian molecules{

∂tg + L g = µ
−1/2
3 Q(

√
µ3g,
√
µ3g),

g|t=0 = g0,
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has a unique global radial solution g ∈ L∞(R+
t , L

2(R3
v)) given by

g(t) =
+∞∑
n=0

bn(t)ϕn,0,0,

where (ϕn,0,0)n∈N are the functions defined in (3.51) and where the functions (bn(t))n≥0

are the solutions of the system of differential equations (3.68) with initial conditions

∀n ≥ 0, bn(t)|t=0 = (g0, ϕn,0,0)L2 .

Furthermore, this fluctuation around the Maxwellian distribution is exponentially
convergent to zero in the following weighted L2-space

(3.69) ∀t ≥ 0, ‖e t2 L g(t)‖L2 =
( +∞∑
n=0

eλ2nt|bn(t)|2
)1/2

≤ e−
λ4
2

(1−δ)t‖g0‖L2

and belongs to the Gelfand-Shilov class S
1/2s
1/2s(R

3) for any positive time

(3.70) ∀t > 0, g(t) ∈ S1/2s
1/2s(R

3),

where 0 < s < 1 is the parameter appearing in the singularity assumption (3.6).

This result emphasizes that the non-cutoff radially symmetric spatially homo-
geneous Boltzmann equation enjoys specific Gelfand-Shilov regularizing properties
which depend directly on the value of the parameter 0 < s < 1 in the singularity
assumption (3.6). In particular, this result points out an ultra-analytic smoothing
effect for the range of parameter 1/2 < s < 1. The Gelfand-Shilov smoothing effect

∀t > 0, g(t) ∈ S1/2s
1/2s(R

3),

is a direct consequence of the a priori estimate (3.69) and the spectral asymptotics
given in Corollary 3.7. This result is sharp. It can be checked by solving explicitly
the triangular system of differential equations (3.68). Thanks to the non-resonance
condition satisfied by the eigenvalues

λ2n ≤ λ2j1 + λ2j2 + ...+ λ2jk , j1, ..., jk ≥ 2, j1 + j2 + ...+ jk = n,

we notice that when the initial fluctuation is a radial function satisfying g0 ∈ N⊥,
i.e. b0(0) = b1(0) = 0, the non-linear effects do not appear before the component b4,

(3.71) ∀t ≥ 0, b0(t) = b1(t) = 0,

(3.72) ∀t ≥ 0, b2(t) = b2(0)e−λ4t, b3(t) = b3(0)e−λ6t,

∀t ≥ 0, b4(t) =
[
b4(0)− 3

5

√
C4

8

b2(0)2

λ8 − 2λ4

(∫ π
4

−π
4

β(θ)(sin θ)4(cos θ)4dθ
)]
e−λ8t

+
3

5

√
C4

8

b2(0)2

λ8 − 2λ4

(∫ π
4

−π
4

β(θ)(sin θ)4(cos θ)4dθ
)
e−2λ4t,

and we establish by induction that for any n ≥ 1, there exist some constants γj1,j2,...,jk
such that

(3.73) ∀t ≥ 0, bn(t) =
∑

1≤k≤n

∑
j1+j2+...+jk=n

j1,...,jk≥2

γj1,j2,...,jke
−(λ2j1

+λ2j2
+...+λ2jk

)t.
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The choice of particular initial radial fluctuations allows to check explicitly that the
index 1/2s for the symmetric Gelfand-Shilov regularity is sharp.

Proof. The Boltzmann collision operator is shown to enjoy noticeable algebraic
identities:

(i) µ
−1/2
3 Q(µ

1/2
3 ϕ0,0,0, µ

1/2
3 ϕ0,0,0) = 0

(ii) µ
−1/2
3 Q(µ

1/2
3 ϕ0,0,0, µ

1/2
3 ϕm,0,0) = −

(∫ π
4

−π
4

β(θ)
(
1− (cos θ)2m

)
dθ
)
ϕm,0,0,

m ≥ 1
(iii) µ

−1/2
3 Q(µ

1/2
3 ϕn,0,0, µ

1/2
3 ϕm,0,0)

=

√
2n+ 2m+ 1

(2n+ 1)(2m+ 1)

