GELFAND-SHILOV AND GEVREY SMOOTHING EFFECT FOR THE
SPATIALLY INHOMOGENEOUS NON-CUTOFF KAC EQUATION

N. LERNER, Y. MORIMOTO, K. PRAVDA-STAROV & C.-J. XU

ABSTRACT. We consider the spatially inhomogeneous non-cutoff Kac’s model of the Boltzmann
equation. We prove that the Cauchy problem for the fluctuation around the Maxwellian dis-
tribution enjoys Gelfand-Shilov regularizing properties with respect to the velocity variable and
Gevrey regularizing properties with respect to the position variable.

1. INTRODUCTION

Kinetic equations with long range interactions, such as the Boltzmann equation without angular
cutoff, are known to enjoy smoothing effects for the solutions of the associated Cauchy problems.
There have been recently a series of works studying the C*° smoothing properties of the spatially
inhomogeneous non-cutoff Boltzmann equation (see the articles by Alexandre, Morimoto, Ukai, Xu
&Yang [3, 4, 5]). These studies were inspired by a pioneer work by Desvillettes & Wennberg [15],
together with previous results [1, 2, 6, 26, 33] for the spatially homogeneous Boltzmann equation
and an earlier work in the mid-nineties for a model equation of the radially symmetric spatially
homogeneous Boltzmann equation given by the Kac equation [11] (see also [9, 12, 14, 21]).

Regarding the Gevrey smoothing features and following the work [28], we studied in the recent
article [32] the Gelfand-Shilov regularizing properties of the radially symmetric spatially homo-
geneous non-cutoff Boltzmann equation and we established that the Cauchy problem for small
fluctuations around the Maxwellian distribution enjoys the very same smoothing properties as the
linear evolution equation associated to a fractional power of the harmonic oscillator

(1.1) atg+7-[g=0,2 )
glt:O =go € L (Rv)’
with0<s<1,H=-A,+ % and d = 3. This result shows that the radially symmetric spatially

homogeneous Boltzmann equation, which reduces to the spatially homogeneous Kac equation,
1/2s
1/2s
the Gelfand-Shilov spaces S#(R%), with u,v > 0, u + v > 1, are defined as the spaces of smooth
functions f € C>°(R?) satisfying

3C > 1,Va, B € N, sup [w*dl f(v)| < CleFIBI+L () (B~
veRE

enjoys a Gelfand-Shilov smoothing effect in the space S;/.°(R%) for all positive time ¢ > 0, where

The Gelfand-Shilov spaces S*(R?) may also be characterized as the spaces of Schwartz functions
belonging to the Gevrey space G*(R?), whose Fourier transforms belong to the Gevrey space
G¥(R?).

The analysis of the Gevrey regularizing properties of spatially inhomogeneous kinetic equations
with respect to both position and velocity variables is more intricated. There are up to now
only very few results except for a very simplified model of the linearized spatially inhomogeneous
non-cutoff Boltzmann equation given by the generalized Kolmogorov equation

atg +v- Vmg + (_Av)sg = 07
(1.2) 9 mod
g|t:0 =go €L (Rxﬂ))’
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with 0 < s < 1, for which the second and the last authors established in [34] that the solution to
the Cauchy problem (1.2) satisfies

(1.3) Je> 0,9t >0, oA L)) g4y ¢ [2(R2).

This result indicates that the generalized Kolmogorov equation enjoys a G 25 (Ri‘fv) Gevrey smooth-
ing effect with respect to both position and velocity variables, despite the fact that diffusion only
occurs in the velocity variables. This phenomenon of hypoellipticity is due to non-commutation
and non-trivial interactions between the transport part v - V, and the diffusion part (—A,)® in
this evolution equation. The occurrence of hypoelliptic properties for kinetic equations was used
and pointed out in many recent works, such as the paper by Arsénio & Saint-Raymond [8], as well
as Golse’s survey [20]. The work by Alexandre, Morimoto, Ukai, Xu & Yang [4] highlighted the
importance of regularization effects for Boltzmann equation (see also [3, 7, 13, 16]). It served as
a motivation for us to explore more completely the behaviour of solutions of Kac’s equation, a
somewhat simplified model of Boltzmann equation but still keeping some of the main features of
Boltzmann’s. Studying whether this type of Gevrey smoothing features does hold, or not, for the
spatially inhomogeneous non-cutoff Boltzmann equation is a challenging problem in mathematical
physics. The models (1.1) and (1.2) are linear equations hopefully capturing some of the features
of the Boltzmann equation regularizing properties. We aim here at studying these regularizing
properties for a non-linear model close to the Boltzmann equation. As an attempt for further un-
derstanding of the Gevrey smoothing features of the Boltzmann equation, we study in this article
the Gevrey regularizing properties of the spatially inhomogeneous Kac’s model of the non-cutoff
Boltzmann equation.
The spatially inhomogeneous Kac equation reads as the kinetic equation

aff+Uan :K(fmf)a
fle=o = fo,

for the density distribution of particles f = f(¢,z,v) at time ¢, having position € R and velocity
v € R. The Kac collision operator is defined as

K(g. f) = /|0|<z 50) ( [ - g*f)dv*> a0,

with the standard shorthand f, = f(¢,z,v.), f/ = f(t,z,v"), fu = f(t,z,v.), f = f(t,z,v), where
the relations between pre and post collisional velocities

(1.4)

v +iv, = e (v +iv,), ie, v =vcosf—w,sinh, v.=wvsind+v,cosb, v,v, €R,
follow from the conservation of the kinetic energy in the binary collisions
v2 02 =02 402
In this definition, the cross section is assumed to be an even non-negative function satisfying

B>0, BE€Ly(0,1]), B(-0)=75(0),

with a non-integrable singularity for grazing collisions

This non-integrability plays a major role regarding the qualitative behaviour of the solutions of the
Kac equation and this feature is essential for the smoothing effect to be present. Indeed, as first
observed by Desvillettes [11], the grazing collisions accounting for the non-integrability of the cross
section near # = 0 do induce smoothing effects for the solutions of the non-cutoff Kac equation, or
more generally for the solutions of the non-cutoff Boltzmann equation. On the other hand, these
solutions are at most as regular as the initial data, see e.g. [38], when the cross section is assumed
to be integrable, or after removing the singularity by using a cutoff function (Grad’s angular cutoff
assumption).
We consider a cross section with a non-integrable singularity of the type

(1.5) BO) g0l 72,
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for! some given parameter 0 < s < 1. Under this assumption, the Kac collision operator may be
defined as a finite part integral. We refer the reader to the appendix (Section 6.3) for details about
this definition as a finite part integral. Details on the physics background may be found in the
extensive expositions [10, 37] and the references therein.

We study the Kac equation in a close to equilibrium framework and consider the fluctuation

f=p+ng,
around the normalized Maxwellian distribution
112
(1.6) w(v) = (27r)_%e_7, veR

Since K (u, 1) = 0 by conservation of the kinetic energy, the Kac equation (1.4) for the fluctuation
reads as

(1.7)

0ig + 00,9 +Kg=T(g,9),
glt:() = go,

where I stands for the linearized Kac operator

Kg=—p 2K (p, 1" ?g) = p =K (u'2g, ),
with
(18) L(f9) = n 2K (W2 f, 1),
The linearized Kac operator was studied in the work [31]. We recall from this work that K is a
non-negative unbounded operator on L?(R,) with domain
D= {u € L2(R,), D K |Pyul?. < +oo} = {u e L*R,), H'u e LA(R,)},
k>0

where

H=-A +“—2—Z(k+1)19>

- v 4 - 2 k>
k>0

stands for the harmonic oscillator and Py denote the orthogonal projections onto the Hermite basis
described in Section 6.1. The fractional harmonic oscillator

S 1 s
W= (k+3) P
k>0
is defined through functional calculus. The linearized Kac operator is diagonal in the Hermite basis
(1.9) K=> APy,
k>1

with a spectrum only composed by the non-negative eigenvalues

s = [ BO)(1— (cos®)?+1)do >0, k>0,

INE)

Aop = /4 B(O)(1 — (cos 0)%F — (sin@)%)dﬁ >0, k>1,
-1

satisfying the asymptotic estimates
(1.10) A &k,
when k — +o00. We notice that
0=2X2 < g < Agp, 0 <A1 < Agigr < Agiga,

when 1 < k < [, and that A; is the lowest positive eigenvalue. The linearized Kac operator enjoys
the coercive estimates

1o s
(1.11) 3C > 0,Vf € Z(Ry), aHHZ’flI%z < (Kf, ez +IfII72 < CIIHE fII72,

1The notation a ~ b means a/b is bounded from above and below by fixed positive constants.
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with a kernel given by
Ker K = Span{y, ¢}
The definition of the Hermite basis (¢, )n>0 is recalled in Section 6.1. We also recall the phase
space properties of the linearized Kac operator established in [31]. To that end, we make the
following choice for the cross section
| cos 4|

7r
1.12 )= ——=—, 0] < —.

