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Abstract. Some recent works have shown that the heat equation posed on the whole
Euclidean space is null-controllable in any positive time if and only if the control subset
is a thick set. This necessary and sufficient condition for null-controllability is linked to
some uncertainty principles, as the Logvinenko-Sereda theorem, which give limitations
on the simultaneous concentration of a function and its Fourier transform. In the present
work, we prove new uncertainty principles for finite combinations of Hermite functions.
We establish an analogue of the Logvinenko-Sereda theorem with an explicit control of
the constant with respect to the energy level of the Hermite functions as eigenfunctions
of the harmonic oscillator for thick control subsets. This spectral inequality allows to
derive the null-controllability in any positive time from thick control regions for para-
bolic equations associated with a general class of hypoelliptic non-selfadjoint quadratic
differential operators. More generally, the spectral estimate for finite combinations of
Hermite functions is actually shown to hold for any measurable control subset of posi-
tive Lebesgue measure, and some quantitative estimates of the constant with respect to
the energy level are given for two other classes of control subsets including the case of
non-empty open control subsets.

1. Introduction

The classical uncertainty principle was established by Heisenberg. It points out the
fundamental problem in quantum mechanics that the position and the momentum of
particles cannot be both determined explicitly, but only in a probabilistic sense with an
uncertainty. More generally, uncertainty principles are mathematical results that give
limitations on the simultaneous concentration of a function and its Fourier transform.
When using the following normalization for the Fourier transform

(1.1) f̂(ξ) =

∫
Rn
f(x)e−ix·ξdx, ξ ∈ Rn,

the mathematical formulation of the Heisenberg’s uncertainty principle can be stated in a
directional version as

(1.2) inf
a∈R

(∫
Rn

(xj − a)2|f(x)|2dx
)

inf
b∈R

( 1

(2π)n

∫
Rn

(ξj − b)2|f̂(ξ)|2dξ
)
≥ 1

4
‖f‖4L2(Rn),

for all f ∈ L2(Rn) and 1 ≤ j ≤ n. It shows that a function and its Fourier transform
cannot both be arbitrarily localized. Moreover, the inequality (1.2) is an equality if and
only if f is of the form

f(x) = g(x1, ..., xj−1, xj+1, ..., xn)e−ibxje−α(xj−a)2 ,

where g is a function in L2(Rn−1), α > 0, and a and b are real constants for which the two
infima in (1.2) are achieved. There are various uncertainty principles of different nature.
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We refer in particular the reader to the survey article by Folland and Sitaram [18], and the
book of Havin and Jöricke [22] for detailed presentations and references for these topics.

Another formulation of uncertainty principles is that a non-zero function and its Fourier
transform cannot both have small supports. For instance, a non-zero L2(R)-function whose
Fourier transform is compactly supported must be an analytic function with a discrete zero
set and therefore a full support. This leads to the notion of weak annihilating pairs as well
as the corresponding quantitative notion of strong annihilating ones:

Definition 1.1 (Annihilating pairs). Let S,Σ be two measurable subsets of Rn.

- The pair (S,Σ) is said to be a weak annihilating pair if the only function f ∈
L2(Rn) with supp f ⊂ S and supp f̂ ⊂ Σ is zero f = 0.

- The pair (S,Σ) is said to be a strong annihilating pair if there exists a positive
constant C = C(S,Σ) > 0 such that for all f ∈ L2(Rn),

(1.3)

∫
Rn
|f(x)|2dx ≤ C

(∫
Rn\S

|f(x)|2dx+

∫
Rn\Σ

|f̂(ξ)|2dξ
)
.

It can be readily checked that a pair (S,Σ) is a strong annihilating pair if and only
if there exists a positive constant D = D(S,Σ) > 0 such that for all f ∈ L2(Rn) with

supp f̂ ⊂ Σ,

(1.4) ‖f‖L2(Rn) ≤ D‖f‖L2(Rn\S).

As already mentioned above in the one-dimensional setting, the pair (S,Σ) is a weak
annihilating one if S and Σ are compact sets. More generally, Benedicks has shown in [5]
that (S,Σ) is a weak annihilating pair if S and Σ are sets of finite Lebesgue measure
|S|, |Σ| < +∞. Under this assumption, the result of Amrein-Berthier [3] actually shows

that the pair (S,Σ) is a strong annihilating one. The estimate C(S,Σ) ≤ κeκ|S||Σ| (which is
sharp up to numerical constant κ > 0) has been established by Nazarov [37] in dimension
n = 1. This result was extended to the multi-dimensional case by the second author [27],

with the quantitative estimate C(S,Σ) ≤ κeκ(|S||Σ|)1/n holding if in addition one of the two
subsets of finite Lebesgue measure S or Σ is convex.

An exhaustive description of all strong annihilating pairs seems for now totally out
of reach. We refer the reader for instance to the works [2, 8, 9, 12, 14, 45] for a large
variety of results and techniques available as well as for examples of weak annihilating
pairs that are not strong annihilating ones. However, there is a complete description of
all the support sets S forming a strong annihilating pair with any bounded spectral set Σ.
This description is given by the Logvinenko-Sereda theorem [35]:

Theorem 1.2 (Logvinenko-Sereda). Let S,Σ ⊂ Rn be measurable subsets with Σ bounded.

Denoting S̃ = Rn \ S, the following assertions are equivalent:

- The pair (S,Σ) is a strong annihilating pair

- The subset S̃ is thick, that is, there exists a cube K ⊂ Rn with sides parallel to
coordinate axes and a positive constant 0 < γ ≤ 1 such that

∀x ∈ Rn, |(K + x) ∩ S̃| ≥ γ|K| > 0,

where |A| denotes the Lebesgue measure of the measurable set A.

It is interesting to observe that if (S,Σ) is a strong annihilating pair for some bounded
subset Σ, then S makes up a strong annihilating pair with every bounded subset Σ, but
the above constants C(S,Σ) > 0 and D(S,Σ) > 0 do depend on Σ. In order to use this
result in the control theory of partial differential equations, it is essential to understand
how the positive constant D(S,Σ) > 0 depends on the Lebesgue measure of the bounded
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set Σ. This question was answered by Kovrijkine [28, 29] who established the following
quantitative estimates:

Theorem 1.3 (Kovrijkine). There exists a universal positive constant Cn > 0 depending

only on the dimension n ≥ 1 such that if S̃ is a γ-thick set at scale L > 0, that is, for all
x ∈ Rn,

(1.5) |S̃ ∩ (x+ [0, L]n)| ≥ γLn,

with 0 < γ ≤ 1, then we have for all R > 0 and f ∈ L2(Rn) with supp f̂ ⊂ [−R,R]n,

(1.6) ‖f‖L2(Rn) ≤
(Cn
γ

)Cn(1+LR)
‖f‖L2(S̃).

Thanks to this explicit dependence of the constant with respect to the parameter R > 0
in (1.6), Egidi and Veselić [15], and Wang, Wang, Zhang and Zhang [49] have independently
established that the heat equation

(1.7)

{
(∂t −∆x)f(t, x) = u(t, x)1lω(x), x ∈ Rn, t > 0,
f |t=0 = f0 ∈ L2(Rn),

is null-controllable in any positive time T > 0 from a measurable control subset ω ⊂ Rn
if and only if this subset ω is thick in Rn. The notion of null-controllability is defined as
follows:

Definition 1.4 (Null-controllability). Let P be a closed operator on L2(Rn) which is the
infinitesimal generator of a strongly continuous semigroup (e−tP )t≥0 on L2(Rn), T > 0
and ω be a measurable subset of Rn. The equation

(1.8)

{
(∂t + P )f(t, x) = u(t, x)1lω(x), x ∈ Rn, t > 0,
f |t=0 = f0 ∈ L2(Rn),

is said to be null-controllable from the set ω in time T > 0 if, for any initial datum
f0 ∈ L2(Rn), there exists u ∈ L2((0, T )× Rn), supported in (0, T )× ω, such that the mild
(or semigroup) solution of (1.8) satisfies f |t=T = 0.

By the Hilbert Uniqueness Method, see [11, Theorem 2.44] or [34], the null controllability
of the equation (1.8) is equivalent to the (final state) observability of the adjoint system

(1.9)

{
(∂t + P ∗)g(t, x) = 0, x ∈ Rn, t > 0,
g|t=0 = g0 ∈ L2(Rn),

where P ∗ stands for the L2(Rn)-adjoint of P . This notion of observability is defined as
follows:

Definition 1.5 (Observability). Let T > 0 and ω be a measurable subset of Rn. Equation
(1.9) is said to be observable from the set ω in time T > 0 if there exists a positive constant
CT > 0 such that, for any initial datum g0 ∈ L2(Rn), the mild (or semigroup) solution of
(1.9) satisfies

(1.10)

∫
Rn

|g(T, x)|2dx ≤ CT

T∫
0

(∫
ω

|g(t, x)|2dx
)
dt.

Following [15] or [49], the necessity of the thickness property of the control subset for
the null-controllability in any positive time is a consequence of a quasimodes construction;
whereas the sufficiency is derived in [15] from an abstract observability result obtained by
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an adapted Lebeau-Robbiano method [31] and established by the first and third authors
with some contributions of Luc Miller1:

Theorem 1.6. [4, Theorem 2.1]. Let Ω be an open subset of Rn, ω be a measurable
subset of Ω, (πk)k∈N∗ be a family of orthogonal projections defined on L2(Ω), (e−tA)t≥0

be a strongly continuous contraction semigroup on L2(Ω); c1, c2, a, b, t0,m > 0 be positive
constants with a < b. If the following spectral inequality

(1.11) ∀g ∈ L2(Ω), ∀k ≥ 1, ‖πkg‖L2(Ω) ≤ ec1k
a‖πkg‖L2(ω),

and the following dissipation estimate

(1.12) ∀g ∈ L2(Ω), ∀k ≥ 1,∀0 < t < t0, ‖(1− πk)(e−tAg)‖L2(Ω) ≤
1

c2
e−c2t

mkb‖g‖L2(Ω),

hold, then there exists a positive constant C > 1 such that the following observability
estimate holds

(1.13) ∀T > 0,∀g ∈ L2(Ω), ‖e−TAg‖2L2(Ω) ≤ C exp
( C

T
am
b−a

)∫ T

0
‖e−tAg‖2L2(ω)dt.

The proof of the above result is inspired by the works [38, 39]. In the statement of [4,
Theorem 2.1], the subset ω is supposed to be open in Ω. However, the proof given in [4]
works as well when the subset ω is only assumed to be measurable. Notice that the
assumptions in the above statement do not require that the orthogonal projections (πk)k≥1

are spectral projections onto the eigenspaces of the infinitesimal generator A, which is
allowed to be non-selfadjoint.

According to the above result, there are two key ingredients to derive a result of null-
controllability, or equivalently a result of observability, while using Theorem 1.6: a spectral
inequality (1.11) and a dissipation estimate (1.12). For the heat equation, the orthogonal
projections used are the frequency cutoff operators given by the orthogonal projections
onto the closed vector subspaces

(1.14) Ek = {f ∈ L2(Rn) : supp f̂ ⊂ [−k, k]n},

for k ≥ 1. With this choice, the dissipation estimate readily follows from the explicit
formula

(1.15) ̂(et∆xg)(t, ξ) = ĝ(ξ)e−t|ξ|
2
, t ≥ 0, ξ ∈ Rn,

whereas the spectral inequality is given by the sharp formulation of the Logvinenko-Sereda
theorem (1.6). Notice that the power 1 for the parameter R in (1.6) and the power 2 for the
term |ξ| in (1.15) account for the fact that Theorem 1.6 can be applied with the parameters
a = 1, b = 2 that satisfy the required condition 0 < a < b. It is therefore essential that
the power of the parameter R in the exponent of the estimate (1.6) is strictly less than 2.
As there is still a gap between the cost of the localization (a = 1) given by the spectral
inequality and its compensation by the dissipation estimate (b = 2), it is interesting to
notice that we could have expected that the null-controllability of the heat equation could
have held under weaker assumptions than the thickness property on the control subset,
by allowing some higher costs for localization with some parameters 1 < a < 2, but the
Logvinenko-Sereda theorem actually shows that this is not the case. Indeed, if the spectral
inequality holds with a parameter 1 < a < 2, the pair (Rn \ω, [−k, k]n) has to be a strong
annihilating one and ω has to be thick according to Theorem 1.2.