√
C2n

2n+2m

(∫ π
4

−π
4

β(θ)(sin θ)2n(cos θ)2mdθ
)
ϕn+m,0,0,

n ≥ 1, m ≥ 0

By using these algebraic identities, we deduce that the radial function

(3.74) g(t) =
+∞∑
n=0

bn(t)ϕn,0,0,

is a solution to the non-cutoff spatially homogeneous Boltzmann equation with
Maxwellian molecules {

∂tg + L g = µ
−1/2
3 Q(

√
µ3g,
√
µ3g),

g|t=0 = g0,

if and only if the functions (bn(t))n≥0 are the solutions to the infinite triangular
system of differential equations (3.68) with initial conditions

∀n ≥ 0, bn(t)|t=0 = (g0, ϕn,0,0)L2 .

The above algebraic identities are also used to derive sharp trilinear estimates for
any given f, g, h ∈ Sr(R3) ∩N⊥, n ≥ 2, t ≥ 0,

|(µ−1/2
3 Q(µ

1/2
3 f, µ

1/2
3 g), etL Snh)L2|

≤ C‖e t2 L Sn−2f‖L2‖e t2 LH s
2 Sn−2g‖L2‖e t2 LH s

2 Snh‖L2 ,

where L is the linearized non-cutoff Boltzmann operator, H = −∆v + |v|2
4

the 3-
dimensional harmonic oscillator and Sn the orthogonal projector onto the n + 1
lowest energy levels

Snf =
n∑
k=0

(f, ϕk,0,0)L2ϕk,0,0, e
t
2
L Snf =

n∑
k=0

e
1
2
λ2kt(f, ϕk,0,0)L2ϕk,0,0.

These trilinear estimates allow to establish the following a priori estimate

(3.75)
d

dt
‖e t2 L (SNg)(t)‖2

L2 +
N∑
n=2

λ2ne
λ2nt|bn(t)|2

≤ C‖e t2 L (SN−2g)(t)‖L2

N∑
n=2

λ2ne
λ2nt|bn(t)|2,
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implying that

∀N ≥ 0,∀t ≥ 0, ‖e t2 L (SNg)(t)‖L2 ≤ ε,

when g0 ∈ N⊥, ‖g0‖L2 ≤ ε � 1. For small enough initial L2-fluctuation around
the standard Maxwellian distribution, the function (3.74) is then the unique global
radial solution of the non-cutoff radially symmetric spatially homogeneous Boltz-
mann equation belonging to the space L∞(R+

t , L
2(R3

v)). Furthermore, this function
is shown to satisfy the following weighted L2-estimate

∀t ≥ 0, ‖e t2 L g(t)‖L2 =
( +∞∑
n=0

eλ2nt|bn(t)|2
)1/2

≤ e−
λ4
2

(1−δ)t‖g0‖L2 ,

implying its S
1/2s
1/2s(R

3) Gelfand-Shilov regularity for any positive time. �

5.2. The spatially homogeneous Landau equation. We consider the spa-
tially homogeneous Landau equation with Maxwellian molecules

(3.76)

{
∂tf = QL(f, f),

f |t=0 = f0.

We recall that this corresponds to the case when the parameter γ = 0 in the defi-
nition of the function (3.47) defining the Landau collision operator (3.46). At least
formally, it is easily checked that the mass, the momentum and the kinetic energy
are conserved quantities by this evolution equation

(3.77)

∫
Rd
f(t, v)dv = M,

∫
Rd
f(t, v)vdv = MV,

1

2

∫
Rd
f(t, v)|v|2dv = E,

when t ≥ 0, with M > 0, V ∈ Rd, E > 0. The Cauchy problem (3.76) associated to
the spatially homogeneous Landau equation with Maxwellian molecules and some
quantitative features of the solutions were thoroughly studied by Villani in [124].
The Propositions 4 and 6 in [124] show that, for each non-negative measurable initial
density distribution f0 having finite mass and finite energy

(3.78) f0 ≥ 0, 0 <

∫
Rd
f0(v)dv = M < +∞, 0 <

1

2

∫
Rd
f0(v)|v|2dv = E < +∞,

the Cauchy problem (3.76) admits a unique global classical solution f(t, v) defined
for all t ≥ 0. Furthermore, this solution is shown to be a non-negative bounded
smooth function

f(t) ≥ 0, f(t) ∈ L∞(Rd
v) ∩ C∞(Rd

v),

for any positive time t > 0. As in Section 4, we consider a close-to-equilibrium
framework

f = µd +
√
µdg,

around the Maxwellian equilibrium distribution and we study the Cauchy problem
for the fluctuation

(3.79)

{
∂tg + LLg = µ

−1/2
d QL(

√
µdg,
√
µdg),

g|t=0 = g0.