(1.12) 80)= i WI<T

This choice of cross section is made for simplicity in order to use directly the results of [31].
Notice that these results may be extended to a wider class of cross sections with the non-integrable
singularity

~ |g|—1-2
BO) 43,0712,

With that choice, the eigenvalues satisfy the asymptotic equivalent

21+s
A o~

k——+oo

r'(1-s)k°,

where I' denotes the Gamma function. Furthermore, the linearized Kac operator

1 I vty
_Jw — i(v—y)n
(1.13) Ku = 1"(v, Dy)u 57 e e l( 3 ,n)u(y)dydn,

is a pseudodifferential operator whose Weyl symbol belongs to S*(IR?), where for m € R, the symbol
class S™(R?) is defined as the set of smooth functions a : R? — C satisfying

¥(a, 8) € N?,3Cap > 0,¥(v,1) €R?, 0707 a(v,n)| < Co,p{(v,m)*™ 11717,
with ((v,n)) = /14 |v]? + |n|2. More specifically, the Weyl symbol I(v,n) admits the following
asymptotic expansion
21+s 21+s(2 + \/g)s
s

v\
(1.14) VN >1, I(v,n) = F(l_s)(H"z‘LZ) _

N 2\ s—k
V2 N_
+;ck(l+n2+4) mod S*N71(R?),

where (cx)r>1 is a sequence of real numbers.

By using the above analysis, we established in [32] that the Cauchy problem associated to the
spatially homogeneous Kac equation

g+ Kg=T(g,9),
gli=o = g0 € L*(R,),
enjoys exactly the same regularizing properties

(1.15) vt >0,3C > 1,Vp,q € N, sup [WPO%g(t)| < CPTITL(pl)=s (g1) 2+,
v

w‘,_,

s

as the evolution equation (1.1). In this article, we consider the spatially inhomogeneous case and
show that the Cauchy problem (1.7) is locally well-posed for sufficiently small initial data in the
Sobolev space H(1:0) (R2 ), where

HOVD(R? ) = {ue AR ) : (Do) (Dy)?u € LA(RZ )},
equipped with the dot product

(fa g)(rl,rg) = <<D1>71 <D’U>7‘2f7 <-D:xv>r1 <Dv>rzg)L2(R2 )

T,V

where 1,70 € R, (-} = /142, with | - | the Euclidean norm. By taking advantage of the
hypoelliptic properties of the linear operator

P =90, + K,
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we prove that this Cauchy problem enjoys the same Gelfand-Shilov regularizing effect in the velocity
variable and Gevrey regularizing effect in the position variable as the following evolution equation

Big + (VH + (D)) T g = 0,
gli—o = go € HEO(RZ ).

The following theorem is the main result contained in this article:

Theorem 1.1. Let 0 < T < +oo. We assume that the collision cross section satisfies (1.12)
with 0 < s < 1. Then, there exist some positive constants €9 > 0, c¢g > 1 such that for all
go € H(l’o)(Riyv) satisfying

llgoll(1,0) < €o,
the Cauchy problem associated to the spatially inhomogeneous Kac equation

0rg +v0:9 + Kg =T(g,9),
g|t:0 = 9o,

admits a unique weak solution g € L>([0,T], H:O(R2 ) satisfying
”gHLw([O,T],H(lvU)(]ngv)) + ||/H%g||L2([O,T],H(1=0)(R§’v)) < Co||go|\(1,o),

with H = =N, + %2. Furthermore, this solution is smooth for all positive time 0 < t < T, and
satisfies the Gelfand-Shilov and Gevrey type estimates:

2541

1
IC>1V0 <t <TVE >0, [[(VH+ (Do) 900 < 7t25+1k0'“+1(k!) = lgoll.0)5
2s

i particular

V6 >0,3C > 1,V0 <t <T,Vk,l,p >0,
Cktitp+1
[0* 0,02 g(8)]| oo r2 ) < ==

2s+1 2541 25+
2s

(@)= (hH =" llgoll1,0-

(K1)

(k+1+p+3)+5

This result establishes a Gelfand-Shilov smoothing effect in the velocity variable and a Gevrey
smoothing effect in the position variable for the spatially inhomogeneous Kac equation

1
Vt>0,VzeR, gtz )€ Sllii (R,), Vt>0,YweR, gt - v)e G (R,).
2s

We underline that in addition to unveiling this Gelfand-Shilov and Gevrey regularizing effects, the

result of Theorem 1.1 also provides an explicit control of the Gelfand-Shilov and Gevrey semi-norms

of the solutions for small times ¢t > 0. The result of Theorem 1.1 is much more precise than the

basic results controlling the moments for the solutions of the Kac equation since the Maxwellian
1 i

solution belongs to the Gelfand-Shilov class S7, the regularity Sllj_i
2 2s

extended to the solution itself. In the result of Theorem 1.1, we also notice that the Gelfand-Shilov

and Gevrey regularity indices directly depend on the hypoelliptic properties of the linear operator

_2s
11 f 2z ) + (D) 75 fllr2re ) S [v0f + Kf |22z ),

x,v

of the perturbation g can be

with respect to the position variable. These a priori hypoelliptic estimates are known to be sharp.
However, it is still open to determine whether, or not, the Gelfand-Shilov and Gevrey regularity
indices in Theorem 1.1 are sharp. Indeed, we notice that the regularity with respect to the velocity
variable in the spatially inhomogeneous case is weaker than the one obtained in the spatially
homogeneous case (1.15). Furthermore, the results for the simplified model given by the generalized
Kolmogorov equation (1.3) may indicate that stronger Gelfand-Shilov and Gevrey regularizing
effects can possibly hold. It would be most interesting to understand further this optimality
since the solutions to the Cauchy problem (1.7) would be analytic for cross sections with strong
singularity 1/2 < s < 1, in the case when these stronger smoothing results hold.

Remark that it seems in principle possible to tackle similar questions for the Boltzmann equa-
tion. However several new difficulties are occurring in this case. In the first place the linearized
Boltzmann operator is more complicated than Kac’s linearization (the latter is simply a fractional
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power of the harmonic oscillator). For Boltzmann equation, one should first introduce the Landau
operator, say in three dimensions,
w*> 3 :
= 2(—Av + - 5) — Ag2 + finite rank operator.

The linearized Boltzmann operator £ appears essentially as the s-power of .Z;,. As a result, the
preliminary study of .2} is more complicated to handle, although optimal coercive estimates can
be proven, e.g. [30]. Handling the non-linear perturbations and getting a global existence result
for initial data close enough to the Maxwellian along with regularization properties seems a quite
realistic program, but the complexity of the trilinear estimates is dramatically increasing (see [19])
and some technical problems remain to be overcome.

The article is organized as follows. Section 2 is devoted to preliminary results on the Kac
collision operator. We first show that the bilinear operator (1.8) may be computed explicitly along
the Hermite basis (Lemma 2.1). By taking advantage of these algebraic properties, we establish key
trilinear estimates with exponential weights satisfied by the non-linear collision term (Lemma 2.4).
In Section 3 (Proposition 3.1), we make the explicit construction of a multiplier to derive the
hypoelliptic properties of the linear operator

P=vo, +K.
This linear model has the specific structure
Transport part in the (v, z) variables + Elliptic part in the v variable.