1Université Paris-Ouest, Nanterre La Défense, UFR SEGMI, Bâtiment G, 200 Av. de la République,
92001 Nanterre Cedex, France (luc.miller@math.cnrs.fr)
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Theorem 1.6 does not only apply with the use of frequency cutoff projections and a
dissipation estimate induced by some Gevrey-type regularizing effects2. Other regularities
than the Gevrey one can be taken into account. In the previous work [4] by the first and
third authors, Theorem 1.6 is used for a general class of accretive hypoelliptic quadratic
operators qw generating some strongly continuous contraction semigroups (e−tq

w
)t≥0 en-

joying some Gelfand-Shilov regularizing effects. The definition and standard properties
related to Gelfand-Shilov regularity3 are recalled in Appendix (Section 5.1). As recalled in
this appendix, the Gelfand-Shilov regularity is characterized by specific exponential decays
of the functions and their Fourier transforms; and in the symmetric case, can be read on
the exponential decay of the Hermite coefficients of the functions in their expansions in
the L2(Rn)-Hermite basis (Φα)α∈Nn . Explicit formulas and some reminders of basic facts
about Hermite functions are given in Section 3.1.1. The class of hypoelliptic quadratic
operators whose description will be given in Section 4 enjoys some Gelfand-Shilov regu-
larizing effects ensuring that the following dissipation estimate holds [4, Proposition 4.1]:

(1.16) ∃C0 > 1,∃t0 > 0,∀t > 0,∀k ≥ 0,∀f ∈ L2(Rn),

‖(1− πk)(e−tq
w
f)‖L2(Rn) ≤ C0e

−δ(t)k‖f‖L2(Rn),

with

(1.17) δ(t) =
inf(t, t0)2k0+1

C0
> 0, t > 0, 0 ≤ k0 ≤ 2n− 1,

where

(1.18) Pkg =
∑
α∈Nn,
|α|=k

〈g,Φα〉L2(Rn)Φα, k ≥ 0,

with |α| = α1 + · · · + αn, denotes the orthogonal projection onto the kth energy level
associated with the harmonic oscillator

H = −∆x + |x|2 =
+∞∑
k=0

(2k + n)Pk,

and

(1.19) πk =

k∑
j=0

Pj , k ≥ 0,

denotes the orthogonal projection onto the (k+ 1)th first energy levels. The above integer
0 ≤ k0 ≤ 2n − 1 whose definition is given in (4.11) is a structural parameter intrinsically
associated to the Weyl symbol of the quadratic operator. In order to apply Theorem 1.6,
we need a spectral inequality for finite combinations of Hermite functions of the type

(1.20) ∃C > 1, ∀k ≥ 0,∀f ∈ L2(Rn), ‖πkf‖L2(Rn) ≤ CeCk
a‖πkf‖L2(ω),

with a < 1, where πk is the orthogonal projection (1.19). In [4, Proposition 4.2], such a
spectral inequality is established with a = 1

2 when the control subset ω is an open subset

2Following [40], the Gevrey-type spaces As(Rn), with s > 0, are defined as the spaces of smooth
functions f ∈ C∞(Rn) satisfying

∃C > 1,∀α ∈ Nn, ‖∂αx f‖L2(Rn) ≤ C
1+|α|(α!)s.

Thanks to Sobolev embeddings, the L2-norm can be replaced by the L∞-one in the above estimates.
3As explained in Section 4, this notion of regularity plays a key role to obtain the results of null-

controllability in Theorem 4.1 as an application of abstract results established in [4], but is not used to
derive the uncertainty principles in Theorem 2.1.
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of Rn satisfying the following geometric condition:

(1.21) ∃δ, r > 0,∀y ∈ Rn , ∃y′ ∈ ω,
{
B(y′, r) ⊂ ω,
|y − y′| < δ,

where B(y′, r) denotes the open Euclidean ball in Rn centered at y′ with radius r > 0. It
allows to derive the null-controllability of parabolic equations associated to accretive qua-
dratic operators with zero singular spaces in any positive time T > 0 from any open subset
ω of Rn satisfying (1.21). The above geometric condition was introduced by Le Rousseau
and Moyano in [33] and was shown to be sufficient for the null-controllability of the Kol-
mogorov equation in any positive time.

In the present work, we study under which geometric conditions on the control sub-
set ω ⊂ Rn, the spectral inequality

(1.22) ∀k ≥ 0, ∃Ck(ω) > 0,∀f ∈ L2(Rn), ‖πkf‖L2(Rn) ≤ Ck(ω)‖πkf‖L2(ω),

holds and how the geometric properties of the set ω relate to the possible growth of the
positive constant Ck(ω) > 0 with respect to the energy level when k → +∞. The main
results contained in this article provide some quantitative upper bounds on the positive
constant Ck(ω) > 0 with respect to the energy level for three different classes of measurable
subsets :

- non-empty open subsets in Rn,
- measurable sets in Rn verifying the condition

(1.23) lim inf
R→+∞

|ω ∩B(0, R)|
|B(0, R)|

= lim
R→+∞

(
inf
r≥R

|ω ∩B(0, r)|
|B(0, r)|

)
> 0,

where B(0, R) denotes the open Euclidean ball in Rn centered at 0 with radius
R > 0,

- thick measurable sets in Rn.

We observe that in the first two classes, the measurable control subsets are allowed to
have gaps containing balls with radii tending to infinity, whereas in the last class there
must be a bound on such radii. We shall see that the quantitative upper bounds obtained
for the two first classes (Theorem 2.1, estimates (i) and (ii)) are not sufficient to obtain
any result of null-controllability for the class of hypoelliptic quadratic operators studied in
Section 4. Regarding the third one, the quantitative upper bound (Theorem 2.1, estimate
(iii)) is an analogue of the Logvinenko-Sereda theorem for finite combinations of Hermite
functions. As an application of this third result, we extend in Theorem 4.1 the result
of null-controllability for parabolic equations associated to accretive quadratic operators
with zero singular spaces from any thick set ω ⊂ Rn in any positive time T > 0.

2. Uncertainty principles for finite combinations of Hermite functions

Let (Φα)α∈Nn be the n-dimensional Hermite functions whose definitions are recalled in
Section 3.1.1 and

(2.1) EN = SpanC{Φα}α∈Nn,|α|≤N ,

be the finite dimensional vector space spanned by all the Hermite functions with |α| ≤ N .
As the Lebesgue measure of the zero set of a non-zero analytic function on C is zero,

the L2-norm ‖ · ‖L2(ω) on any measurable set ω ⊂ R of positive measure |ω| > 0 defines

a norm on the finite dimensional vector space EN = πN (L2(Rn)), with πN the orthogonal
projection defined in (1.19). As a consequence of the Remez inequality, we check in
Appendix (Section 5.2) that this result holds true as well in the multi-dimensional case
when ω ⊂ Rn, with n ≥ 1, is a measurable subset of positive Lebesgue measure |ω| > 0.
By equivalence of norms in finite dimension, for any measurable set ω ⊂ Rn of positive
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Lebesgue measure |ω| > 0 and all N ∈ N, there exists a positive constant CN (ω) > 0
depending on ω and N such that the following spectral inequality holds

(2.2) ∀f ∈ L2(Rn), ‖πNf‖L2(Rn) ≤ CN (ω)‖πNf‖L2(ω).

We aim at studying how the geometric properties of the set ω relate to the possible growth
of the positive constant CN (ω) > 0 with respect to the energy level.

The main results of the present work are given by the following uncertainty principles
for finite combinations of Hermite functions:

Theorem 2.1. The following spectral estimates hold:

(i) If ω is a non-empty open subset of Rn, then there exists a positive constant C = C(ω) >
1 such that

∀N ∈ N, ∀f ∈ L2(Rn), ‖πNf‖L2(Rn) ≤ Ce
1
2
N ln(N+1)+CN‖πNf‖L2(ω).

(ii) If the measurable subset ω ⊂ Rn satisfies the condition (1.23), then there exists a
positive constant C = C(ω) > 1 such that

∀N ∈ N,∀f ∈ L2(Rn), ‖πNf‖L2(Rn) ≤ CeCN‖πNf‖L2(ω).

(iii) If the measurable subset ω ⊂ Rn is γ-thick at scale L > 0 in the sense defined in
(1.5), then there exist a positive constant C = C(L, γ, n) > 0 depending on the dimension
n ≥ 1 and the parameters γ, L > 0, and a universal positive constant κ = κ(n) > 0 only
depending on the dimension such that

∀N ∈ N, ∀f ∈ L2(Rn), ‖πNf‖L2(Rn) ≤ C
(κ
γ

)κL√N
‖πNf‖L2(ω).

According to the above result, the control on the growth of the positive constant
CN (ω) > 0 with respect to the energy level for an arbitrary non-empty open subset ω
of Rn, or when the measurable subset ω ⊂ Rn verifies condition (1.23), is not sufficient
to satisfy the estimates (1.20) needed to obtain some results of null-controllability and
observability for the parabolic equations associated to the class of hypoelliptic quadratic
operators studied in Section 4. As the one-dimensional harmonic heat equation is known
from [13, Proposition 5.1], see also [36], to not be null-controllable, nor observable, in any
time T > 0 from a half-line and as the harmonic oscillator obviously belongs to the class of
hypoelliptic quadratic operators studied in Section 4, we observe that spectral estimates
of the type

∃0 < a < 1, ∃C > 1,∀N ∈ N, ∀f ∈ L2(Rn), ‖πNf‖L2(Rn) ≤ CeCN
a‖πNf‖L2(ω),

cannot hold for an arbitrary non-empty open subset ω of Rn, nor when the measurable
subset ω ⊂ Rn verifies condition (1.23), since Theorem 1.6 together with (1.16) would then
imply the null-controlllability and the observability of the one-dimensional harmonic heat
equation from a half-line. This would be in contradiction with the results of [13, 36].

On the other hand, when the measurable subset ω ⊂ Rn is γ-thick at scale L > 0, the
above spectral estimate (iii) is an analogue for finite combinations of Hermite functions of
the sharpened version of the Logvinenko-Sereda theorem proved by Kovrijkine in [28, 29]
with a similar dependence of the constant with respect to the parameters 0 < γ ≤ 1 and
L > 0 as in (1.6). Notice that the growth in

√
N is of the order of the square root of

the largest eigenvalue of the harmonic oscillator H = −∆x + |x|2 on the spectral vector
subspace EN , whereas the growth in R in (1.6) is also of order of the square root of the
largest spectral value of the Laplace operator −∆x on the spectral vector subspace

ER = {f ∈ L2(Rn) : supp f̂ ⊂ [−R,R]n}.
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This is in agreement with what is usually expected to hold for that type of spectral
estimates, see [32].

The spectral estimate (i) for arbitrary non-empty open subsets is proved in Section 3.2.1.
Its proof uses some estimates on Hermite functions together with the Remez inequality.
The spectral estimate (ii) for measurable subsets satisfying condition (1.23) is proved in
Section 3.2.2 and follows from similar arguments as the ones used in Section 3.2.1. The
spectral estimate (iii) for thick sets is proved in Section 3.2.3.

3. Proof of Theorem 2.1

3.1. Preliminary results.

3.1.1. Hermite functions. This section is devoted to set some notations and recall basic
facts about Hermite functions. The standard Hermite functions (φk)k≥0 are defined for
x ∈ R,

(3.1) φk(x) =
(−1)k√
2kk!
√
π
e
x2

2
dk

dxk
(e−x

2
) =

1√
2kk!
√
π

(
x− d

dx

)k
(e−

x2

2 ) =
ak+φ0√
k!
,

where a+ is the creation operator

a+ =
1√
2

(
x− d

dx

)
.

The Hermite functions satisfy the identity

(3.2) ∀k ≥ 0, φ̂k = (−i)k
√

2πφk,

when using the normalization of the Fourier transform (1.1). The L2-adjoint of the creation
operator is the annihilation operator

a− = a∗+ =
1√
2

(
x+

d

dx

)
.

The following identities hold

(3.3) [a−, a+] = 1, − d2

dx2
+ x2 = 2a+a− + 1,

(3.4) ∀k ∈ N, a+φk =
√
k + 1φk+1, ∀k ∈ N, a−φk =

√
kφk−1 (= 0 if k = 0),

(3.5) ∀k ∈ N,
(
− d2

dx2
+ x2

)
φk = (2k + 1)φk,

where N denotes the set of non-negative integers. The family (φk)k∈N is an orthonormal
basis of L2(R). We set for α = (αj)1≤j≤n ∈ Nn, x = (xj)1≤j≤n ∈ Rn,

(3.6) Φα(x) =

n∏
j=1

φαj (xj).