By elaborating on the solutions constructed by Villani in [124], we aim at studying
the Gelfand-Shilov regularizing properties of the Cauchy problem (3.79). For the
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sake of simplicity, we may assume without loss of generality that the density distri-
bution satisfies (3.77) with V = 0. Furthermore, by changing the unknown function

f to f̃ as

(3.80) f =
M

αd
f̃
( ·
α

)
, α =

√
2E

Md
,

we may reduce the study to the case when

(3.81)

∫
Rd
f(t, v)dv = 1,

∫
Rd
f(t, v)vdv = 0,

∫
Rd
f(t, v)|v|2dv = d, t ≥ 0.

Let f0 = µd +
√
µdg0 ≥ 0, with g0 ∈ L1(Rd

v) ∩ L2(Rd
v), be a non-negative initial

density distribution having finite mass and finite energy such that

(3.82)

∫
Rd
f0(v)dv = 1,

∫
Rd
f0(v)vdv = 0,

∫
Rd
f0(v)|v|2dv = d.

Such an initial density distribution is rapidly decreasing with a finite temperature
tail

1

2
≤ 1

T (f0)
= sup

{
β ≥ 0 :

∫
Rd
f0(v)eβ

|v|2
2 dv < +∞

}
,

since

(3.83)

∫
Rd
f0(v)e

|v|2
4 dv =

1

(2π)
d
4

∫
Rd

(
√
µd(v) + g0(v))dv < +∞,

when g0 ∈ L1(Rd
v). The analysis of the evolution of the temperature tail led in [124]

(Section 6, p. 972-974) shows that∫
Rd
f0(v)e

|v|2
4 dv < +∞⇒ ∀t > 0,

∫
Rd
f(t, v)e

|v|2
4 dv < +∞.

This implies that the fluctuation f = µd +
√
µdg ≥ 0, around the Maxwellian

equilibrium distribution defined by

(3.84) g(t) = µ
−1/2
d (f(t)− µd) ∈ L1(Rd

v) ∩ C∞(Rd
v) ⊂ S ′(Rd

v), t > 0,

belongs to L1(Rd
v) and therefore remains a tempered distribution for all t > 0. The

following result shows that the Cauchy problem (3.79) enjoys the same Gelfand-
Shilov regularizing properties as the Cauchy problem defined by the evolution equa-
tion associated to the harmonic oscillator:

Theorem 3.14. ([KPS11], Morimoto, KPS, Xu) Let f0 = µd+
√
µdg0 ≥ 0, with

g0 ∈ L1(Rd
v)∩L2(Rd

v), be a non-negative measurable function having finite mass and
finite energy such that

(3.85)

∫
Rd
f0(v)dv = 1,

∫
Rd
f0(v)vdv = 0,

∫
Rd
f0(v)|v|2dv = d.

Let f(t) = µd +
√
µdg(t), with g(t) ∈ L1(Rd

v) ∩ C∞(Rd
v) when t > 0, be the unique

global classical solution of the Cauchy problem associated to the spatially homoge-
neous Landau equation with Maxwellian molecules{

∂tf = QL(f, f),

f |t=0 = f0,
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constructed by Villani in [124]. Then, there exists a positive constant δ > 0 such
that

∃C > 0,∀t ≥ 0, ‖etδHg(t)‖L2 =
(∑
k≥0

eδ(2k+d)t‖Pkg(t)‖2
L2

)1/2

≤ Ced(d−1)t(‖g0‖L2 +1),

with H = −∆v+
|v|2
4
, where ‖·‖L2 stands for the L2(Rd

v)-norm and Pk are the orthogo-
nal projections onto the Hermite basis defined in Appendix (Section 2). In particular,

this implies that the fluctuation belongs to the Gelfand-Shilov space S
1/2
1/2(Rd) for any

positive time

∀t > 0, g(t) ∈ S1/2
1/2(Rd).