The non-commutation of the transport part v0, with the diffusive part I accounts for the hypoel-
liptic properties of this linear operator. Section 4 is devoted to the proof of the local existence
and uniqueness result (Theorems 4.2 and 4.3) for the Cauchy problem (1.7), whereas Section 5
provides the proof of the Gelfand-Shilov and Gevrey smoothing effects. Finally, the last section
is an appendix (Section 6) providing instrumental estimates satisfied by Hermite functions (Sec-
tion 6.1), some reminders about the Gelfand-Shilov regularity (Section 6.2), the definition of the
Kac collision operator as a finite part integral (Section 6.3) and properties of metrics on the phase
space (Section 6.4).

2. SOME COMPUTATIONS AND ESTIMATES ON THE KAC COLLISION OPERATOR

2.1. Computations of the Kac collision operator along the Hermite basis. This section
shows that the non-linear Kac collision operator enjoys specific algebraic features and that the
bilinear operator (1.8) may be computed explicitly along the Hermite basis (¢s,)n>0,

I'(Yr, 1) = g ihryr, oy €R.

The following lemma extends the result of [32] (Lemma 3.3) to all Hermite functions with odd
indices.

Lemma 2.1. Let (¢,)n>0 be the Hermite basis of L*(R) described in Section 6.1. We have
L(thr, ¥1) = apatbpsr, k120,
with

@z =\ [ BO) 607" (cos)"d0, 0> 1 m >0,

z
a,m = / 5(0)((008, 0)m — 1)d9, m>1; ago=0omti,m =0, n,m>0,
-
1

where CF = W stands for the binomial coefficients.

Proof. We deduce from (1.6), (6.1) and (6.2) that for all n > 0,

It follows that

17240, (€) = %g” T () = (_1\/3{5”@—%2’
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since .
/a\ 2 5 2
(6_7|U‘2)(f)*/ e 2l e e gy = ( 7?267%, a>0
R4 o2
We have
—_— — —_—
(2.1) 120 (€) = 200, (€), M P21 (€) =0,

where f stands for the even part of the function f,

. 1
F@) = 5 (F@) + f(=2)),
since the function v,, has the same parity than the integer n. We notice that

(_ 1)n+min+m

(2.2) (24, (€ 5in 0) 1/ 24y (€ cos 0) = —— " (s 0)" (cos )" T
= /Ot (510 0)" (c08 0)™ 1120 (6)

and

(2:3) 120 (0) = (12, n) 12 = (0, )12 = G,

where 0, ; stands for the Kronecker delta. It follows from (2.1), the Bobylev formula (6.12) and
the Fourier inversion formula that

F(U)Qnywm) = ﬂil/ZK( 1/21;[}271,7#1/27/}m)
~1/2 — .
-4 / (117201510 0)237240 (€05 0) — 217203 (O 2o ()| ",

When n = 0, we deduce from (2.2) and (2.3) that

2 o — .
(o) =25 [ [ 5(6) ((cos o)™ = )72, et

—(/ B(6) ((cos )™ — 1)d9)¢m.

When n > 1, we deduce from (2.2) and (2.3) that

(wans ) = /i [

us
4

5(6)(sin 8)2" (cos o)mdo) Danm.

el

On the other hand, it follows from (2.1), (2.3), the Bobylev formula (6.12) and the Fourier inversion
formula that

C(Yani1,%m) = *1/21(( Y1, i b)) =

—1/2 P P .
/ / 121 (750 )12 (108 0) — 17203011 (0) a1 205 (m) | €7 = 0,

when n, m > 0. This ends the proof of Lemma 2.1. O

2.2. Uniform weighted trilinear estimates for the Kac collision operator. We begin by
proving some instrumental estimates. We define

Ay = ’ B(60)(sin 0)?"(cos §)™df, n>1, m > 0.

‘We notice that

1
(24) vn > Lm > 07 7An,2m < An,2m+1 < An,2m-

V2

The following lemma extends the estimates obtained in [32] (Lemma 3.4):
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Lemma 2.2. We assume that the cross section satisfies (1.12) with 0 < s < 1. Then, there exists
a positive constant C > 0 such that for allm > 1, m > 0,

0<a2nm= \/0223+m/ B(6)(sin 6)*" (cos 6)™dh < %unm,

where

m\ S n %
i = (1 —) (1 )
Hn., (+n +m—|—1

Proof. Lemma 2.2 is a direct consequence of the following estimates:

1
(1) agnom S 3<1+ ) ,whenm>1,n>1
n4

1

1 =

(1) agnom+1 S 7(1—&—”) (1—}—2)4 when m > 1, n>1
ni

(443) aopm Sm®, whenm > 1,1<n<ng

~

. 1 1
(ZU) Q2n 2m Ea Q2n, 2m+1 5 1 when 0 S m S mo, 1 >1
n2

In order to establish these estimates, we beginning by noticing from (1.12) that
Ey
Apom = / (sin 0)2"~172%(cos 0)*™ 1 dp.
0

By using the substitution rule with ¢ = sin® #, we obtain that

e 1

4 1
/4 (Sin 9)2n—1—2s(cos 9)2'rn+1d9 _ 5 /2 t7z—1—s(1 _ t)mdt
0 0

This implies that

1
3
Apom ~ / t"ITS (1 — )™t
0
By recalling the identity satisfied by the beta function

()0
L@@ peyso, Rey >0,

1
B(x,y):/o 711 — )y ldt = T

we obtain that for all n > 1, m >0,

I'(n—s)I'(m+1)
'm+n+1—s)

1
/2 "I (1 —)™dt < B(n—s,m+1) =
0

It follows that

- (2n+2m)!T(n—s)I'(m+1)
(2.5) m n2m S 2n)!2m)! T(m+n+1—3s)

By using the Stirling equivalent

(2.6) Te+1) ~ 2773:(7)30, T(n+1) =nl,
xr — +00

we deduce that
n+m\i/2n42myntme\n,s e \m
Vaiantnan  (S05) () (5) ()
2nt2mEn2m S\ T e 2n 2m

nm (nm—s—1\r=s—L/m\m e mitn—s
X — e —
n+m( e ) (e) (ern—s) ’




GELFAND-SHILOV AND GEVREY SMOOTHING EFFECT FOR THE KAC EQUATION

when m > 1, n > 1. It follows that

1 + m)ner(n —5— l)nfsfl
27) SOy Aam < ()T
( ) 2n+2miin,.2m o (n + m) (m + n — s)m+n—snn
(m+mn)

N

NG

s n m+n—s
SJ(nm) (1_s+1) (1+ s )
n+m/ (n—s—1)s+1 n m+n—s
gmii(er”,)d_“ < (1+ )S,
nsSti n4

when m > 1, n > 1, since

T
(2.8) vz lve>on (142) <en
r
By using that
2n+2m+1
(29) C2n+2m+1 T‘Fl 2n+2m>

we obtain from (2.4), (2.7) and (2.9) that

(ern)S i fntm _ 1 s Al
e

3
1
when m > 1, n > 1. When m > 1, 1 <n < nyg, it follows from (2.5) that

\/CQ— (2n + 2m)! (m+1)
sz linom S (2m)! m—l—n—|—1—s)
By using the Stirling equivalent (2.6), this implies that
n+m 2n 4 2m\ntm e \m
Vrratnan 5 (F52) " (22E22)7 ()
2n+2m 2m ~5 m c om
N ) )
n+m-—s\e m+n—s ’
when m > 1, 1 <n < ny. We deduce from (2.8) that

n—+ m)’ﬂ-i-m s m+n—s
VO o Apom < ( :(1 ) S <me
2n4+2miin,2m o (Tl Tm— S)m+n_s + n+tm—s (n + m) ~m

when m > 1, 1 <n < ng. It follows from (2.4) and (2.9) that

[ 2
023+2m+1An,2m+1 s m,

when m > 1, 1 <n < ng. When 0 < m < mg, n>> 1, it follows from (2.5) that

C (2n + 2m)! I(n—s)
2nramBn.2m S @2n)! T(m+n+1-3s)

By using the Stirling equivalent (2.6), this implies that
n+m 2n 4+ 2m\ntm s e \ "
VCBiamAnan 5 (ML) (B2 ()
2n+2m 2m ~5 n c m
y /n—s—l(n—s—l)"—s—1< e )m+"—5
n+m-—s e m+n—s ’
when 0 < m < myg, n>> 1. We deduce from (2.8) that
/ n+m)"tm(n—s— 1)1
C2n+2m n,2m g ( ) ( )_
n"(m +n — sg)mtn=s

m n m-+n—s
<<n+—m>(1+@) (1_L+1> "
m—+1 n

~(n—s—1) m+n—s

when 0 <m < mg, n>> 1. It follows from (2.4) and (2.9) that

1

[ 2

023+2m+1An 2m+1 5 )
nz

A
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when 0 < m < mg, n> 1. This ends the proof of Lemma 2.2. O
In order to estimate the non-linear collision operator, we shall use the following lemma:

Lemma 2.3. Let r > 1/2. Then, there exists a positive constant C,. > 0 such that for all f,g €
L (R;),t>0,0<5<1, mn>0,

([ s i (@) (A5, () " ) [(A5.0 () " 9D e < Coll £l g2

with the Fourier multiplier

ex n+41 D, it
Mo (t) = plilyn+ 3+ (D) L )
1+dexp (t(/n+ 2+ (Dy)) =)

- stands for the Sobolev norm H"(R;).

where || - |

Proof. We begin by noticing that the operator .# ,(t) is a bounded isomorphism of L?(R,) such

that
1+dexp (t(y/n+ 2+ (Dy =
() = 2y (L")
exp (t(, /n+ % + (DI>) 25“)
Setting
h = %5,m+n(t)([(%6,m(t))71f] [('/%6@(75))719])’
we have

=N exp ./m—i—n—i— +
(2.10) h(¢§) =
1+5exp(t(1/m+n+ +
1 exp t(w/m—i—n—&— +( 25“ 1 1
=5 F(( Mo (1) f)* F((Ms54(t) 9),
7r1—|—5exp (,/m—i—n—i— +{ 2”1

where F denotes the Fourier transform. For all 0 < o < 1, we notice that

VO<O<T, 0)=(1-0)+6" >1,

since
e(0)=p1)=1, Y0<0<1, ¢"(0)=-0(1-0)((1-0)7>+6772)<0.
This implies that

(2.11) V0 <o <1,Ya,b>0, a°+b" > (a+b)°.
We also notice that for all x,y € RY, with d > 1,
1
(2.12) (+y)=QQ+z+y*)? =L z+y)l2 < [(1/2,2)[]2 + [|(1/2,9)]l2 < (=) + (),

where || - |2 stands for the Euclidean norm on R4+1. It follows from (2.11) and (2.12) that for all
m?” 2 07 n?f 6 R’

@) (yfmenrg+0) 5 < (fmr gy g icon) ™
< (e ) (o 3o o)™

x

We notice that the increasing function
e

F@) = 5

satisfies the inequality

(2.14) Vz,y 20, F(z+y) <3F(x)F(y),
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since

F(z+vy) 1-0 5(ew+ey) 1 1
> ——— =0 <1-6464— —<
Ve 20, FeEes =0 Trgars T T sty S O+ 3.

It follows from (2.13) and (2.14) that

(2.15) exp (t(y/m-+n + § + €) 7)
1+5exp(t(\/m+ (&) =)
o ep(tlymt s+ ) =T n+§+<g—n>)2%)
- 1+6exp(t(m+<n>)25il+( T
exp (t(ym+ 3+ )TT) eyt i+ - m)T)

Lt Sexp (¢(y/m+ 5+ () ™) 14 Gexp (¢(yfn+ 5+ (€ —m) ™)

N|—=
_|_

We deduce from (2.10) and (2.15) that

(216) ) < - [ 1Flate = nldn = 5-(71 = aD)e)

We notice that |f], |g] € LY(R¢) N L%(R¢), since f,g € #(R;). This implies that
= |f*19] € L' (Re) N L*(Re).

The Sobolev space H"(R), with > 1/2, is an algebra for the usual product

(2.17) Vr>1/2,3C, >0,vf,g € H'(Ry), | fgllar < Crllfllerllgllm-

We deduce from (2.16) and (2.17) that

3 "(1f] % |9 2:73 "FE US|+ |9 2:3 “(I1f] % g
1)l < e IKE" (LA T+ gDl 2n)? &)™ FF(f 1 1aDllz= = 5 IIF (1 f] * 19Dl
= 3IFDF (gDl < 3CAF U Da IF (gD e = 3CelIf - llgl e
since || FL(f DIl = 1)71F Nl z = |If]| - This ends the proof of Lemma 2.3. O

By elaborating on the result of the previous lemma, we may adapt the proof of Lemma 3.5
in [32] to derive the following trilinear estimate on the non-linear term (1.8):

Lemma 2.4. Let r > 1/2. Then, there exists a positive constant C, > 0 such that for oll f,g,h €
S(RZ,), t>0,0<6,<1,0<d <1, jl,jQEsz’thj1+j2§1

(T(f.9),h) 2@z )| < Coll fllro) 172

T,v

|(CUD2) f,9)s )2z | <

HER|L2z,),

x,v

‘ ((1+51¢;TL+51 (D2)) ™ Mo, O (Mo, () ™ (140:VH) £, (M, <f>)_1(1+51m)j29>’h>

(r,0)

< Crll fllr,

with

T oo
2.18 M, (1) = ——2 (t(VH +{Dx)) )2 = N7 s, ()P,
219 =0 1+ &y exp (H(VH + (D,)) =) ; )

where P,, denote the orthogonal projections onto the Hermite basis described in Section 6.1. In
particular, we also have for all f,g,h € y(RQ v)s

[(C(f.9), Moy | < Crllfllr,
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Proof. Let r > 1/2 and f,g,h € #(R2 ). We decompose these functions into the Hermite basis
in the velocity variable

+o0 too >
= Z f7l(gj)¢n(v)7 g(x,v) = Zgﬂ(x)¢n(v)7 h(m,v) = Z hn(@d’ (’U)
n=0 n=0 n=0
with

fu(@) = (f(2,),¥n) 2w,y gn() = (9(2, ), ¥Yn)L2®,)s  hn(x) = (W(2,), ¥n) 2(r,)-
‘We notice that

+00 1 +oo 1\ 2m 1
@219 Wfleo = (X Malirgy) s 1 fleo = (32 (n+35) " 1falirm,)
n=0 n=0

when m € R. We deduce from (2.18) and Lemma 2.1 that for all ¢ > 0,0 < 4§ < 1,0 < dp <1,
J1,J2 = 0 with j; + j2 <1,

(14 8VH +01(D)) ™ Mo, ()T (Mo, (1) ™ (1 0VH) " f, (Mo, (8) (14 0VH)9), )

S M, (
- [ D) 1+w£+51 (Z( > o

n=0 k+il=
kl>0

X [(///527]@@))_1 (1 + (51\/]6 + %)jlfk} {(///52’[(1?))_1 (1 + 51\/1 + %)jzgl})z/}n(v))dxdv.

This implies that

(14 61VH + 31(Da) ™ Mo, () (M (1)~ (14 61VH) " F, (Mo, (8) 7 (1 + 61VH) 9), 1),

B SRy e AL el

n=0 k-+l= 1+, + 5+ 61(Da)
>0

x <Dw>v//az,n<t><[(///52,k<t>)‘1fk] [(As,1(8)) " 91]) (D) hendi.
By using that

H(l +51\/1T;—|—51<Dx>)_1 (1 +51m)j1 (1 +51m)jz

since k + 1 =n and j1,jo > 0 with j; + jo < 1, it follows that

|((1 + OIVH + 01(D2) " Mo, (T (Mo, (8) ™ (1 4+ 61VH) ' f, (Ms, (8) ™ (14 61VH)9),h) )]

L(L2(Rz))

S5 Sl s ([ Aoas®) 5] [(Aaa®) ) Vil

n=0 k+Il=n
k>0

We deduce from Lemma 2.3 that for all t > 0,0 <6, <1,0< 62 <1, j1,42 > 0 with j; +jo <1,

. VH)I VH)I2
Ms, (t) < >F((1+61 H) s (1+6VH) )’h)(ro)‘

(2.20) Aq :‘<1+51\/§+(51 D M52(t) ’ M&Q(t)

400
<Co Y > lawdlllfill e lgell ey Vol 1 e
n:Ok}c+ll>:n
JA1>0

By noticing from Lemma 2.1 that
Aoan+1,m = 0, n,m=>0,
we obtain that

—+oo
(2.21) A <G N aawalll farll e @ |91 ) e |2 e

n=02k+Il=n
k,1>0
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Under the assumption (1.12), we recall from formula (A.17) in [31] (Section A.4.2) that