The family (Φα)α∈Nn is an orthonormal basis of L2(Rn) composed of the eigenfunctions
of the n-dimensional harmonic oscillator

(3.7) H = −∆x + |x|2 =
∑
k≥0

(2k + n)Pk, Id =
∑
k≥0

Pk,

where Pk is the orthogonal projection onto SpanC{Φα}α∈Nn,|α|=k, with |α| = α1 + · · ·+αn.
The following estimates on Hermite functions are a key ingredient for the proof of the

spectral inequalities (i) and (ii) in Theorem 2.1. This result was established by Bonami,
Karoui and the second author in the proof of [6, Theorem 3.2], and is recalled here for the
sake of completeness of the present work:
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Lemma 3.1. The one-dimensional Hermite functions (φk)k∈N defined in (3.1) satisfy the
following estimates:

∀k ∈ N,∀a ≥
√

2k + 1,

∫
|x|≥a

|φk(x)|2dx ≤ 2k+1

k!
√
π
a2k−1e−a

2
.

Proof. For any k ∈ N, the kth Hermite polynomial function

(3.8) Hk(x) = (−1)kex
2
( d
dx

)k
(e−x

2
),

has degree k and is an even (respectively odd) function when k is an even (respectively
odd) non-negative integer. The first Hermite polynomial functions are given by

(3.9) H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2.

The kth Hermite polynomial function Hk admits k distinct real simple roots. More specif-
ically, we recall from [47, Section 6.31] that the k roots of Hk denoted −x[ k

2
],k, ..., −x1,k,

x1,k, ..., x[ k
2

],k, satisfy

(3.10) −
√

2k + 1 ≤ −x[ k
2

],k < ... < −x1,k < 0 < x1,k < ... < x[ k
2

],k ≤
√

2k + 1,

with [k2 ] the integer part of k
2 , when k ≥ 2 is an even positive integer. On the other hand,

the k roots of Hk denoted −x[ k
2

],k, ..., −x1,k, x0,k, x1,k, ..., x[ k
2

],k, satisfy

(3.11) −
√

2k + 1 ≤ −x[ k
2

],k < ... < −x1,k < x0,k = 0 < x1,k < ... < x[ k
2

],k ≤
√

2k + 1,

when k is an odd positive integer. We denote by zk the largest non-negative root of the
kth Hermite polynomial function Hk, that is, with the above notations zk = x[ k

2
],k, when

k ≥ 1. Relabeling temporarily (aj)1≤j≤k the k roots of Hk such that

a1 < a2 < ... < ak.

The classical formula

(3.12) ∀k ∈ N∗, H ′k(x) = 2kHk−1(x),

see e.g. [47, Section 5.5], together with Rolle’s Theorem imply that Hk−1 admits exactly
one root in each of the k−1 intervals (aj , aj+1), with 1 ≤ j ≤ k−1, when k ≥ 2. According
to (3.9), (3.10) and (3.11), it implies in particular that for all k ≥ 1,

(3.13) 0 = z1 < z2 < ... < zk ≤
√

2k + 1.

Next, we claim that

(3.14) ∀k ≥ 1,∀|x| ≥ zk, |Hk(x)| ≤ 2k|x|k.

To that end, we first observe that

(3.15) ∀k ≥ 1,∀x ≥ zk, Hk(x) ≥ 0,

since the leading coefficient of Hk ∈ R[X] is given by 2k > 0. As the polynomial Hk is an
even or odd function, we notice from (3.15) that it is actually sufficient to establish that

(3.16) ∀k ≥ 1,∀x ≥ zk, Hk(x) ≤ 2kxk,

to prove the claim. The estimates (3.16) are proved by recurrence on k ≥ 1. Indeed, we
observe from (3.9) that

∀x ≥ z1 = 0, H1(x) = 2x.
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Let k ≥ 2 such that the estimate (3.16) is satisfied at rank k − 1. It follows from (3.12)
for all x ≥ zk,

(3.17) Hk(x) = Hk(x)−Hk(zk) =

∫ x

zk

H ′k(t)dt = 2k

∫ x

zk

Hk−1(t)dt

≤ 2k

∫ x

zk

2k−1tk−1dt = 2k(xk − zkk) ≤ 2kxk,

since 0 ≤ zk−1 < zk. This ends the proof of the claim (3.14). We deduce from (3.9), (3.13)
and (3.14) that

(3.18) ∀k ∈ N,∀|x| ≥
√

2k + 1, |Hk(x)| ≤ 2k|x|k.

It follows from (3.1), (3.8) and (3.18) that

(3.19) ∀k ∈ N, ∀|x| ≥
√

2k + 1, |φk(x)| ≤ 2
k
2

√
k!π

1
4

|x|ke−
x2

2 .

We observe that

(3.20) ∀a > 0,

∫ +∞

a
e−t

2
dt ≤ a−1e−

a2

2

∫ +∞

a
te−

t2

2 dt = a−1e−a
2

and

(3.21) ∀α > 1, ∀a >
√
α− 1,

∫ +∞

a
tαe−t

2
dt ≤ aα−1e−

a2

2

∫ +∞

a
te−

t2

2 dt = aα−1e−a
2
,

as the function (a,+∞) 3 t 7→ tα−1e−
t2

2 ∈ (0,+∞) is decreasing on (a,+∞). We deduce
from (3.19), (3.20) and (3.21) that

(3.22) ∀k ∈ N,∀a ≥
√

2k + 1,

∫
|x|≥a

|φk(x)|2dx ≤ 2k

k!π
1
2

∫
|x|≥a

x2ke−x
2
dx

=
2k+1

k!π
1
2

∫
x≥a

x2ke−x
2
dx ≤ 2k+1

k!π
1
2

a2k−1e−a
2
.

This ends the proof of Lemma 3.1. �

The following lemma is also instrumental in the proof of Theorem 2.1:

Lemma 3.2. With EN = SpanC{Φα}α∈Nn,|α|≤N , there exists a positive constant cn > 0
depending only on the dimension n ≥ 1 such that

∀N ∈ N,∀f ∈ EN ,
∫
|x|≥cn

√
N+1
|f(x)|2dx ≤ 1

4
‖f‖2L2(Rn),

where | · | denotes the Euclidean norm on Rn.

Proof. Let N ∈ N. We deduce from Lemma 3.1 and the Cauchy-Schwarz inequality that
the one-dimensional Hermite functions (φk)k∈N satisfy for all 0 ≤ k, l ≤ N , a ≥

√
2N + 1,

(3.23)

∫
|t|≥a
|φk(t)φl(t)|dt ≤

(∫
|t|≥a
|φk(t)|2dt

) 1
2
(∫
|t|≥a
|φl(t)|2dt

) 1
2

≤ 2
k+l
2

+1

√
π
√
k!
√
l!
ak+l−1e−a

2
.
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In order to extend these estimates in the multi-dimensional setting, we first notice that
for all a > 0, α, β ∈ Nn, |α|, |β| ≤ N ,

(3.24)

∫
|x|≥a

|Φα(x)Φβ(x)|dx ≤
n∑
j=1

∫
|xj |≥ a√

n

|Φα(x)Φβ(x)|dx.

On the other hand, we notice from (3.23) and (3.24) that∫
|xj |≥ a√

n

|Φα(x)Φβ(x)|dx

=
(∫
|xj |≥ a√

n

|φαj (xj)φβj (xj)|dxj
) ∏

1≤k≤n
k 6=j

(∫
R
|φαk(xk)φβk(xk)|dxk

)

≤
(∫
|xj |≥ a√

n

|φαj (xj)φβj (xj)|dxj
) ∏

1≤k≤n
k 6=j

‖φαk‖L2(R)‖φβk‖L2(R),

implies that for all a ≥
√
n
√

2N + 1, α, β ∈ Nn, |α|, |β| ≤ N ,

(3.25)

∫
|x|≥a

|Φα(x)Φβ(x)|dx ≤
n∑
j=1

∫
|xj |≥ a√

n

|φαj (xj)φβj (xj)|dxj

≤ 2

√
n

π

e−
a2

n

a

n∑
j=1

1√
αj !
√
βj !

(√ 2

n
a
)αj+βj

,

since (φk)k∈N is an orthonormal basis of L2(R). For any f =
∑
|α|≤N γαΦα ∈ EN and

a ≥
√
n
√

2N + 1, we deduce from (3.25) that

(3.26)

∫
|x|≥a

|f(x)|2dx =
∑
|α|≤N
|β|≤N

γαγβ

∫
|x|≥a

Φα(x)Φβ(x)dx

≤
∑
|α|≤N
|β|≤N

|γα||γβ|
∫
|x|≥a

|Φα(x)Φβ(x)|dx ≤ 2

√
n

π

e−
a2

n

a

∑
|α|≤N, |β|≤N

1≤j≤n

|γα||γβ|√
αj !
√
βj !

(√ 2

n
a
)αj+βj

.

For any α = (α1, ..., αn) ∈ Nn, we denote α′ = (α2, ..., αn) ∈ Nn−1 when n ≥ 2. We observe
that

(3.27)
∑
|α|≤N
|β|≤N

|γα||γβ|√
α1!
√
β1!

(√ 2

n
a
)α1+β1

=
∑
|α′|≤N
|β′|≤N

( ∑
0≤α1≤N−|α′|
0≤β1≤N−|β′|

|γα1,α′ ||γβ1,β′ |√
α1!
√
β1!

(√ 2

n
a
)α1+β1)

and

(3.28)
∑

0≤α1≤N−|α′|
0≤β1≤N−|β′|

|γα1,α′ ||γβ1,β′ |√
α1!
√
β1!

(√ 2

n
a
)α1+β1

≤
( ∑

0≤α1≤N−|α′|
0≤β1≤N−|β′|

|γα1,α′ |2|γβ1,β′ |2
) 1

2
( ∑

0≤α1≤N−|α′|
0≤β1≤N−|β′|

(2a2

n )α1+β1

α1!β1!

) 1
2
,
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thanks to the Cauchy-Schwarz inequality. On the other hand, we notice that

(3.29)
( ∑

0≤α1≤N−|α′|
0≤β1≤N−|β′|

(2a2

n )α1+β1

α1!β1!

) 1
2 ≤ 4N

( ∑
0≤α1≤N−|α′|
0≤β1≤N−|β′|

( a
2

2n)α1+β1

α1!β1!

) 1
2 ≤ 4Ne

a2

2n .

It follows from (3.27), (3.28) and (3.29) that

(3.30)
∑
|α|≤N
|β|≤N

|γα||γβ|√
α1!
√
β1!

(√ 2

n
a
)α1+β1

≤ 4Ne
a2

2n

∑
|α′|≤N
|β′|≤N

( ∑
0≤α1≤N−|α′|
0≤β1≤N−|β′|

|γα1,α′ |2|γβ1,β′ |2
) 1

2
.

The Cauchy-Schwarz inequality implies that

(3.31)
∑
|α′|≤N
|β′|≤N

( ∑
0≤α1≤N−|α′|
0≤β1≤N−|β′|

|γα1,α′ |2|γβ1,β′ |2
) 1

2

≤
( ∑
|α′|≤N
|β′|≤N

( ∑
0≤α1≤N−|α′|
0≤β1≤N−|β′|

|γα1,α′ |2|γβ1,β′ |2
)) 1

2
( ∑
|α′|≤N
|β′|≤N

1
) 1

2
.

By using that the family (Φα)α∈Nn is an orthonormal basis of L2(Rn) and that the number
of solutions to the equation α2 + ... + αn = k, with k ≥ 0, n ≥ 2 and unknown α′ =
(α2, ..., αn) ∈ Nn−1, is given by

(
k+n−2
n−2

)
, we deduce from (3.31) that

(3.32)
∑
|α′|≤N
|β′|≤N

( ∑
0≤α1≤N−|α′|
0≤β1≤N−|β′|

|γα1,α′ |2|γβ1,β′ |2
) 1

2 ≤
( ∑
|α|≤N

|γα|2
)( ∑
|α′|≤N

1
)

=
( N∑
k=0

(
k + n− 2

n− 2

))
‖f‖2L2(Rn) ≤ 2n−2

( N∑
k=0

2k
)
‖f‖2L2(Rn) ≤ 2N+n−1‖f‖2L2(Rn),

since
(
k+n−2
n−2

)
≤
∑k+n−2

j=0

(
k+n−2

j

)
= 2k+n−2. It follows from (3.30) and (3.32) that

(3.33)
∑
|α|≤N
|β|≤N

|γα||γβ|√
α1!
√
β1!