Remark. The orthogonal projection Pk : S ′(Rd
v) → S (Rd

v) is well-defined on tem-
pered distributions since the Hermite functions are Schwartz functions.

This result shows that the Cauchy problem (3.79) enjoys an ultra-analytic regu-
larizing effect in the Gevrey class G1/2(Rd) both for the fluctuation and its Fourier
transform in the velocity variable for any positive time

g(t), ĝ(t) ∈ G1/2(Rd), t > 0.

It is consistent with the link between the linearized Boltzmann and Landau operators
unveiled by Theorem 3.10 and the result of Gelfand-Shilov regularizing smoothing
effect proven for the radially symmetric spatially homogeneous Boltzmann equation
(Theorem 3.13). The existence, the uniqueness, the Sobolev regularity and the
polynomial decay of the weak solutions to the Cauchy problem (3.76) have been
studied by Desvillettes and Villani in [45] (Theorem 6) for hard potentials, that is,
when the parameter satisfies 0 < γ ≤ 1 in the assumption (3.47). Under rather weak
assumptions on the initial datum, e.g. f0 ∈ L1

2+δ, with δ > 0, they prove that there
exists a weak solution to the Cauchy problem such that f ∈ C∞([t0,+∞[,S (Rd

v)),
for all t0 > 0, and for all t0 > 0, s > 0, m ∈ N,

sup
t≥t0
‖f(t, ·)‖Hm

s
< +∞.

The Gevrey regularity f(t, ·) ∈ Gσ, for any σ > 1, for all positive time t > 0 of the
solution to the Cauchy problem (3.76) with an initial datum f0 with finite mass,
energy and entropy satisfying

∀t0 > 0, m ≥ 0, sup
t≥t0
‖f(t, ·)‖Hm

γ
< +∞,

was later established by Chen, Li and Xu in [30] for the hard potential case and the
Maxwellian molecules case. Under the same assumptions on the solution, this result
was later extended to analytic regularity [32]:

∀t0 > 0,∃c0, C > 0,∀t ≥ t0, ‖ec0(−∆v)1/2

f(t, ·)‖L2 ≤ C(t+ 1),

in the hard potential case and the Maxwellian molecules case. Regarding specifi-
cally the Maxwellian molecules case γ = 0, Morimoto and Xu established in [98]
(Theorem 1.1) the ultra-analyticity

∀ 0 < t < T, f(t, ·) ∈ G1/2(Rd),

∀ 0 < T0 < T, ∃c0 > 0,∀ 0 < t ≤ T0, ‖e−c0t∆vf(t, ·)‖L2 ≤ e
d
2
t‖f0‖L2 ,
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of any positive weak solution f(t, x) > 0 to the Cauchy problem (3.76) satisfying

f ∈ L∞(]0, T [, L2(Rd) ∩ L1
2(Rd)),

with 0 < T ≤ +∞, with an initial datum satisfying f0 ∈ L2(Rd)∩L1
2(Rd). The result

of Theorem 3.14 allows to specify further the property of ultra-analytic smoothing
proven by Morimoto and Xu [98] in the close-to-equilibrium framework. This result
points out the specific decay of the fluctuation both in the velocity and its dual
Fourier variable. As for the Boltzmann equation, the Gelfand-Shilov regularity seems
relevant to describe the regularizing properties of the Landau equation in the close-
to-equilibrium framework.

6. Comments and perspectives

There are still many open questions on the regularizing properties of the non-
cutoff Boltzmann equation. We aim in future works at studying whether this
Gelfand-Shilov smoothing effect proven for the radially symmetric spatially homo-
geneous non-cutoff Boltzmann equation with Maxwellian molecules still holds in the
non-radially symmetric case, or more generally for non-Maxwellian molecules. It
would be also most interesting to study the possible Gevrey (ultra-analytic) smooth-
ing effect in the position variable for the spatially inhomogeneous non-cutoff Boltz-
mann equation.