21+s

! B(0)(1 — (cos)™)db ~ Tl - s)n®

us
4

when n — 400, where I' denotes the Gamma function. It follows from Lemma 2.1, Lemma 2.2
and (2.21) that there exists a positive constant ¢; > 0 such that for all f,g,h € Y(R%vv), t >0,
0<01<1,0<62 <1, 41,52 > 0 with j1 +j2 <1,

(vt (e

(14 6,VH)?
1-1-51\/74-51( M, (t) . )’h>(r0)‘

M52 (t)

1
< edllfoll e, >Z(n+ 5) Ngallazr ey ln e

+oo
,U'kl
ter Y Il (X L5 e ol e,)).
n=0 2k+l=n

k>1,1>0

By using (2.19), we obtain that

+oo
1\s
1follrn 3 (n+5) Ngnllie @l )
n=0

+oo 1 “+o0 1
bl 3
< ol (X (n+ 5) Nonlir ) ( Z( 2) Mhalls.)
n=0 n=0
Furthermore, we notice that
= Pkl
n=0 2kti=n °°
k>1,1>0

ro) P2kt 5 (r,)

_ Pkl
= Z P

k>1,1>0
= 1Nz X i
= (l+*) ngIIHv-(Rm)( f7’5||f2k||H"~(Rm)||h21c+lHHr<Rm))~
; 2 ;kﬂwéﬁ
We deduce that
85 < [HEglo | Yo (X0 s M onll e I hoisa e, ) |
=0 k:1k%(l+%)§
—+oo +oo —+oo ﬂ%l %
< gl | 2o (X Mkl e, ) (ZW||hWH%mRI>)}
1=0 k=1 (I+3)
XX :“kz 3
o( 22 s oy Ml
1=0 k=1 "7

We may write that

XX ,U']el 3 = ﬂil 3
(;; oy vl ) =[7§||hn||zm>(%+zlznw)] :
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On the other hand, we deduce from Lemma 2.2 that
~9 1 1

Hi1 k2 (I+35)°
ORI D DL
3 1\g ™~ 3 1\s 3
ohpien P2 (+3) ohpien B2 (+3) ohiien K2
k>1,1>0 k>1,1>0 k>1,1>0
k>l k<l
1 I\ o= 1 INS fem 1 "1 1\$
< - - < - S )< -
$ X L) S A () (St S ) £ ()

i) kT when k>0, k>1, [>0; ,:kalN(H ) when 1 < k <1

since
t>0,

Z’U)

=< :ukl B
sl ) S 1#E ko

This implies that
(XX =T

=0k k
We conclude that there exists a pOblthe constant C,. > 0 such that for all f,g,h € (R
T1+6VH)g), k)

0<51<1 0<52<1,j17]220W1th]1+j2<1
-1 i
(1—&—51\/%)]1,]0, (Mgz( ))
< Coll fllro 12 gl ro) 72 Bl (r,0)

(146 VH+61(Da) " M, (DT (M, (1))
By taking t =0, 1 = 0, j1 = 0 and j3 = 0, we obtain that
29l o) 172 Al r0) < Coll £l 0y 12 gll 0y | H 2 Poll 0 -

(r,0) |

C,
|(F(f7g)a )(7 O)| =1 +6
On the other hand, we deduce from Lemma 2.1 that
91(@) ) n (0) ) B, v)dodv

(I'(f,9), )L2(JR2 =/ (7;)<k; aszk
k,1>0
*Z Z akl/fk z)gi(x

n=0k+Il=
k, l>0

(@) dz.

It follows from the Sobolev imbedding that there exists a positive constant ¢, > 0 such that

Z S awalll fellzoe @ llgell 2oy 1ol 2.

h)L2r2.,)

[(T(f,9),
n=0 k+Il=
>0
—+oo
<er Y > awallfillzr@o gl o @ l1nl L2,

n=0k+l=n
k,[>0

By substituting respectively |gi|lr2r,) to |lgillar®,) and [[hnllr2@®,) to [|hnl|lar®,) in formula
F9llre@e ) IHER L2z )

(2.20), the very same previous estimates allow to obtain that there exists a positive constant

O7 such that
I(T(f.9),h)
Lastly, we deduce from Lemma 2 1 that
+oo
O Mz = [ (3 (X el @) vn(w) )il o)dade

R2 n=0 k+Ii=n
E,1>0

—Z Z Otkz/ )gi(@) iy () d.

n= Okk+ll>0
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It follows from the one-dimensional Sobolev imbedding theorem that there exists a positive constant
¢ > 0 such that

|((P(Da)fr9), B)r2re )| < Z > lowall{Da) fill 2ol | 2, )

n=0 k+l=
>0

+oo
S awalllfllm @ il Lo o 1ol 22 e,

n=0 k+l=n
k>0

+oo
e > > ol fullm @ lgill e @ 1l 22 zo)

n=0 k+Il=n
k,0>0

IN

IN

By substituting respectively ||fx| a1 (r,) to || fellar@®,) and [|hy|z2®,) to [|hnllar(®,) in formula
(2.20), the very same previous estimates allow to obtain that there exists a positive constant
¢ > 0 such that

(T((Dz)f,9) h)r2( R2, I < el flla, 0)||H29|| ro)HH Pl L2 (r2
This ends the proof of Lemma 2.4. O

We shall also need the following a priori estimates:

Lemma 2.5. Let r > 1/2. Then, there exists a positive constant ¢, > 0 such that for all f,g €
S (R3 )

IHT( Dl oy < eell flleroy 9l r0)-

Proof. Let r > 1/2 and f,g,h € &(R2 ). We decompose these functions into the Hermite basis
in the velocity variable

+o0 +oo 00
f:an(ﬂf)i/Jn(’U)v gzzgn(‘r)wn(v)v h:Zhn(x)w
n=0 n=0

n=0

with
fn(x) = (f($7 ')ﬂ/}n)Lz(Rv)u gn('r) = (g(x, ')7 ’Q[Jn)LZ(R,,)a hn(x) = (h(x, ')a wn)L2(R7,)'

We also consider the functions
~ g +OO ~
(2.22) G=H"? :Zgn Yn(v), h=H3h=" hn(z)tn(v)

whose coefficients satisfy

1 — S8 - — 3
gn = (7’L+§) 29117 hn:(n""*) th'

We deduce from Lemma 2.1 and (2.22) that

(Hisr(fag)ah)(r,O) ( 2F(fa )7}~7')(r0)
+o00 -
= / <D:c>r7'l_%<2( Z aklfkgz)l/in( ))(Dzyh(aj,v)dmdv
R? n=0 " kti—

>0

2 +

70
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It follows from (2.17) that

+o0 s
. 1\—% -
(T 9 Mol £ D2 D Janal (14 5) W fegill e ol ce.

n=0 k+l=n
k,1>0

+oo s
1\—z2 ~
Co Y0 Y anal(1+5) " Ifelle e gt e il ey
n:()k'k—i-ll>=gL

+oo
<C Y Y lawalllfull @ 1G] e 1l e @) -

n=0k+l=n
k,01>0

IN

By using the very same previous estimates as in (2.20) in the proof of Lemma 2.4, we deduce that

(H°T(f,9), ) oy | S 1 Fler0) 172 Gl oy | H 2 ol 1.0
that is
|(H™°I(f, 9)7h)(r,0)| S ||f||(r,0)HgH(r,0)||h||(r,0)-
This implies that
IH™T(f, Dm0y S N ler0y gl (r0)-
This ends the proof of Lemma 2.5. O

3. HYPOELLIPTIC ESTIMATE FOR THE PRINCIPAL PART OF THE LINEAR INHOMOGENEOUS KAC
OPERATOR

We consider the operator acting in the velocity variable
(3.1) P =iv€ + af (v, D),

with parameter £ € R, where the operator A = af (v, D,) stands for the pseudodifferential operator

1 .
ay (v, Dy)u = — elv=wng, (v -+ w,n)u(w)dwdn,
2 R2
defined by the Weyl quantization of the symbol
2 VN®
(3.2) ao(v,n) = co (1 +n° + Z) ;

with some constants ¢y > 0, 0 < s < 1. This operator corresponds to the principal part of the
linear inhomogeneous Kac operator

v, + IC,

on the Fourier side in the position variable.
Let ¢ be a C§°(R, [0, 1]) function satisfying

¥ =1on [-1,1], supp ¢ C[-2,2].