(√ 2

n
a
)α1+β1

≤ 2n−18Ne
a2

2n ‖f‖2L2(Rn),

when n ≥ 2. Notice that the very same estimate holds true as well in the one-dimensional
case n = 1. We deduce from (3.26) and (3.33) that for all N ∈ N, f ∈ EN , a ≥

√
n
√

2N + 1,

(3.34)

∫
|x|≥a

|f(x)|2dx ≤ 2nn
3
2

√
π

e−
a2

2n

a
8N‖f‖2L2(Rn).

It follows from (3.34) that there exists a positive constant cn > 0 depending only on the
dimension n ≥ 1 such that

∀N ∈ N,∀f ∈ EN ,
∫
|x|≥cn

√
N+1
|f(x)|2dx ≤ 1

4
‖f‖2L2(Rn).

This ends the proof of Lemma 3.2.
�
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3.1.2. Bernstein type estimates for Hermite functions. This section is devoted to the proof
of the following Bernstein type estimates for Hermite functions:

Proposition 3.3. With EN = SpanC{Φα}α∈Nn,|α|≤N , finite combinations of Hermite func-
tions satisfy the following estimates:

(i) ∀N ∈ N, ∀f ∈ EN ,∀0 < δ ≤ 1,∀β ∈ Nn,

‖∂βxf‖L2(Rn) ≤ e
e

2δ2 (2δ)|β||β|!eδ−1
√
N‖f‖L2(Rn).

(ii) ∀N ∈ N, ∀f ∈ EN ,∀0 < δ <
1

32n
,∀β ∈ Nn,

‖eδ|x|2∂βxf‖L2(Rn) + ‖eδ|Dx|2xβf‖L2(Rn) ≤
2n

1− 32nδ
2
N
2 2

3
2
|β|√|β|!‖f‖L2(Rn).

Proof. We notice that

(3.35) xj =
1√
2

(aj,+ + aj,−), ∂xj =
1√
2

(aj,− − aj,+),

with

aj,+ =
1√
2

(xj − ∂xj ), aj,− =
1√
2

(xj + ∂xj ).

By denoting (ej)1≤j≤n the canonical basis of Rn, we obtain from (3.4) and (3.35) that for
all N ∈ N, f ∈ EN ,

‖aj,+f‖2L2(Rn) =
∥∥∥aj,+( ∑

|α|≤N

〈f,Φα〉L2Φα

)∥∥∥2

L2(Rn)

=
∥∥∥ ∑
|α|≤N

√
αj + 1〈f,Φα〉L2Φα+ej

∥∥∥2

L2(Rn)
=
∑
|α|≤N

(αj + 1)|〈f,Φα〉L2 |2

≤ (N + 1)
∑
|α|≤N

|〈f,Φα〉L2 |2 = (N + 1)‖f‖2L2(Rn)

and

‖aj,−f‖2L2(Rn) =
∥∥∥aj,−( ∑

|α|≤N

〈f,Φα〉L2Φα

)∥∥∥2

L2(Rn)

=
∥∥∥ ∑
|α|≤N

√
αj〈f,Φα〉L2Φα−ej

∥∥∥2

L2(Rn)
=
∑
|α|≤N

αj |〈f,Φα〉L2 |2

≤ N
∑
|α|≤N

|〈f,Φα〉L2 |2 = N‖f‖2L2(Rn).

It follows that for all N ∈ N, f ∈ EN ,

(3.36) ‖xjf‖L2(Rn) ≤
1√
2

(‖aj,+f‖L2(Rn) + ‖aj,−f‖L2(Rn)) ≤
√

2N + 2‖f‖L2(Rn)

and

(3.37) ‖∂xjf‖L2(Rn) ≤
1√
2

(‖aj,+f‖L2(Rn) + ‖aj,−f‖L2(Rn)) ≤
√

2N + 2‖f‖L2(Rn).

We notice from (3.4) and (3.35) that

∀N ∈ N, ∀f ∈ EN ,∀α, β ∈ Nn, xα∂βxf ∈ EN+|α|+|β|,
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with xα = xα1
1 ...xαnn and ∂βx = ∂β1x1 ...∂

βn
xn . We deduce from (3.36) that for all N ∈ N,

f ∈ EN , and α, β ∈ Nn, with α1 ≥ 1,

‖xα∂βxf‖L2(Rn) = ‖x1( xα−e1∂βxf︸ ︷︷ ︸
∈EN+|α|+|β|−1

)‖L2(Rn) ≤
√

2
√
N + |α|+ |β|‖xα−e1∂βxf‖L2(Rn).

By iterating the previous estimates, we readily obtain from (3.36) and (3.37) that for all
N ∈ N, f ∈ EN , α, β ∈ Nn,

(3.38) ‖xα∂βxf‖L2(Rn) ≤ 2
|α|+|β|

2

√
(N + |α|+ |β|)!

N !
‖f‖L2(Rn).

We recall the following basic estimates,

(3.39) ∀k ∈ N∗, kk ≤ ekk!, ∀t, A > 0, tA ≤ AAet−A, ∀t > 0, ∀k ∈ N, tk ≤ etk!,

see e.g. [41] (formulas (0.3.12) and (0.3.14)). Let 0 < δ ≤ 1 be a positive constant. When
N ≤ |α|+ |β|, we deduce from (3.39) that

(3.40) 2
|α|+|β|

2

√
(N + |α|+ |β|)!

N !
≤ 2

|α|+|β|
2 (N + |α|+ |β|)

|α|+|β|
2 ≤ 2|α|+|β|(|α|+ |β|)

|α|+|β|
2

≤ (2
√
e)|α|+|β|

√
(|α|+ |β|)! = (2

√
e)|α|+|β|

(|α|+ |β|)!√
(|α|+ |β|)!

≤ e
e

2δ2 (2δ)|α|+|β|(|α|+ |β|)!.

On the other hand, when N ≥ |α|+ |β|, we deduce from (3.39) that

2
|α|+|β|

2

√
(N + |α|+ |β|)!

N !
≤ 2

|α|+|β|
2 (N + |α|+ |β|)

|α|+|β|
2(3.41)

≤ (2δ)|α|+|β|(δ−1
√
N)|α|+|β| ≤ (2δ)|α|+|β|(|α|+ |β|)|α|+|β|eδ−1

√
N−|α|−|β|

≤ (2δ)|α|+|β|(|α|+ |β|)!eδ−1
√
N .

It follows from (3.38), (3.40) and (3.41) that for all N ∈ N, f ∈ EN , α, β ∈ Nn,

(3.42) ‖xα∂βxf‖L2(Rn) ≤ e
e

2δ2 (2δ)|α|+|β|(|α|+ |β|)!eδ−1
√
N‖f‖L2(Rn).

This provides in particular the following Bernstein type estimates

(3.43) ∀N ∈ N,∀f ∈ EN , ∀0 < δ ≤ 1,∀β ∈ Nn,

‖∂βxf‖L2(Rn) ≤ e
e

2δ2 (2δ)|β||β|!eδ−1
√
N‖f‖L2(Rn).

On the other hand, we deduce from (3.38) that for all N ∈ N, f ∈ EN , α, β ∈ Nn,

(3.44) ‖xα∂βxf‖L2(Rn) ≤ 2
|α|+|β|

2

√
(N + |α|+ |β|)!

N !
‖f‖L2(Rn)

≤ 2
N
2 2|α|+|β|

√
(|α|+ |β|)!‖f‖L2(Rn),

since

(k1 + k2)!

k1!k2!
=

(
k1 + k2

k1

)
≤

k1+k2∑
j=0

(
k1 + k2

j

)
= 2k1+k2 .

We observe from (3.44) that for all N ∈ N, f ∈ EN , δ > 0, α, β ∈ Nn,

(3.45)
∥∥∥δ|α|x2α

α!
∂βxf

∥∥∥
L2(Rn)

≤ 2
N
2 δ|α|22|α|+|β|

α!

√
(2|α|+ |β|)!‖f‖L2(Rn)

≤ 2
N
2 δ|α|24|α|+ 3

2
|β| |α|!

α!

√
|β|!‖f‖L2(Rn) ≤ 2

N
2 (16nδ)|α|2

3
2
|β|√|β|!‖f‖L2(Rn),
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since
(2|α|+ |β|)! ≤ 22|α|+|β|(2|α|)!|β|! ≤ 24|α|+|β|(|α|!)2|β|!

and

(3.46) |α|! ≤ n|α|α!.

The last estimate is a direct consequence of the generalized Newton formula

∀x = (x1, ..., xn) ∈ Rn,∀N ∈ N,
( n∑
j=1

xj

)N
=

∑
α∈Nn,|α|=N

N !

α!
xα.

By using that the number of solutions to the equation α1 + ...+αn = k, with k ≥ 0, n ≥ 1
and unknown α = (α1, ..., αn) ∈ Nn, is given by

(
k+n−1
n−1

)
, it follows from (3.45) that for all

N ∈ N, f ∈ EN , 0 < δ < 1
32n , β ∈ Nn,

‖eδ|x|2∂βxf‖L2(Rn) ≤
∑
α∈Nn

∥∥∥δ|α|x2α

α!
∂βxf

∥∥∥
L2(Rn)

(3.47)

≤ 2
N
2

( ∑
α∈Nn

(16nδ)|α|
)

2
3
2
|β|√|β|!‖f‖L2(Rn)

= 2
N
2

( +∞∑
k=0

(
k + n− 1

n− 1

)
(16nδ)k

)
2

3
2
|β|√|β|!‖f‖L2(Rn)

≤ 2n−1

1− 32nδ
2
N
2 2

3
2
|β|√|β|!‖f‖L2(Rn),

since
(
k+n−1
n−1

)
≤
∑k+n−1

j=0

(
k+n−1

j

)
= 2k+n−1. By noticing from (3.2) that f ∈ EN if and

only if f̂ ∈ EN , we deduce from the Parseval formula and (3.47) that for all N ∈ N, f ∈ EN ,
0 < δ < 1

32n , β ∈ Nn,

(3.48) ‖eδ|Dx|2xβf‖L2(Rn) =
1

(2π)
n
2

‖eδ|ξ|2∂βξ f̂‖L2(Rn)

≤ 1

(2π)
n
2

2n−1

1− 32nδ
2
N
2 2

3
2
|β|√|β|!‖f̂‖L2(Rn) =

2n−1

1− 32nδ
2
N
2 2

3
2
|β|√|β|!‖f‖L2(Rn).

This ends the proof of Proposition 3.3. �

3.2. Proofs of the uncertainty principles for Hermite functions. This section is
devoted to the proof of Theorem 2.1.

3.2.1. Case when the control subset is a non-empty open set. Let ω ⊂ Rn be a non-empty
open set. There exist x0 ∈ Rn and r > 0 such that the control subset ω contains the
following open Euclidean ball

(3.49) B(x0, r) ⊂ ω.
We recall from (2.2) that

(3.50) ∀N ∈ N, ∃CN (ω) > 0, ∀f ∈ EN , ‖f‖L2(Rn) ≤ CN (ω)‖f‖L2(ω),

with EN = πN (L2(Rn)). On the other hand, it follows from Lemma 3.2 that

(3.51) ∀N ∈ N,∀f ∈ EN , ‖f‖L2(Rn) ≤
2√
3
‖f‖L2(B(0,cn

√
N+1)).

Let N ∈ N and f ∈ EN . According to (3.1) and (3.6), there exists a complex polynomial
function P ∈ C[X1, ..., Xn] of degree at most N such that

(3.52) ∀x ∈ Rn, f(x) = P (x)e−
|x|2
2 .
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We observe from (3.51) and (3.52) that

(3.53) ‖f‖2L2(Rn) ≤
4

3

∫
B(0,cn

√
N+1)

|P (x)|2e−|x|2dx ≤ 4

3
‖P‖2

L2(B(0,cn
√
N+1))

and

(3.54) ‖P‖2L2(B(x0,r))
=

∫
B(x0,r)

|P (x)|2e−|x|2e|x|2dx ≤ e(|x0|+r)2‖f‖2L2(B(x0,r))
.

We aim at deriving an estimate of the term ‖P‖L2(B(0,cn
√
N+1)) by ‖P‖L2(B(x0,r)) when

N � 1 is sufficiently large. Let N be an integer such that cn
√
N + 1 > 2|x0| + r. It

implies the inclusion B(x0, r) ⊂ B(0, cn
√
N + 1). To that end, we may assume that P is a

non-zero polynomial function. By using polar coordinates centered at x0, we notice that

B(x0, r) = {x0 + tσ : 0 ≤ t < r, σ ∈ Sn−1}

and

(3.55) ‖P‖2L2(B(x0,r))
=

∫
Sn−1

∫ r

0
|P (x0 + tσ)|2tn−1dtdσ.