CHAPTER 4

Appendix

1. Wick calculus

We refer the reader to the works [85, 87, 88] for comprehensive expositions of
the Wick calculus. The main property of the Wick quantization is its property of
positivity, i.e., that non-negative Hamiltonians get quantized in non-negative oper-
ators

a ≥ 0⇒ aWick ≥ 0.

This is not the case for the Weyl, nor the standard quantization1. The wave packets
transform of a Schwartz function u ∈ S (Rn) is defined as

Wu(y, η) = (u, ϕy,η)L2(Rn) = 2n/4
∫
Rn
u(x)e−π|x−y|

2

e−2iπ(x−y)·ηdx, (y, η) ∈ R2n,

with

ϕy,η(x) = 2n/4e−π|x−y|
2

e2iπ(x−y)·η, x ∈ Rn.

The mapping u 7→ Wu is continuous from S (Rn) to S (R2n) and isometric from
L2(Rn) to L2(R2n) (not onto). The following reconstruction formula holds

(4.1) ∀u ∈ S (Rn),∀x ∈ Rn, u(x) =

∫
R2n

Wu(y, η)ϕy,η(x)dydη.

The Wick quantization of an Hamiltonian a is defined as

(4.2) aWick = W ∗aW,

according to the commutative diagram

L2(R2n)
a−−−−−−−−−−−−→

(multiplication by a)
L2(R2n)

W

x yW ∗
L2(Rn) −−−→

aWick
L2(Rn)

where W ∗ stands for the adjoint of the wave packets transform. The Wick quanti-
zation is a positive quantization

(4.3) a ≥ 0⇒ aWick ≥ 0.

In particular, real Hamiltonians get quantized by formally self-adjoint operators and
L∞(R2n) symbols define bounded operators on L2(Rn),

(4.4) ‖aWick‖L(L2(Rn)) ≤ ‖a‖L∞(R2n).

1An example of a non-negative Hamiltonian getting quantized in the Weyl quantization in an
operator failing non-negativity is given in [85].
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Furthermore, the Wick and Weyl quantizations of a same symbol are linked by the
following identities

(4.5) aWick = ãw = aw + r(a)w,

with

(4.6) ã(X) =

∫
R2n

a(X + Y )e−2π|Y |22ndY , X ∈ R2n,

and

(4.7) r(a)(X) =

∫ 1

0

∫
R2n

(1− θ)a′′(X + θY )Y 2e−2π|Y |22ndY dθ, X ∈ R2n.

The normalization chosen here for the Weyl quantization is

(4.8) (awu)(x) =

∫
R2n

e2iπ(x−y)·ξa
(x+ y

2
, ξ
)
u(y)dydξ.

Furthermore, we have the following composition formula

(4.9) aWickbWick =
[
ab− 1

4π
∇a · ∇b+

1

4iπ
{a, b}

]Wick

+ S,

with ‖S‖L(L2(Rn)) ≤ cn‖a‖L∞γ2(b), when a ∈ L∞(R2n) and b is a smooth symbol
satisfying

γ2(b) = sup
X∈R2n,

T∈R2n,|T |=1

|b′′(X)T 2| < +∞.

The positive constant cn > 0 only depends on the dimension and the notation {a, b}
denotes the Poisson bracket

{a, b} =
∂a

∂ξ
· ∂b
∂x
− ∂a

∂x
· ∂b
∂ξ
.

2. The harmonic oscillator

The standard Hermite functions (φn)n∈N are defined for x ∈ R,

φn(x) =
(−1)n√
2nn!
√
π
e
x2

2
dn

dxn
(e−x

2

) =
1√

2nn!
√
π

(
x− d

dx

)n
(e−

x2

2 ) =
an+φ0√
n!
,

where a+ is the creation operator

a+ =
1√
2

(
x− d

dx

)
.

The family (φn)n∈N is an orthonormal basis of L2(R). We set for n ∈ N, α =
(αj)1≤j≤d ∈ Nd, x ∈ R, v ∈ Rd,

ψn(x) = 2−1/4φn(2−1/2x) =
1√
n!