We define the real-valued symbol

&n n* + v’
3.3 =_ ,
(33) = U
with
(3.4) A= (1402 +n%+£2)3.

The variable 1 stands for the Fourier dual variable of the velocity variable v, whereas the variable £
denotes the Fourier dual variable of the position variable z. We aim at establishing the following
result:
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Lemma 3.1. Let P be the operator defined in (3.1) and G = g% the selfadjoint operator defined by
the Weyl quantization of the symbol (3.3). Then, the operator G is uniformly bounded on L?*(R,)
with respect to the parameter & € R, and there exist some positive constants 0 < g9 <1, ¢1,c2 >0
such that for all 0 < e < ¢eg, u € L(R,), £ € R,

s _2s
Re(Pu, (1 - G)u)r2(r,) 2 cillH2ullfem,) + 1e(€) = ullfem,) — c2llulliz, ).
where H = —A, + % stands for the harmonic oscillator.

This lemma is an adaptation to the fractional diffusion case of the hypoelliptic estimate proven in
[24] (Proposition 2.1) for the Kramers-Fokker-Planck operator. Following standard notations [25,
29], we consider the following metrics on the phase space R?

v,n?
(35) Py = WAty
w2 M(o,1,€)
with
((v,m)? =1+ 0+,
(3.6) M(v,m,8) =140 + 2 £ A%F =1+ 0%+ 02 + (1 + 0>+ + €2) %7

Notice that the second metric depends on the parameter ¢ € R.
For a positive function 1 > 1, we define the space S(u, T'o) as the set of functions a € C*(R?, ,
possibly depending on the parameter £ satisfying

Va € N?,3C, > 0,%(v,7,€) € R®, |05, a(v,n,€)| < Cap(v,n,€)((v,n)) "1,

C)

whereas the space S(u,I'1) corresponds to C'™ (R%’W,C) functions depending on the parameter £
satisfying
_ Lol

Va € N*,3C, > 0,Y(v,n,€) € R, 105 ,a(v,n,€)| < Cap(v,n,§)M(v,1,8)” 7 .
The metrics I'g and I'; are admissible (slowly varying, satisfying the uncertainty principle and
temperate), see Appendix (Section 6.4). In addition, we need to verify some properties for the
weight p > 1 with respect to the metric I'j, namely the slowly varying property of ;o with respect
to I';, for the function space S(p,T';) to enjoy nice symbolic calculus properties. In the present
work, we shall work in the symbol classes

S{(v,m)™ To),  S(M™,Ty),

with m € R, which enjoy nice symbolic calculus since the function ((v,7n))™ is a I¢-slowly varying
weight and that the function M is a I'1-slowly varying weight uniformly with respect to the pa-
rameter £ € R, see Appendix (Section 6.4). The gain functions in the symbolic calculus associated
to these two symbol classes S({(v,n))™,T¢) and S(M™,T';) are respectively given by

AFO = <(U77l)>27 AF1 = M(U,T],f).

On the other hand, let us notice that the following inclusion holds

(3.7) S(m,T1) € S(m,Ty),
because
(3.8) ((v,m)* < M(v,n,€).

In the following, we shall frequently use the equivalence of norms
1 Zy\r
(39  VreR3C, >0, S| uls < Hopw((1 ot UZ) )uH < Col[HT e
T L
where H = —A, + % stands for the harmonic oscillator. This natural link between pseudodifferen-

tial calculus and functional calculus may be readily deduced from [23] (Proposition 4.5). We begin
by proving the following symbolic estimates:
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Lemma 3.2. For all m € R, the following symbols belong to their respective function spaces

2 2
i) (€)™ e S™,Ty) i) A™ € S(\™,Ty) iii)qﬁ(n)\tv ) €S(LTy) iv) ge S(1,T)
2s+1
2 2 2 2 2 2
n°+v . ot 2, VT\*®
) 2= (Agsal ) € 5Ty i) (1= e ) (10 + ) € sy

uniformly with respect to the parameter £ € R.

Proof. The assertion %) is trivial since the term (£)™ is independent of the variables (v, 7). On the
other hand, we easily derive from (3.4) and (3.6) that

Vae N2, 0%, (™) < am—lal < xmpr='5H
v,n ~ ~

uniformly with respect to the parameter ¢ € R, since the estimate M 3 < X holds uniformly with
respect to & € R. This proves the assertion 7). Regarding the assertion ii), we first notice that

on the support of the function
n? + 02
’ll) — 2 )
A 2s+1

the estimate 772 +02< 2)\ﬁ implies that

1 1
M2 ~ \2s+1

and ,
A%+ when |a| =0,
a1
9% (n? +2)| < { A= when laf =1,
192 (0 RS 1 when |a| = 2,
0 when |a| > 3.
The assertion #ii) then directly follows from assertion 4i). Next, we notice that on the support of
the function , ,
» n°+v
Az )
the estimate |[én| < A2+ implies that
2s5+2
A%+ when |a] =0,
|83,n(577)‘ S when |a] =1,
0 when |a] > 2.

Recalling that in this region M% ~ A%7T, the assertion iv) is then a direct consequence of (3.3)
and the assertions i) and 7). Recalling that 0 < s < 1, we deduce from (3.6), i), i), i9i) that

2 2, .2
¢ (" tv ) € ST, T))  S(M,T),
A2s+1 A2sF1

uniformly with respect to the parameter £ € R. This proves the assertion v). Regarding the last
assertion, we first notice that

(3.10) M? ~ {(v,7)),

on the support of the function

-y (220,

A2sF1

where n? + v? > AT By using that
2

(03 v s S— |«
00, (142 + %)) S (w1,
we deduce from #i7) and (3.10) that

(1 —w(”Q t“Q)) (1 2+ ?) e S(M*,Ty) C S(M,T}).

A2sF1

This proves the assertion vi). This ends the proof of Lemma 3.2. O
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The following lemma shows that up to controlled terms and a weight factor )\%7 the Poisson
bracket
Op19g  Op1 9y

H = = — — = —— —
1284 {p17g} 8,’7 v v 8777
with p; = v€ the symbol associated to the transport part of P, lets appear the elliptic symbol
{p17 —577} = §2a

in the region of the phase space where 1% + v? < AT

Lemma 3.3. With p;1 = v€, we have

2
leg:{v&g}: 2§s+2¢<n i ) +

\2s+1 )\25+1

with a remainder r belonging to the symbol class S({(v,n))?*,To) uniformly with respect to the
parameter £ € R.

Proof. Recalling the definition (3.3), an explicit computation of the Poisson bracket

Hy g = {p1,9} = {v€, g},

gives that
dg &2 (n +v )
V6,95 = =65 = o +7,
{06, 9} S877 )\gsﬁ v )\2s+1
with
+ o 2 2 4 g2
7‘762778 ()‘ 25“)%// (77 > + 52;4-28 |:7/} (77 P ):| .
/\2s+1 A2s+1 A2s+T
Recalling that M 3 ~ AT on the support of the function
2 2
n°+v
o(P2)
A2+
we notice that in this region
4s+3 )\girf when \a| =0
A2s+1  when |OL| = 0, 4s+3 ’
2 2 _ 2,2 A2+ when |o| =1
(3.11) (95, () < A when o =1, [07,(En°)| S 7, ’
0 when |Oé| > 27 A when ‘O[l = 2,
- 0 when |a] > 3,

because 72 + v2 < 20777, and we therefore deduce from Lemma 3.2 and (3.11) that

+ 2 +2 7654 _|_
W(ZHT>:—;+52% +¢<Zz?>€ﬂk%“Fﬂcﬂ1n)

Enon (A~

and

2 2 2 -
£ 5, {w (” sl )} € S(AZH,T).