As cn
√
N + 1 > 2|x0| + r, we notice that there exists a continuous function ρN : Sn−1 →

(0,+∞) such that

(3.56) B(0, cn
√
N + 1) = {x0 + tσ : 0 ≤ t < ρN (σ), σ ∈ Sn−1}

and

(3.57) ∀σ ∈ Sn−1, 0 < |x0|+ r < cn
√
N + 1− |x0| < ρN (σ) < cn

√
N + 1 + |x0|.

It follows from (3.56) and (3.57) that

(3.58) ‖P‖2
L2(B(0,cn

√
N+1)\B(x0,

r
2

))
=

∫
Sn−1

∫ ρN (σ)

r
2

|P (x0 + tσ)|2tn−1dtdσ

≤ (cn
√
N + 1 + |x0|)n−1

∫
Sn−1

∫ ρN (σ)

r
2

|P (x0 + tσ)|2dtdσ.

By noticing that

t→ P
(
x0 + (

ρN (σ)

2
+
r

4
)σ + tσ

)
,

is a polynomial function of degree at most N , we deduce from (3.57) and Lemma 5.1 used
in the one-dimensional case n = 1 that

∫ ρN (σ)

r
2

|P (x0 + tσ)|2dt =

∫ ρN (σ)

2
− r

4

−(
ρN (σ)

2
− r

4
)

∣∣∣P(x0 +
(ρN (σ)

2
+
r

4

)
σ + tσ

)∣∣∣2dt
(3.59)

≤ 24N+2

3

4(ρN (σ)− r
2)

r
2

2−
r
2

4(ρN (σ)− r
2

)
r
2

4(ρN (σ)− r
2

)

2N ∫ −ρN (σ)

2
+ 3r

4

−(
ρN (σ)

2
− r

4
)

∣∣∣P(x0 +
(ρN (σ)

2
+
r

4

)
σ + tσ

)∣∣∣2dt
≤ 24N+2

3

4(ρN (σ)− r
2)

r
2

2−
r
2

4(ρN (σ)− r
2

)
r
2

4(ρN (σ)− r
2

)

2N ∫ r

r
2

|P (x0 + tσ)|2dt

≤ 212N+n+4

3r2N+n

(
cn
√
N + 1 + |x0| −

r

2

)2N+1
∫ r

r
2

|P (x0 + tσ)|2tn−1dt.
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It follows from (3.58) and (3.59) that

(3.60) ‖P‖2
L2(B(0,cn

√
N+1)\B(x0,

r
2

))
≤ (cn

√
N + 1 + |x0|)n−1

× 212N+n+4

3r2N+n

(
cn
√
N + 1 + |x0| −

r

2

)2N+1
∫
Sn−1

∫ r

r
2

|P (x0 + tσ)|2tn−1dt,

implying that

(3.61) ‖P‖2
L2(B(0,cn

√
N+1))

≤
(

1 + (cn
√
N + 1 + |x0|)n−1

× 212N+n+4

3r2N+n

(
cn
√
N + 1 + |x0| −

r

2

)2N+1
‖P‖2L2(B(x0,r))

,

thanks to (3.55). We deduce from (3.61) that there exists a positive constant C =
C(x0, r, n) > 1 independent on the parameter N such that

(3.62) ‖P‖L2(B(0,cn
√
N+1)) ≤ Ce

1
2
N ln(N+1)+CN‖P‖L2(B(x0,r)).

It follows from (3.53), (3.54) and (3.62) that for all N ∈ N such that cn
√
N + 1 > 2|x0|+r

and for all f ∈ EN ,

(3.63) ‖f‖L2(Rn) ≤
2√
3
Ce

1
2

(|x0|+r)2e
1
2
N ln(N+1)+CN‖f‖L2(B(x0,r)).

The two estimates (3.50) and (3.63) allow to prove the assertion (i) in Theorem 2.1.

3.2.2. Case when the control subset is a measurable set satisfying condition (1.23). Let
ω ⊂ Rn be a measurable subset satisfying the condition

(3.64) lim inf
R→+∞

|ω ∩B(0, R)|
|B(0, R)|

= lim
R→+∞

(
inf
r≥R

|ω ∩B(0, r)|
|B(0, r)|

)
> 0.

It follows that there exist some positive constants R0 > 0 and δ > 0 such that

(3.65) ∀R ≥ R0,
|ω ∩B(0, R)|
|B(0, R)|

≥ δ > 0.

We recall from (2.2) that

(3.66) ∀N ∈ N, ∃CN (ω) > 0,∀f ∈ EN , ‖f‖L2(Rn) ≤ CN (ω)‖f‖L2(ω)

and as in the above section, it follows from Lemma 3.2 that

(3.67) ∀N ∈ N, ∀f ∈ EN , ‖f‖L2(Rn) ≤
2√
3
‖f‖L2(B(0,cn

√
N+1)),

where cn > 0 is a positive constant depending only on the dimension n ≥ 1. Let N ∈ N
be an integer satisfying cn

√
N + 1 ≥ R0 and f ∈ EN . It follows from (3.65) that

(3.68) |ω ∩B(0, cn
√
N + 1)| ≥ δ|B(0, cn

√
N + 1)| > 0.

According to (3.1) and (3.6), there exists a complex polynomial function P ∈ C[X1, ..., Xn]
of degree at most N such that

(3.69) ∀x ∈ Rn, f(x) = P (x)e−
|x|2
2 .

We observe from (3.67) and (3.69) that

(3.70) ‖f‖2L2(Rn) ≤
4

3

∫
B(0,cn

√
N+1)

|P (x)|2e−|x|2dx ≤ 4

3
‖P‖2

L2(B(0,cn
√
N+1))
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and

(3.71) ‖P‖2
L2(ω∩B(0,cn

√
N+1))

=

∫
ω∩B(0,cn

√
N+1)

|P (x)|2e−|x|2e|x|2dx

≤ ec2n(N+1)‖f‖2
L2(ω∩B(0,cn

√
N+1))

.

We deduce from Lemma 5.1 and (3.68) that

(3.72) ‖P‖2
L2(B(0,cn

√
N+1))

≤ 24N+2

3

4|B(0, cn
√
N + 1)|

|ω ∩B(0, cn
√
N + 1)|

[
F
( |ω ∩B(0, cn

√
N + 1)|

4|B(0, cn
√
N + 1)|

)]2N
‖P‖2

L2(ω∩B(0,cn
√
N+1))

,

with F the decreasing function

∀0 < t ≤ 1, F (t) =
1 + (1− t)

1
n

1− (1− t)
1
n

≥ 1.

By using that F is a decreasing function, it follows from (3.68) and (3.72) that

(3.73) ‖P‖2
L2(B(0,cn

√
N+1))

≤ 24N+4

3δ

[
F
(δ

4

)]2N
‖P‖2

L2(ω∩B(0,cn
√
N+1))

.

Putting together (3.70), (3.71) and (3.73), we deduce that there exists a positive constant
C = C(δ, n) > 0 such that for all N ∈ N with cn

√
N + 1 ≥ R0 and for all f ∈ EN ,

(3.74) ‖f‖2L2(Rn) ≤
24N+6

9δ

[
F
(δ

4

)]2N
ec

2
n(N+1)‖f‖2

L2(ω∩B(0,cn
√
N+1))

≤ C2e2CN‖f‖2L2(ω).

The two estimates (3.66) and (3.74) allow to prove the assertion (ii) in Theorem 2.1.

3.2.3. Case when the control subset is a thick set. Let ω be a measurable subset of Rn.
We assume that ω is γ-thick at scale L > 0,

(3.75) ∃0 < γ ≤ 1,∃L > 0,∀x ∈ Rn, |ω ∩ (x+ [0, L]n)| ≥ γLn.

The following proof is an adaptation of the proof of the sharpened version of the Logvinenko-
Sereda theorem given by Kovrijkine in [28, 29].

Step 1. Bad and good cubes. Let N ∈ N be a non-negative integer and f ∈ EN \ {0}.
For each multi-index α = (α1, ..., αn) ∈ (LZ)n, let

Q(α) =
{
x = (x1, ..., xn) ∈ Rn : ∀1 ≤ j ≤ n, |xj − αj | <

L

2

}
.

Notice that

∀α, β ∈ (LZ)n, α 6= β, Q(α) ∩Q(β) = ∅, Rn =
⋃

α∈(LZ)n

Q(α),

where Q(α) denotes the closure of Q(α). It follows that

‖f‖2L2(Rn) =
∑

α∈(LZ)n

∫
Q(α)
|f(x)|2dx.

Let δ > 0 be a positive constant to be chosen later on. We divide the family of cubes
(Q(α))α∈(LZ)n into families of good and bad cubes. A cube Q(α), with α ∈ (LZ)n, is said
to be good if it satisfies for all β ∈ Nn,

(3.76)

∫
Q(α)
|∂βxf(x)|2dx ≤ eeδ−2(

8δ2(2n + 1)
)|β|

(|β|!)2e2δ−1
√
N

∫
Q(α)
|f(x)|2dx.
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On the other hand, a cube Q(α), with α ∈ (LZ)n, which is not good, is said to be bad,
that is,

(3.77) ∃β ∈ Nn, |β| > 0,∫
Q(α)
|∂βxf(x)|2dx > eeδ

−2(
8δ2(2n + 1)

)|β|
(|β|!)2e2δ−1

√
N

∫
Q(α)
|f(x)|2dx.

If Q(α) is a bad cube, it follows from (3.77) that there exists β0 ∈ Nn, |β0| > 0 such that

(3.78)

∫
Q(α)
|f(x)|2dx ≤ e−eδ

−2(
8δ2(2n + 1)

)|β0|(|β0|!)2e2δ−1
√
N

∫
Q(α)
|∂β0x f(x)|2dx

≤
∑

β∈Nn,|β|>0

e−eδ
−2(

8δ2(2n + 1)
)|β|

(|β|!)2e2δ−1
√
N

∫
Q(α)
|∂βxf(x)|2dx.

By summing over all the bad cubes, we deduce from (3.78) and the Fubini-Tonelli theorem
that ∫

⋃
bad cubesQ(α)

|f(x)|2dx =
∑

bad cubes

∫
Q(α)
|f(x)|2dx(3.79)

≤
∑

β∈Nn,|β|>0

e−eδ
−2(

8δ2(2n + 1)
)|β|

(|β|!)2e2δ−1
√
N

∫
⋃

bad cubesQ(α)
|∂βxf(x)|2dx

≤
∑

β∈Nn,|β|>0

e−eδ
−2(

8δ2(2n + 1)
)|β|

(|β|!)2e2δ−1
√
N

∫
Rn
|∂βxf(x)|2dx.

By using that the number of solutions to the equation β1 + ...+βn = k, with k ≥ 0, n ≥ 1
and unknown β = (β1, ..., βn) ∈ Nn, is given by

(
k+n−1

k

)
, we obtain from the Bernstein

type estimates in Proposition 3.3 (formula (i)) and (3.79) that∫
⋃

bad cubesQ(α)
|f(x)|2dx ≤

( ∑
β∈Nn,|β|>0

1(
2(2n + 1)

)|β|)‖f‖2L2(Rn)(3.80)

=
( +∞∑
k=1

(
k + n− 1

k

)
1

2k(2n + 1)k

)
‖f‖2L2(Rn)

≤ 2n−1
( +∞∑
k=1

1

(2n + 1)k

)
‖f‖2L2(Rn) =

1

2
‖f‖2L2(Rn),

since

(3.81)

(
k + n− 1

k

)
≤

k+n−1∑
j=0

(
k + n− 1

j

)
= 2k+n−1.

By writing

‖f‖2L2(Rn) =

∫
⋃

good cubesQ(α)
|f(x)|2dx+

∫
⋃

bad cubesQ(α)
|f(x)|2dx,

it follows from (3.80) that

(3.82) ‖f‖2L2(Rn) ≤ 2

∫
⋃

good cubesQ(α)
|f(x)|2dx.
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Step 2. Properties on good cubes. As any cube Q(α) satisfies the cone condition,
the Sobolev embedding

Wn,2(Q(α)) ↪−→ L∞(Q(α)),

see e.g. [1, Theorem 4.12], implies that there exists a universal positive constant Cn > 0
depending only on the dimension n ≥ 1 such that

(3.83) ∀u ∈Wn,2(Q(α)), ‖u‖L∞(Q(α)) ≤ Cn‖u‖Wn,2(Q(α)).