(x
2
− d

dx

)n
ψ0,

Ψα(v) =
d∏
j=1

ψαj(vj), Ek = Span{Ψα}α∈Nd,|α|=k,

with |α| = α1 + · · · + αd. The family (Ψα)α∈Nd is an orthonormal basis of L2(Rd)
composed by the eigenfunctions of the d-dimensional harmonic oscillator

(4.10) H = −∆v +
|v|2
4

=
∑
k≥0

(d
2

+ k
)
Pk, Id =

∑
k≥0

Pk,
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where Pk is the orthogonal projection onto the vector subspace Ek whose dimension
is
(
k+d−1
d−1

)
. The eigenvalue d/2 is simple in all dimensions and E0 is generated by the

function

Ψ0(v) =
1

(2π)
d
4

e−
|v|2

4 = µ
1/2
d (v),

where µd is the Maxwellian distribution

µd(v) = (2π)−
d
2 e−

|v|2
2 , v ∈ Rd.

3. Gelfand-Shilov regularity

We refer the reader to the works [55, 57, 102, 116] and the references herein for
extensive expositions of the Gelfand-Shilov regularity. The Gelfand-Shilov spaces
Sµν (Rd), with µ, ν > 0, µ + ν ≥ 1, are defined as the spaces of smooth functions
f ∈ C∞(Rd) satisfying to the estimates

∃A,C > 0, |∂αv f(v)| ≤ CA|α|(α!)µe−
1
A
|v|1/ν , v ∈ Rd, α ∈ Nd,

or, equivalently

∃A,C > 0, sup
v∈Rd
|vβ∂αv f(v)| ≤ CA|α|+|β|(α!)µ(β!)ν , α, β ∈ Nd.

These Gelfand-Shilov spaces Sµν (Rd) may also be characterized as the spaces of
Schwartz functions f ∈ S (Rd) satisfying to the estimates

∃C > 0, ε > 0, |f(v)| ≤ Ce−ε|v|
1/ν

, v ∈ Rd, |f̂(ξ)| ≤ Ce−ε|ξ|
1/µ

, ξ ∈ Rd.

In particular, we notice that Hermite functions belong to the symmetric Gelfand-

Shilov space S
1/2
1/2(Rd). More generally, the symmetric Gelfand-Shilov spaces Sµµ(Rd),

with µ ≥ 1/2, can be nicely characterized through the decomposition into the Her-
mite basis (Ψα)α∈Nd , see e.g. [116] (Proposition 1.2),

(4.11) f ∈ Sµµ(Rd)⇔ f ∈ L2(Rd), ∃t0 > 0, ‖et0H1/2µ

f‖L2 < +∞
⇔ f ∈ L2(Rd), ∃t0 > 0,

∥∥((f,Ψα)L2 exp(t0|α|
1

2µ )
)
α∈Nd

∥∥
l2(Nd)

< +∞,

where (Ψα)α∈Nd stands for the Hermite basis defined in the previous section and
where

H = −∆v +
|v|2
4
,

is the d-dimensional harmonic oscillator. The Cauchy problem defined by the evo-
lution equation associated to the harmonic oscillator

(4.12)

{
∂tf +Hf = 0,

f |t=0 = f0 ∈ L2(Rd),

enjoys nice regularizing properties. The smoothing effect for the solutions to this
Cauchy problem is naturally described in term of the Gelfand-Shilov regularity. The
characterization (4.11) proves that there is a regularizing effect for the solutions to

the Cauchy problem (4.12) in the symmetric Gelfand-Shilov space S
1/2
1/2(Rd) for any
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positive time, whereas the smoothing effect for the solutions to the Cauchy problem
defined by the evolution equation associated to the fractional harmonic oscillator

(4.13)

{
∂tf +Hsf = 0,

f |t=0 = f0 ∈ L2(Rd),

with 0 < s < 1, occurs for any positive time in the symmetric Gelfand-Shilov space

S
1/2s
1/2s(R

d).
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[61] Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys. 231 (2002), 391-434
[62] L. He, Well-posedness of spatially homogeneous Boltzmann equation with full-range interaction,

Comm. Math. Phys. 312 (2012), 447-476
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[114] J. Sjöstrand, Resolvent estimates for non-selfadjoint operators via semigroups, Around the

research of Vladimir Maz’ya III, International Mathematical Series, 13 (2010), 359-384
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[119] F. Trèves, A new method of proof of the subelliptic estimates, Comm. Pure Appl. Math. 24

(1971), 71-115
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