A2s+1 A2s+1

By using now that

2., .2
v
n? + v~ AZF  on the support of 1 (77+2> ,

A 2s+1

it follows that

L0, [0 (Z25)] € st

A\ 2s+1 AZs+T
uniformly with respect to the parameter £ € R. This implies that the remainder r belongs to the
symbol class S(((v,7))?*,T1) uniformly with respect to the parameter ¢ € R. Finally, we deduce
from (3.7) and (3.8) that the remainder 7 belongs to the symbol class S({(v,7))?*,T) uniformly
with respect to the parameter £ € R. The proof of Lemma 3.3 is complete. O
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We shall now prove Lemma 3.1. Let ¢ be a positive parameter satisfying 0 < ¢ < 1. We consider
the multiplier G = g* defined by the Weyl quantization of the symbol (3.3). It follows from (3.1)
that
(3.12) Re(Pu, (1 —eG)u)r2r,) = Re(ag' (v, Dy)u, u)r2(w,) — eRe(ivu, Gu) 2 (r,)

—eRe(ag (v, Dy)u, Gu) 2(r,)-
We have
(313) Re(a’é’(v, Dv)”v u)LZ(Rv) = (a(l)u (Ua Dv)uu u)Lz(Rv%

since the symbol ag is real-valued. In order to estimate the first term, we use some symbolic
calculus in the class S({(v,n))*,To), and notice that

vZ\ 3 vZ\ 5
(314)  ag—co(1+n+ ) 8 (14n? + )7 € S, m)* 2 To) € S(1,T),

since 0 < s < 1. Then, it follows from (3.9) that there exist some positive constants C, &y > 0 such
that for all v € .Z(R,),

2, & 2 .
(3.15) (atf (v, Do), u) e = o[ 0p” (1402 + %) Yail| | = Cllullfe = ol ule — Cluf=.

Now, it remains to estimate the two last terms appearing in (3.12). We begin by noticing from
Lemma 3.2 that the operator G = g% is uniformly bounded on L?(R,) with respect to the parameter
¢ € R. By using (3.9) and (3.14), it follows that

(3.16) Re(ag (v, Dy)u, Gu) 2

- coRe(Opw((l—&-nQ-i-aj)%)u, Opw((1—1—772—&-%2)§>Gu)L2+O(||u||%2) = Ry+Ro+0([Ju22),
with

(317) Ry = coRe(Opw((l +n? + %2)%>U7G Opw((l +n? + Zj)%)u)m = O(|[H2ul)3»),
618)  Ro=coRe(0p" (14724 2) Ju fop (1402 + 2) ) g"]u)

We notice from Lemma 3.2, (3.7) and (3.8) that
g€ S(1,Ty),

uniformly with respect to the parameter £ € R. Then, some symbolic calculus shows that

w 2 ’U2 % w w s—2 w
319)  [op"((1+n*+ 7)) 9] € Op"(S({(v.m)* "% To)) € Op"(S(L,Tv)),
since 0 < s < 1. It therefore follows from (3.9), (3.16), (3.17), (3.18) and (3.19) that
(3.20) Re(af (v, Dy)u, Gu) 2 = O(|[H3ul72),

uniformly with respect to the parameter £ € R. Regarding the last term, we may write
1
(3.21) —Re(iwéu, Gu) 2 = 5([iv§,G]u,u)Lz,

since the operators G and v are respectively formally selfadjoint and skew-selfadjoint on LZ2.
Some symbolic calculus shows that the Weyl symbol of the commutator

(3.22) 27 [ivg, G,

is exactly given by

(3.23) 27 Hwe, g}

Then, Lemma 3.3 shows that the symbol of this commutator may be written as

2 2 2
(3.24) F60) =~z <" — ) .

2
2541 A2s+1
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with a remainder term r € S({(v,1))*,T0) C S({(v,n))?,Ty) uniformly with respect to the param-
eter £ € R. The symbol 7 is therefore a first order symbol for the symbolic calculus associated to
the class S({(v,n))?,To). By noticing that

2. s
S (e + )

we deduce from the Garding inequality (see e.g. [29], Theorem 2.5.4) applied in the class
S(<(U7 77)>23 FO))

that
2. s

) w < w 2 l 2 )
(3.25) [ w )z ] < (Op” (1402 + ) Jusu) | +O(ullfa),
uniformly with respect to the parameter £ € R. We deduce from (3.2), (3.9), (3.14) and (3.25) that

2 % 2 s
(3.26) () el S [|Op” (102 + ) ul|, + e = O ulfe),
uniformly with respect to the parameter £ € R. Setting
2 2,2
(3.27) . =t
AIN2s+1 A2s+1

it follows from (3.21), (3.22), (3.23), (3.24) and (3.26) that there exists a positive constant ¢ > 0
such that for all u € S (R,), £ € R,

(3.28) —Re(iv€u, Gu) > > (WWu,u) 2 — c|H2ul/2,.
Then, we deduce from (3.12), (3.13), (3.15), (3.20) and (3.28) that
Re(Pu, (1 — eG)u)rz > &o||H2ul|2s 4+ (U u,u) 2 — Cllul|2z — O(||H2ul2,),

uniformly with respect to the parameter £ € R. We can therefore find a value of the parameter
0 < g9 <1 and a new positive constant C' > 0 such that for all u € L (R,), 0 < e < gg, £ € R,

]. s
(3.29) Re(Pu, (1 — eG)u)r> > iao\mfuniz + e(Uu, u) 2 — Cllul)2..
By considering separately the two regions of the phase space where
772-1-1)25)\%“, n2+v22)\%+1,

according to the support of the function

o(TE0),

2
A2s+1

we notice that one can find a positive constant ¢; > 0 such that for all (v,n, &) € R3,

2 2 2 2 2 2
—+ v +v v S s s
(3.30) 2/\ési§¢(n/\22ﬂ >+(1_1’/}<UA211 ))(1+n2+—4) > AT > ¢ (€) B,

We notice from Lemma 3.2 and (3.6) that
£2 7 + 02 7 + 02 , 0%\ 2
et ) (o)) e+ 7)o,

are all first order symbols in the class S(M, ') uniformly with respect to the parameter £ € R. Tt
follows from (3.27), (3.30) and the Garding inequality that there exists a positive constant ¢y > 0
such that for all £ € R, u € ./ (R,),

2

331 @)+ (00 (1- (L)) (142 + %) Jur)

A2sF1

_2s
> ()7 g — e2lullie.
On the other hand, we notice from Lemma 3.2, (3.7) and (3.8) that
2, .2
- (T2 € 81,Ty) € 5(1,T),

A 2sF1
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uniformly with respect to the parameter £ € R. By using that

(1472 + %) € S{(w,m)*,To) € S({(v,m)*,To),

since 0 < s < 1, it follows that

(o5 (e + ) e st

uniformly with respect to the parameter £ € R. The two symbols

V2N § % + v? V2N 5
vt ) (me()) (e )
( Tty i ppen Tty

are therefore first order symbols in the class S({(v,7n))?,T). Starting from the estimate

2 2

(1 + ) 2 (v (TED)) 1+ %)’

another use of the Garding inequality shows that there exists a positive constant ¢ > 0 such that
forall ¢ e R, u € S(R,),

(or (1= 5) o) 2 (0 (1= # (5N (14 5 Y], ot

By proceeding as in (3.25) and (3.26), we obtain that there exists a positive constant ¢4 > 0 such
that for all £ € R, u € S (R,),

(3.32) (op”((1- w(”i;f)) (14724 2) V) | < call#iule

We deduce from (3.29), (3.31) and (3.32) that for all u € ./(R,), 0 < & < &g, £ € R,

Re(Pu, (1 —eG)u)rz > (27" e — cae) [HulFe + e1e(€) =5 [ull 2 — (C + cz8)|ull 2.

We can therefore find some new positive constants 0 < g < 1, ¢1, ¢co > 0 such that for all 0 < e < &g,
ue S(R,), £ €R,

s _2s
Re(Pu, (1= eGu)rz > erlH2ullfz + c1e(€) > [lullf — eaflulZ-.

This ends the proof of Lemma 3.1.

4. LOCAL EXISTENCE AND UNIQUENESS RESULT

Following [5], we aim at establishing the local existence and the uniqueness for the Cauchy
problem (1.7) with small initial F(1-%) (R2 ,)-fluctuations. To that end, we begin by considering a
linear equation with a source.