By translation invariance of the Lebesgue measure, notice in particular that the constant
Cn does not depend on the parameter α ∈ (LZ)n. Let Q(α) be a good cube. We deduce
from (3.76) and (3.83) that for all β ∈ Nn,

‖∂βxf‖L∞(Q(α)) ≤ Cn
( ∑
β̃∈Nn,|β̃|≤n

‖∂β+β̃
x f‖2L2(Q(α))

) 1
2

(3.84)

≤ Cne
eδ−2

2 eδ
−1
√
N
( ∑
β̃∈Nn,|β̃|≤n

(
8δ2(2n + 1)

)|β|+|β̃|(
(|β|+ |β̃|)!

)2) 1
2 ‖f‖L2(Q(α))

≤ C̃n(δ)
(
32δ2(2n + 1)

) |β|
2 |β|!eδ−1

√
N‖f‖L2(Q(α)),

with

(3.85) C̃n(δ) = Cne
eδ−2

2

( ∑
β̃∈Nn,|β̃|≤n

(
32δ2(2n + 1)

)|β̃|
(|β̃|!)2

) 1
2
> 0,

since

(|β|+ |β̃|)! ≤ 2|β|+|β̃||β|!|β̃|!.
Recalling that f is a finite combination of Hermite functions, we deduce from the continuity
of the function f and the compactness of Q(α) that there exists xα ∈ Q(α) such that

(3.86) ‖f‖L∞(Q(α)) = |f(xα)|.

By using spherical coordinates centered at xα ∈ Q(α) and the fact that the Euclidean
diameter of the cube Q(α) is

√
nL, we observe that

|ω ∩Q(α)| =
∫ +∞

0

(∫
Sn−1

1lω∩Q(α)(xα + rσ)dσ
)
rn−1dr(3.87)

=

∫ √nL
0

(∫
Sn−1

1lω∩Q(α)(xα + rσ)dσ
)
rn−1dr

= n
n
2Ln

∫ 1

0

(∫
Sn−1

1lω∩Q(α)(xα +
√
nLrσ)dσ

)
rn−1dr,

where 1lω∩Q(α) denotes the characteristic function of the measurable set ω ∩ Q(α). By
using the Fubini’s theorem, we deduce from (3.87) that

|ω ∩Q(α)| ≤ n
n
2Ln

∫ 1

0

(∫
Sn−1

1lω∩Q(α)(xα +
√
nLrσ)dσ

)
dr(3.88)

= n
n
2Ln

∫
Sn−1

(∫ 1

0
1lω∩Q(α)(xα +

√
nLrσ)dr

)
dσ

= n
n
2Ln

∫
Sn−1

(∫ 1

0
1lIσ(r)dr

)
dσ = n

n
2Ln

∫
Sn−1

|Iσ|dσ,

where

(3.89) Iσ = {r ∈ [0, 1] : xα +
√
nLrσ ∈ ω ∩Q(α)}.
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The estimate (3.88) implies that there exists σ0 ∈ Sn−1 such that

(3.90) |ω ∩Q(α)| ≤ n
n
2Ln|Sn−1||Iσ0 |.

By using the thickness property (3.75), it follows from (3.90) that

(3.91) |Iσ0 | ≥
γ

n
n
2 |Sn−1|

> 0.

Step 3. Recovery of the L2(Rn)-norm. We first notice that ‖f‖L2(Q(α)) 6= 0, since f
is a non-zero entire function. We consider the entire function

(3.92) ∀z ∈ C, φ(z) = L
n
2
f(xα +

√
nLzσ0)

‖f‖L2(Q(α))
.

We observe from (3.86) that

|φ(0)| = L
n
2 |f(xα)|

‖f‖L2(Q(α))
=
L
n
2 ‖f‖L∞(Q(α))

‖f‖L2(Q(α))
≥ 1.

Instrumental in the proof is the following lemma proved by Kovrijkine in [29, Lemma 1]:

Lemma 3.4. ([29, Lemma 1]). Let I ⊂ R be an interval of length 1 such that 0 ∈ I and
E ⊂ I be a subset of positive measure |E| > 0. There exists a positive constant C > 1
such that for all analytic function Φ on the open disc D(0, 5) such that |Φ(0)| ≥ 1, then

sup
x∈I
|Φ(x)| ≤

( C
|E|

) lnM
ln 2

sup
x∈E
|Φ(x)|,

with M = sup|z|≤4 |Φ(z)| ≥ 1.

Applying Lemma 3.4 with I = [0, 1], E = Iσ0 ⊂ [0, 1] verifying |E| = |Iσ0 | > 0 according
to (3.91), and the analytic function Φ = φ defined in (3.92) satisfying |φ(0)| ≥ 1, we obtain
that

(3.93) L
n
2

supx∈[0,1] |f(xα +
√
nLxσ0)|

‖f‖L2(Q(α))
≤
( C

|Iσ0 |

) lnM
ln 2

L
n
2

supx∈Iσ0 |f(xα +
√
nLxσ0)|

‖f‖L2(Q(α))
,

with

(3.94) M = L
n
2

sup|z|≤4 |f(xα +
√
nLzσ0)|

‖f‖L2(Q(α))
.

It follows from (3.91) and (3.93) that

(3.95) sup
x∈[0,1]

|f(xα +
√
nLxσ0)| ≤

(Cnn2 |Sn−1|
γ

) lnM
ln 2

sup
x∈Iσ0

|f(xα +
√
nLxσ0)|

≤M
1

ln 2
ln(

Cn
n
2 |Sn−1|
γ

)
sup
x∈Iσ0

|f(xα +
√
nLxσ0)|.

According to (3.89), we notice that

(3.96) sup
x∈Iσ0

|f(xα +
√
nLxσ0)| ≤ ‖f‖L∞(ω∩Q(α)).

On the other hand, we deduce from (3.86) that

(3.97) ‖f‖L∞(Q(α)) = |f(xα)| ≤ sup
x∈[0,1]

|f(xα +
√
nLxσ0)|.

It follows from (3.95), (3.96) and (3.97) that

(3.98) ‖f‖L∞(Q(α)) ≤M
1

ln 2
ln(

Cn
n
2 |Sn−1|
γ

)‖f‖L∞(ω∩Q(α)).
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By using the analyticity of the function f , we observe that

(3.99) ∀z ∈ C, f(xα +
√
nLzσ0) =

∑
β∈Nn

(∂βxf)(xα)

β!
σβ0n

|β|
2 L|β|z|β|.

By using that Q(α) is a good cube, xα ∈ Q(α) and the continuity of the functions ∂βxf ,
we deduce from (3.84) and (3.99) that for all |z| ≤ 4,

(3.100) |f(xα +
√
nLzσ0)| ≤

∑
β∈Nn

|(∂βxf)(xα)|
β!

(4
√
nL)|β|

≤ C̃n(δ)eδ
−1
√
N
( ∑
β∈Nn

|β|!
β!

(
δL
√

29n(2n + 1)
)|β|)‖f‖L2(Q(α)).

By using anew that the number of solutions to the equation β1 + ...+ βn = k, with k ≥ 0,
n ≥ 1 and unknown β = (β1, ..., βn) ∈ Nn, is given by

(
k+n−1

k

)
, and that

|β|! ≤ n|β|β!,

see e.g. (3.46), we notice from (3.81) that

(3.101)
∑
β∈Nn

|β|!
β!

(
δL
√

29n(2n + 1)
)|β| ≤ ∑

β∈Nn

(
δL
√

29n3(2n + 1)
)|β|

=
+∞∑
k=0

(
k + n− 1

k

)(
δL
√

29n3(2n + 1)
)k ≤ 2n−1

+∞∑
k=0

(
δL
√

211n3(2n + 1)
)k
.

From now on, the positive parameter δ > 0 is fixed and taken to be equal to

(3.102) δ =
1

δnL
> 0,

with

δn = 2
√

211n3(2n + 1) > 0.

With this choice, it follows from (3.94), (3.100), (3.101) and (3.102) that

(3.103) M ≤ (4L)
n
2 C̃n(δ−1

n L−1)eδnL
√
N .

The positive constant C > 1 given by Lemma 3.4 may be chosen such that

(3.104) Cn
n
2 |Sn−1| > 1.

With this choice, we deduce from (3.98) and (3.103) that

(3.105) ‖f‖L∞(Q(α)) ≤
(Cnn2 |Sn−1|

γ

) ln((4L)
n
2 C̃n(δ−1

n L−1))
ln 2

+ δn
ln 2

L
√
N
‖f‖L∞(ω∩Q(α)).

Recalling from the thickness property (3.75) that |ω ∩Q(α)| ≥ γLn > 0 and setting

(3.106) ω̃α =
{
x ∈ ω ∩Q(α) : |f(x)| ≤ 2

|ω ∩Q(α)|

∫
ω∩Q(α)

|f(t)|dt
}
,

we observe that

(3.107)

∫
ω∩Q(α)

|f(x)|dx ≥
∫

(ω∩Q(α))\ω̃α
|f(x)|dx ≥ 2|(ω ∩Q(α)) \ ω̃α|

|ω ∩Q(α)|

∫
ω∩Q(α)

|f(x)|dx.

By using that the integral ∫
ω∩Q(α)

|f(x)|dx > 0,
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since f is a non-zero entire function and |ω ∩Q(α)| > 0, we obtain that

|(ω ∩Q(α)) \ ω̃α| ≤
1

2
|ω ∩Q(α)|,

which implies that

(3.108) |ω̃α| = |ω ∩Q(α)| − |(ω ∩Q(α)) \ ω̃α| ≥
1

2
|ω ∩Q(α)| ≥ 1

2
γLn > 0,

thanks anew to the thickness property (3.75). By using again spherical coordinates as in
(3.87) and (3.88), we observe that

(3.109) |ω̃α| = |ω̃α ∩Q(α)|

= n
n
2Ln

∫ 1

0

(∫
Sn−1

1lω̃α∩Q(α)(xα +
√
nLrσ)dσ

)
rn−1dr ≤ n

n
2Ln

∫
Sn−1

|Ĩσ|dσ,

where

(3.110) Ĩσ = {r ∈ [0, 1] : xα +
√
nLrσ ∈ ω̃α ∩Q(α)}.

As in (3.90), the estimate (3.109) implies that there exists σ0 ∈ Sn−1 such that

(3.111) |ω̃α| ≤ n
n
2Ln|Sn−1||Ĩσ0 |.

We deduce from (3.108) and (3.111) that

(3.112) |Ĩσ0 | ≥
γ

2n
n
2 |Sn−1|

> 0.

Applying anew Lemma 3.4 with I = [0, 1], E = Ĩσ0 ⊂ [0, 1] verifying |E| = |Ĩσ0 | > 0, and
the analytic function Φ = φ defined in (3.92) satisfying |φ(0)| ≥ 1, we obtain that

(3.113) L
n
2

supx∈[0,1] |f(xα +
√
nLxσ0)|

‖f‖L2(Q(α))
≤
( C

|Ĩσ0 |

) lnM
ln 2

L
n
2

supx∈Ĩσ0
|f(xα +

√
nLxσ0)|

‖f‖L2(Q(α))
,

where M denotes the constant defined in (3.94). It follows from (3.112) and (3.113) that

(3.114) sup
x∈[0,1]

|f(xα +
√
nLxσ0)| ≤

(2Cn
n
2 |Sn−1|
γ

) lnM
ln 2

sup
x∈Ĩσ0

|f(xα +
√
nLxσ0)|

≤M
1

ln 2
ln(

2Cn
n
2 |Sn−1|
γ

)
sup
x∈Ĩσ0

|f(xα +
√
nLxσ0)|.

According to (3.110), we notice that

(3.115) sup
x∈Ĩσ0

|f(xα +
√
nLxσ0)| ≤ ‖f‖L∞(ω̃α∩Q(α)).

It follows from (3.97), (3.114) and (3.115) that

(3.116) ‖f‖L∞(Q(α)) ≤M
1

ln 2
ln(

2Cn
n
2 |Sn−1|
γ

)‖f‖L∞(ω̃α∩Q(α)).

On the other hand, it follows from (3.106) that

(3.117) ‖f‖L∞(ω̃α∩Q(α)) ≤
2

|ω ∩Q(α)|

∫
ω∩Q(α)

|f(x)|dx.
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We deduce from (3.116), (3.117) and the Cauchy-Schwarz inequality that

‖f‖L2(Q(α)) ≤ L
n
2 ‖f‖L∞(Q(α))(3.118)

≤ 2L
n
2

|ω ∩Q(α)|
M

1
ln 2

ln(
2Cn

n
2 |Sn−1|
γ

)
∫
ω∩Q(α)

|f(x)|dx

≤ 2L
n
2

|ω ∩Q(α)|
1
2

M
1

ln 2
ln(

2Cn
n
2 |Sn−1|
γ

)‖f‖L2(ω∩Q(α)).

By using the thickness property (3.75), it follows from (3.103), (3.104) and (3.118) that

(3.119) ‖f‖2L2(Q(α)) ≤
4

γ
M

2
ln 2

ln(
2Cn

n
2 |Sn−1|
γ

)‖f‖2L2(ω∩Q(α))

≤ 4

γ

(
(4L)

n
2 C̃n(δ−1

n L−1)eδnL
√
N
) 2

ln 2
ln(

2Cn
n
2 |Sn−1|
γ

)
‖f‖2L2(ω∩Q(α)).

With

(3.120) κn(L, γ) =
2

3
2

γ
1
2

(2Cn
n
2 |Sn−1|
γ

) ln((4L)
n
2 C̃n(δ−1

n L−1))
ln 2

> 0,

we deduce from (3.119) that there exists a positive universal constant κ̃n > 0 such that
for any good cube Q(α),

(3.121) ‖f‖2L2(Q(α)) ≤
1

2
κn(L, γ)2

( κ̃n
γ

)2κ̃nL
√
N
‖f‖2L2(ω∩Q(α)).

It follows from (3.82) and (3.121) that

‖f‖2L2(Rn) ≤ 2

∫
⋃

good cubesQ(α)
|f(x)|2dx = 2

∑
good cubes

‖f‖2L2(Q(α))

≤ κn(L, γ)2
( κ̃n
γ

)2κ̃nL
√
N ∑

good cubes

‖f‖2L2(ω∩Q(α))

and

‖f‖2L2(Rn) ≤ κn(L, γ)2
( κ̃n
γ

)2κ̃nL
√
N
∫
ω∩(

⋃
good cubesQ(α))

|f(x)|2dx

≤ κn(L, γ)2
( κ̃n
γ

)2κ̃nL
√
N
‖f‖2L2(ω).

This ends the proof of assertion (iii) in Theorem 2.1.

4. Applications to the null-controllability of quadratic equations

This section presents a result of null-controllability for parabolic equations associated to
a general class of hypoelliptic non-selfadjoint accretive quadratic operators from any thick
set ω of Rn in any positive time T > 0. We begin by recalling few facts about quadratic
operators.
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4.1. Miscellaneous facts about quadratic differential operators. Quadratic oper-
ators are pseudodifferential operators defined in the Weyl quantization

(4.1) qw(x,Dx)f(x) =
1

(2π)n

∫
R2n

ei(x−y)·ξq
(x+ y

2
, ξ
)
f(y)dydξ,

by symbols q(x, ξ), with (x, ξ) ∈ Rn × Rn, n ≥ 1, which are complex-valued quadratic
forms

q : Rnx × Rnξ → C
(x, ξ) 7→ q(x, ξ).

These operators are non-selfadjoint differential operators in general; with simple and fully
explicit expression since the Weyl quantization of the quadratic symbol xαξβ, with (α, β) ∈
N2n, |α+ β| = 2, is the differential operator

xαDβ
x +Dβ

xxα

2
, Dx = i−1∂x.

Let qw(x,Dx) be a quadratic operator defined by the Weyl quantization (4.1) of a complex-
valued quadratic form q on the phase space R2n. The maximal closed realization of the
quadratic operator qw(x,Dx) on L2(Rn), that is, the operator equipped with the domain

(4.2) D(qw) =
{
f ∈ L2(Rn) : qw(x,Dx)f ∈ L2(Rn)

}
,

where qw(x,Dx)f is defined in the distribution sense, is known to coincide with the graph
closure of its restriction to the Schwartz space [26, pp. 425-426],

qw(x,Dx) : S (Rn)→ S (Rn).

Let q : Rnx×Rnξ → C be a quadratic form defined on the phase space and write q(·, ·) for its

associated polarized form. Classically, one associates to q a matrix F ∈M2n(C) called its
Hamilton map, or its fundamental matrix. With σ standing for the standard symplectic
form

(4.3) σ((x, ξ), (y, η)) = 〈ξ, y〉 − 〈x, η〉 =
n∑
j=1

(ξjyj − xjηj),

with x = (x1, ..., xn), y = (y1, ...., yn), ξ = (ξ1, ..., ξn), η = (η1, ..., ηn) ∈ Cn, the Hamilton
map F is defined as the unique matrix satisfying the identity

(4.4) ∀(x, ξ) ∈ R2n, ∀(y, η) ∈ R2n, q((x, ξ), (y, η)) = σ((x, ξ), F (y, η)).

We observe from the definition that

F =
1

2

(
∇ξ∇xq ∇2

ξq

−∇2
xq −∇x∇ξq

)
,

where the matrices ∇2
xq = (ai,j)1≤i,j≤n, ∇2

ξq = (bi,j)1≤i,j≤n, ∇ξ∇xq = (ci,j)1≤i,j≤n,

∇x∇ξq = (di,j)1≤i,j≤n are defined by the entries

ai,j = ∂2
xi,xjq, bi,j = ∂2

ξi,ξj
q, ci,j = ∂2

ξi,xj
q, di,j = ∂2

xi,ξj
q.

The notion of singular space was introduced in [23] by Hitrik and the third author by
pointing out the existence of a particular vector subspace in the phase space S ⊂ R2n,
which is intrinsically associated with a given quadratic symbol q. This vector subspace is
defined as the following finite intersection of kernels

(4.5) S =
( 2n−1⋂

j=0

Ker
[
Re F (Im F )j

])
∩ R2n,
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where Re F and Im F stand respectively for the real and imaginary parts of the Hamilton
map F associated with the quadratic symbol q,

Re F =
1

2
(F + F ), Im F =

1

2i
(F − F ).

As pointed out in [23, 43], the notion of singular space plays a basic role in the under-
standing of the spectral and hypoelliptic properties of the (possibly) non-elliptic quadratic
operator qw(x,Dx), as well as the spectral and pseudospectral properties of certain classes
of degenerate doubly characteristic pseudodifferential operators [24]. In particular, the
work [23, Theorem 1.2.2] gives a complete description for the spectrum of any non-elliptic
quadratic operator qw(x,Dx) whose Weyl symbol q has a non-negative real part Re q ≥ 0,
and satisfies a condition of partial ellipticity along its singular space S,

(4.6) (x, ξ) ∈ S, q(x, ξ) = 0⇒ (x, ξ) = 0.

Under these assumptions, the spectrum of the quadratic operator qw(x,Dx) is shown to
be composed of a countable number of eigenvalues with finite algebraic multiplicities. The
structure of this spectrum is similar to the one known for elliptic quadratic operators [46].
This condition of partial ellipticity is generally weaker than the condition of ellipticity,
S ( R2n, and allows one to deal with more degenerate situations.

An important class of quadratic operators satisfying condition (4.6) are those with zero
singular spaces S = {0}. In this case, the condition of partial ellipticity trivially holds.
More specifically, these quadratic operators have been shown in [43, Theorem 1.2.1] to be
hypoelliptic and to enjoy global subelliptic estimates of the type

(4.7) ∃C > 0,∀f ∈ S (Rn),

‖〈(x,Dx)〉2(1−δ)f‖L2(Rn) ≤ C(‖qw(x,Dx)f‖L2(Rn) + ‖f‖L2(Rn)),

where 〈(x,Dx)〉2 = 1 + |x|2 + |Dx|2, with a sharp loss of derivatives 0 ≤ δ < 1 with respect
to the elliptic case (case δ = 0), which can be explicitly derived from the structure of the
singular space.

When the quadratic symbol q has a non-negative real part Re q ≥ 0, the singular space
can be also defined in an equivalent way as the subspace in the phase space where all the
Poisson brackets

Hk
ImqRe q =

(
∂Im q

∂ξ
· ∂
∂x
− ∂Im q

∂x
· ∂
∂ξ

)k
Re q, k ≥ 0,

are vanishing

S =
{
X = (x, ξ) ∈ R2n : (Hk

ImqRe q)(X) = 0, k ≥ 0
}
.

This dynamical definition shows that the singular space corresponds exactly to the set of
points X ∈ R2n, where the real part of the symbol Re q under the flow of the Hamilton
vector field HImq associated with its imaginary part

(4.8) t 7→ Re q(etHImqX),

vanishes to infinite order at t = 0. This is also equivalent to the fact that the function
(4.8) is identically zero on R.

4.2. Null-controllability of hypoelliptic quadratic equations. We study the class
of quadratic operators whose Weyl symbols have non-negative real parts Re q ≥ 0, and
zero singular spaces S = {0}. According to the above description of the singular space,
these quadratic operators are exactly those whose Weyl symbols have a non-negative real
part Re q ≥ 0, becoming positive definite

(4.9) ∀T > 0, 〈Re q〉T (X) =
1

2T

∫ T

−T
(Re q)(etHImqX)dt� 0,
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after averaging by the linear flow of the Hamilton vector field associated with its imaginary
part. The above notation a � 0 denotes that the quadratic form a is positive definite.
These quadratic operators are also known [23, Theorem 1.2.1] to generate strongly contin-
uous contraction semigroups (e−tq

w
)t≥0 on L2(Rn), which are smoothing in the Schwartz

space for any positive time

∀t > 0,∀f ∈ L2(Rn), e−tq
w
f ∈ S (Rn).

In the work [25, Theorem 1.2], these regularizing properties were sharpened and these
contraction semigroups were shown to be actually smoothing for any positive time in the

Gelfand-Shilov space S
1/2
1/2(Rn): ∃C > 0, ∃t0 > 0, ∀f ∈ L2(Rn), ∀α, β ∈ Nn, ∀0 < t ≤ t0,

(4.10) ‖xα∂βx (e−tq
w
f)‖L∞(Rn) ≤

C1+|α|+|β|

t
2k0+1

2
(|α|+|β|+2n+s)

(α!)1/2(β!)1/2‖f‖L2(Rn),

where s is a fixed integer verifying s > n/2, and where 0 ≤ k0 ≤ 2n − 1 is the smallest
integer satisfying

(4.11)
( k0⋂
j=0

Ker
[
Re F (Im F )j

])
∩ R2n = {0}.

Thanks to this Gelfand-Shilov smoothing effect (4.10), the first and third authors have
established in [4, Proposition 4.1] that, for any quadratic form q : R2n

x,ξ → C with a non-

negative real part Re q ≥ 0 and a zero singular space S = {0}, the dissipation estimate
(1.16) holds with 0 ≤ k0 ≤ 2n− 1 being the smallest integer satisfying (4.11). Let ω ⊂ Rn
be a measurable γ-thick set at scale L > 0. We can then deduce from Theorem 1.6 with
the following choices of parameters:

(i) Ω = Rn,
(ii) A = −qw(x,Dx),

(iii) a = 1
2 , b = 1,

(iv) t0 > 0 as in (1.16) and (1.17),
(v) m = 2k0 + 1, where k0 is defined in (4.11),

(vi) any constant c1 > 0 satisfying

∀k ≥ 1, C
(κ
γ

)κL√k
≤ ec1

√
k,

where the positive constants C = C(L, γ, n) > 0 and κ = κ(n) > 0 are defined in
Theorem 2.1 (formula (iii)),

(vii) c2 = 1
C0

> 0, where C0 > 1 is defined in (1.16) and (1.17),

the following observability estimate in any positive time

∃C > 1,∀T > 0,∀f ∈ L2(Rn), ‖e−Tqwf‖2L2(Rn) ≤ C exp
( C

T 2k0+1

)∫ T

0
‖e−tqwf‖2L2(ω)dt.

We therefore obtain the following result of null-controllability:

Theorem 4.1. Let q : Rnx × Rnξ → C be a complex-valued quadratic form with a non

negative real part Re q ≥ 0, and a zero singular space S = {0}. If ω is a measurable thick
subset of Rn, then the parabolic equation{

∂tf(t, x) + qw(x,Dx)f(t, x) = u(t, x)1lω(x) , x ∈ Rn, t > 0,
f |t=0 = f0 ∈ L2(Rn),

with qw(x,Dx) being the quadratic differential operator defined by the Weyl quantization
of the symbol q, is null-controllable from the set ω in any positive time T > 0.
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As in [4], this result of null-controllability given by Theorem 4.1 applies in particular
for the parabolic equation associated to the Kramers-Fokker-Planck operator

(4.12) K = −∆v +
v2

4
+ v∂x − ∂xV (x)∂v, (x, v) ∈ R2,

with a quadratic potential

V (x) =
1

2
ax2, a ∈ R∗,

which is an example of accretive quadratic operator with a zero singular space S =
{0}. It also applies in the very same way to hypoelliptic Ornstein-Uhlenbeck equa-
tions posed in L2(Rn, ρ(x)dx)-spaces, or to hypoelliptic Fokker-Planck equations posed
in L2(Rn, ρ(x)−1dx)-spaces with respect to (gaussian) invariant measures ρ. Indeed, as
explained in [4] (Sections 5 and 6) and after conjugation by

√
ρ or

√
ρ−1, this prob-

lem of null-controllability in weighted L2-spaces can be rephrased as a problem of null-
controllability in the flat L2(Rn, dx)-space for which Theorem 4.1 applies. We refer the
reader to the works [4, 42] for detailed discussions of various physics models whose evolu-
tion turns out to be ruled by accretive quadratic operators with zero singular spaces and
to which therefore apply the above result of null-controllability.

The notion of thickness is a sufficient geometric condition for control subsets to derive the
null-controllability for a general class of evolution equations associated to hypoelliptic non-
selfadjoint quadratic operators that includes the harmonic heat equation. It is therefore a
natural question to figure out whether this condition turns out also to be sufficient. To the
best of our knowledge, there is no known necessary and sufficient geometric condition to
ensure the null-controllability of these evolution equations even in the case of the harmonic
heat equation. Nevertheless, one can expect that the thickness condition is not sharp.
Indeed, contrary to the heat equation, the solutions of the above evolution equations do
enjoy specific decay properties at infinity and one can conjecture that control subsets do
not necessarily need to be distributed as much at infinity as required by the thickness
condition. This conjecture will be investigated in future works.

5. Appendix

5.1. Gelfand-Shilov regularity. We refer the reader to the works [20, 21, 41, 48] and
the references herein for extensive expositions of the Gelfand-Shilov regularity theory. The
Gelfand-Shilov spaces Sµν (Rn), with µ, ν > 0, µ+ν ≥ 1, are defined as the spaces of smooth
functions f ∈ C∞(Rn) satisfying the estimates

∃A,C > 0, |∂αx f(x)| ≤ CA|α|(α!)µe−
1
A
|x|1/ν , x ∈ Rn, α ∈ Nn,

or, equivalently

∃A,C > 0, sup
x∈Rn

|xβ∂αx f(x)| ≤ CA|α|+|β|(α!)µ(β!)ν , α, β ∈ Nn.

These Gelfand-Shilov spaces Sµν (Rn) may also be characterized as the spaces of Schwartz
functions f ∈ S (Rn) satisfying the estimates

∃C > 0, ε > 0, |f(x)| ≤ Ce−ε|x|1/ν , x ∈ Rn, |f̂(ξ)| ≤ Ce−ε|ξ|1/µ , ξ ∈ Rn.

In particular, we notice that Hermite functions belong to the symmetric Gelfand-Shilov

space S
1/2
1/2(Rn). More generally, the symmetric Gelfand-Shilov spaces Sµµ(Rn), with µ ≥

1/2, can be nicely characterized through the decomposition into the Hermite basis (Φα)α∈Nn ,
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see e.g. [48, Proposition 1.2],

f ∈ Sµµ(Rn)⇔ f ∈ L2(Rn), ∃t0 > 0,
∥∥(〈f,Φα〉L2 exp(t0|α|

1
2µ )
)
α∈Nn

∥∥
l2(Nn)

< +∞

⇔ f ∈ L2(Rn), ∃t0 > 0, ‖et0H
1
2µ
f‖L2(Rn) < +∞,

where H = −∆x + |x|2 stands for the harmonic oscillator.

5.2. Remez inequality. The classical Remez inequality [44], see also [16, 17], is the
following estimate providing a bound on the maximum of the absolute value of an arbitrary
real polynomial function P ∈ R[X] of degree d on [−1, 1] by the maximum of its absolute
value on any measurable subset E ⊂ [−1, 1] of positive Lebesgue measure 0 < |E| < 2,

(5.1) sup
[−1,1]

|P | ≤ Td
(4− |E|
|E|

)
sup
E
|P |,

where

(5.2) Td(X) =
d

2

[ d
2

]∑
k=0

(−1)k
(d− k − 1)!

k!(d− 2k)!
2d−2kXd−2k =

[ d
2

]∑
k=0

(
d

2k

)
(X2 − 1)kXd−2k,

see e.g. [7, Chapter 2], where [x] stands the integer part of x, denotes the dth Chebyshev
polynomial function of first kind. We also recall from [7, Chapter 2] the definition of
Chebyshev polynomial functions of second kind

(5.3) ∀d ∈ N, Ud(X) =

[ d
2

]∑
k=0

(−1)k
(
d− k
k

)
2d−2kXd−2k

and

(5.4) ∀d ∈ N∗, Ud−1(X) =
1

d
T ′d(X).

The Remez inequality was extended in the multi-dimensional case in [10], see also [19,
Formula (4.1)] and [30], as follows: for all convex bodies4 K ⊂ Rn, measurable subsets
E ⊂ K of positive Lebesgue measure 0 < |E| < |K| and real polynomial functions P ∈
R[X1, ..., Xn] of degree d, the following estimate holds

(5.5) sup
K
|P | ≤ Td

1 + (1− |E||K|)
1
n

1− (1− |E||K|)
1
n

 sup
E
|P |.

By recalling that all the zeros of the Chebyshev polynomial functions of first and second
kind are simple and contained in the set ]− 1, 1[, we observe from (5.2) and (5.4) that the
function Td is increasing on [1,+∞) and that

(5.6) ∀d ∈ N, ∀x ≥ 1, 1 = Td(1) ≤ Td(x) =

[ d
2

]∑
k=0

(
d

2k

)
(x− 1)k(x+ 1)kxd−2k

≤
[ d
2

]∑
k=0

(
d

2k

)
xk(x+ x)kxd−2k =

[ d
2

]∑
k=0

(
d

2k

)
2kxd ≤ (2x)d

[ d
2

]∑
k=0

2k ≤ (4x)d,

since
(
d
2k

)
≤
∑d

j=0

(
d
j

)
= 2d. By using that

sup
K
|Q| ≤ sup

K
|Re Q|+ sup

K
|Im Q| and sup

E
|Re Q|+ sup

E
|Im Q| ≤ 2 sup

E
|Q|,

4A compact convex subset of Rn with non-empty interior.
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we deduce from (5.5) and (5.6) that for all convex bodies K ⊂ Rn, measurable subsets
E ⊂ K of positive Lebesgue measure 0 < |E| < |K|, and complex polynomial functions
Q ∈ C[X1, ..., Xn] of degree d,

(5.7) sup
K
|Q| ≤ 22d+1

1 + (1− |E||K|)
1
n

1− (1− |E||K|)
1
n

d

sup
E
|Q|.

Thanks to this estimate, we can prove that the L2-norm ‖·‖L2(ω) on any measurable subset
ω ⊂ Rn, with n ≥ 1, of positive Lebesgue measure |ω| > 0 defines a norm on the finite
dimensional vector space EN defined in (2.1). Indeed, let f be a function in EN verifying
‖f‖L2(ω) = 0, with ω ⊂ Rn a measurable subset of positive Lebesgue measure |ω| > 0.
According to (3.1) and (3.6), there exists a complex polynomial function Q ∈ C[X1, ..., Xn]
such that

∀(x1, ..., xn) ∈ Rn, f(x1, ..., xn) = Q(x1, ..., xn)e−
x21+...+x

2
n

2 .

The condition ‖f‖L2(ω) = 0 first implies that f = 0 almost everywhere in ω, and therefore
that Q = 0 almost everywhere in ω. We deduce from (5.7) that the polynomial function
Q has to be zero on any convex body K verifying |K ∩ ω| > 0, and therefore is zero
everywhere. We conclude that the L2-norm ‖ · ‖L2(ω) actually defines a norm on the finite
dimensional vector space EN .

On the other hand, the Remez inequality is a key ingredient in the proof of the following
instrumental lemma needed for the proof of Theorem 2.1:

Lemma 5.1. Let R > 0 and ω ⊂ Rn be a measurable subset verifying |ω ∩ B(0, R)| > 0.
Then, the following estimate holds for all complex polynomial functions P ∈ C[X1, ..., Xn]
of degree d,

‖P‖L2(B(0,R)) ≤
22d+1

√
3

√
4|B(0, R)|
|ω ∩B(0, R)|

1 + (1− |ω∩B(0,R)|
4|B(0,R)| )

1
n

1− (1− |ω∩B(0,R)|
4|B(0,R)| )

1
n

d

‖P‖L2(ω∩B(0,R)),

where B(0, R) denotes the open Euclidean ball in Rn centered at 0 with radius R > 0.

Proof. Let P ∈ C[X1, ..., Xn] be a non-zero complex polynomial function of degree d and
R > 0. We consider the following subset

(5.8) Eε =
{
x ∈ B(0, R) : |P (x)| ≤ 2−2d−1F

( ε

|B(0, R)|

)−d
sup
B(0,R)

|P |
}
,

for all 0 < ε ≤ B(0, R), and F the decreasing function

(5.9) ∀0 < t ≤ 1, F (t) =
1 + (1− t)

1
n

1− (1− t)
1
n

≥ 1.

The estimate

2−2d−1F
( ε

|B(0, R)|

)−d
< 1,

implies that |Eε| < |B(0, R)|. We first check that the Lebesgue measure of this subset
satisfies |Eε| ≤ ε. If |Eε| > 0, it follows from (5.7) that

(5.10) 0 < sup
B(0,R)

|P | ≤ 22d+1F
( |Eε|
|B(0, R)|

)d
sup
Eε

|P |

≤ F
( |Eε|
|B(0, R)|

)d
F
( ε

|B(0, R)|

)−d
sup
B(0,R)

|P |.
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We obtain from (5.10) that

(5.11) F
( ε

|B(0, R)|

)
≤ F

( |Eε|
|B(0, R)|

)
.

As F is a decreasing function, we deduce from (5.11) that

(5.12) ∀0 < ε ≤ B(0, R), |Eε| ≤ ε.
Let ω ⊂ Rn be a measurable subset verifying |ω ∩ B(0, R)| > 0. We consider the positive
parameter

(5.13) 0 < ε0 =
1

4
|ω ∩B(0, R)| < |B(0, R)|.

Setting

(5.14) Gε0 =
{
x ∈ B(0, R) : |P (x)| > 2−2d−1F

( ε0

|B(0, R)|

)−d
sup
B(0,R)

|P |
}
,

we observe that

(5.15)

∫
ω∩B(0,R)

|P (x)|2dx ≥
∫
ω∩B(0,R)

1lGε0 (x)|P (x)|2dx

≥ 2−4d−2F
( ε0

|B(0, R)|

)−2d(
sup
B(0,R)

|P |
)2
|ω ∩Gε0 |.

We deduce from (5.8), (5.12) and (5.14) that

|ω ∩Gε0 | = |Gε0 | −
∣∣∣{x ∈ B(0, R) \ ω : |P (x)| > 2−2d−1F

( ε0

|B(0, R)|

)−d
sup
B(0,R)

|P |
}∣∣∣

≥ (|B(0, R)| − |Eε0 |)− |B(0, R) \ ω|

≥ |B(0, R)| − 1

4
|ω ∩B(0, R)| − (|B(0, R)| − |ω ∩B(0, R)|),

that is

(5.16) |ω ∩Gε0 | ≥
3

4
|ω ∩B(0, R)| > 0.

It follows from (5.13), (5.15) and (5.16) that

(5.17) ‖P‖2L2(B(0,R)) ≤ |B(0, R)|
(

sup
B(0,R)

|P |
)2

≤ 24d+2 4|B(0, R)|
3|ω ∩B(0, R)|

F
( |ω ∩B(0, R)|

4|B(0, R)|

)2d
∫
ω∩B(0,R)

|P (x)|2dx.

We deduce from (5.17) that

(5.18) ‖P‖L2(B(0,R)) ≤
22d+1

√
3

√
4|B(0, R)|
|ω ∩B(0, R)|

F
( |ω ∩B(0, R)|

4|B(0, R)|

)d
‖P‖L2(ω∩B(0,R)).

This ends the proof of Lemma 5.1. �
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[46] J. Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat. 12
(1974), 85-130
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