4.1. Local existence for a linear equation. We begin by proving the following existence result:

Lemma 4.1. There exist some positive constants co > 1, g > 0 such that for all T > 0, gy €
HIOR? ), f e Lo((0,T], HMO(R? ) satisfying

11l Le= o, 1), a0 (R2 ) < €0,

the Cauchy problem

0rg + 00,9+ Kg =T(f,9),
g‘t:() = 9o,

admits a weak solution g € L>°([0,T], HLO(R2 ) satisfying

191l Lo o,y 00 @2 L)) + IHEGN L2 o7y, 500 82 L)) < €0 [Ig0ll(1,0)-

T, v
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Proof. Let r > 1/2, T > 0. We consider
Q=0+ o +K-T(f,"))",

where the adjoint operator is taken with respect to the scalar product in H (%) (Ri,v). We deduce
from (1.11) and Lemma 2.4 that for all h € C*([0,T], % (R2 ,)), with h(T) =0 and 0 <t < T,

Re(h(t), Qh(t)) (r,0)

1d
S 5@(”’1”3,09 + Re(vdzh, h)(r.0) + Re(Kh, h)(r.0) — Re(T(f, k), k) (r0)

]. d ]. s s
- 5@(%@)\\@,,0)) + 5\|H2h(t)||%r,0) IR0y = Coll F Ol r0) [H 2RI,
since K is a selfadjoint operator and Re(vdzh, h)(, o) = 0. When

1
(41) ”f”LOO([O,TLH(T,O)(R%D)) < m7

it follows from the Cauchy-Schwarz inequality that for all 0 <t < T,

d 3 s
*@(Ilh(t)ll?ﬁm) + %HH?h(t)II@,m < 2[A(E) [l r,0) | QB () | r0) + 211B() 1710
that is p 5
—a(eztllh(t)llfr,m) + %eml\?’l%h(?ﬁ)llﬁm < 2¢*|B ()| (0 | QR(E) [ 0 -

We obtain that for all 0 <t < T,
2 3 55012 2 3 4 2(r—t) 2 2
1R @) |70y + %HHzh||L2([t,T],H(T‘YO)(R%U)) < A0y + ) ¢ |72 h(T) |7 0)dT

T
< 2/ ETTNRE) o) | QR(T) | 0y dT < 262THhHLw([O,T],H(T‘U)(ngu))||Qh”Ll([O,T],H(Tv‘J)(Rg,U))7
t
since h(T) = 0. We deduce that for all h € C*([0,T],.(R% ,)), with h(T) = 0,

(4.2) 1All Lo o7, 1m0 g2 L)y < 262N QA 10,1, 0 @2 ))-
We consider the vector subspace
W= {w=Qh:heC®(0,T],7R2,), h(T) =0} C L'([0,T], H"O(R2 ,)).

This inclusion holds since according to Lemma 2.5,

(T, )y 9) oy | = 1(, T(f,9)) oy | = [(HER, HT T (f, 9)) (09|
<NHT(f D oy 17 Rl (r0) < erll Fll im0yl (r0) I Bl (00
we have
ITCf, ) Rl 0y < crllfll o) Rl (0 -
Let go € H™0) (RZ ). We define the linear functional
g : W —C
w =Qh — (g0, 1(0))(r,0),

where h € C*([0,T],#(R2 ,)), with h(T) = 0. According to (4.2), the operator Q is injective.
The linear functional G is therefore well-defined. It follows from (4.2) that G is a continuous linear
form on (W, || - || 1o, 77, rer0) R2 ) )

1G(w)] < llgoll 0y I1R0)|(r0y < HgOH(r,O)Hh”L‘X’([O,T],H(T’O)(Rgm))

< 2€2T||go||(r,o)||QhHLl([o,T],H<r«0>(R;v)) = 2€2T”90H(r,0)”wHLl([O,T],H(T«U)(]R;U))'
By using the Hahn-Banach theorem, G may be extended as a continuous linear form on
LY([0, 7], H"O(RZ ),
with a norm smaller than 2e*”||gol|(.0). It follows that there exists g € L>=([0,T], H0) (R2.))
satisfying
lgll Lo (0,77, 0 (B2 ) < 2¢*" |90/l (r,0)
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such that .
vw € LY([0,7), BT (R2,)),  G(w) = / (9(8), w(t)) oyt
0

This implies in particular that for all h € .7 = C§°((—o0,T), . (R2 ,)),

T
G(Oh) = / (9(8), Qh(1)) 0yt = (g0, h(0)) 1.

This shows that g € L>°([0, T], H"?(R2 ,)) is a weak solution of the Cauchy problem

T,V

(4.3) {8tg+v8mg+’Cg =TI(f,9),
glt=0 = go-
We deduce from (1.9), (1.10), (4.1) and Lemma 2.5 that
(44)  HTKge L=(0,T), H"(RE,), HT(f,9) € L=(0,T), H""(RZ,,)),
since f € L>([0,T], H"0) (R2 ). We define
(4.5) g5 =1 +0VH+6D,) g, 0<s<1.

We notice that
(1+8VH +6(Da))gs € L=([0,T], H"OR],)) < L*([0,T], H"O(R] ).
On the other hand, we deduce from (4.3) that
(1+6VH +6(Da)) ' 0hgs = (14 0VH + 6(Dy)) *HH°T(f, 9)
— (14 0VH +0(D,) 2 (v9,9) — (1 + VH + (D)) >H"H*Kyg.
It follows from (4.4) that
(14 0VH +6(D,) " dhgs € L=([0,T), H"O(RZ ) € L*([0,T], H"O(R] ),
since 0 < s < 1. A direct adaptation of Theorem 3 in [17] (Section 5.9) shows that the mapping
t e 1lgs()1F.05
is absolutely continuous with
d
(4.6) T 19s@) 5.0y = 2Re(Dr95(2), 95(8)) r.0)-
By using the multiplier in H (%) (R2.,),
hs = (14 6VH + 8(D.)) g,

we deduce from (1.9), (4.5) and (4.6) that

1d
ia(ﬂgé(t)llﬁno)) + Re(Kygs, 95)(r,0) + Re(v29s, 95) (.0)

+Re([(1+ 6VH + 8(D,)) 1 v](1 + 6VH + 6(Ds))dugs. g5)
= Re((1 4+ 6VH + 8(D,)) " 'T(f, (1 + 6VH + 6(D.))gs), 95)
since [(1 + 6vVH + 6(D,))~*,K] = 0. We deduce from (1.11) that for all 0 <t < T, 0 < § < 1,
(47) 3950 + S G500y — o))
< ([ +8VH +6(Du)) ™, ol(L+ 0VH + 6(D2))295. 95) 1, |
+ (1 +5\/ﬁ+5<Dx>)*1r(f,(1+5¢77)g(;),g(;)(n0)|
+ [(1+ 6VH +8(D2)) " T (f,6(Dx)g5), 95) (0|

since K is a selfadjoint operator and Re(v0d.gs, g5)(r,0) = 0. We deduce from Lemma 2.4 with ¢ = 0,
01 =6,71=0and jo =1that forall 0 < § <1,

48) (A +0VH+6(D)) T (f, (1 +6VH)g5). 95) .0y < CollF N0 172 9511210

(T’O)

(T’O) ’
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On the other hand, it follows from Lemma 2.4 that for all 0 < § <1,
(4.9) [((1+0VH + 6(D2))"'T(£,6(Dx)95). 95 (. 0)|
= [(D(f, (Dx)gs), 6(D2)*" (1 + 0VH +6(D2)) " 5) 12z |
< Cellfllero (D) HE gsll 12 gz I6(D2)*" (14 8VH +6(Da)) " HEgsllr2me )

:ru :rv

< Collf oy 172 g5l (1,017 2 95

l(2r—1,0)5

since

16(D2) (1 + VH + 8(Du) " r2@e .y < 1.

x,v

Next, we check that the operator [(1 4+ dvH + 6(D,))~ %, v](1 + §VH + 6(D,))0, is uniformly
bounded on L*(RZ ,) with respect to the parameter 0 < § < 1. Let f € /(R3 ). We decompose
this function into the Hermite basis in the velocity variable

+o0o
= Z fn(x)¢n(v)7 fn(x) = (f(]), ')7'(/)n)L2(RU)-
n=0

By using the creation and annihilation operators v = Ay + A_, we deduce from (6.3) and (6.4)
that
(1 +5\F+5< )01+ 6VH + 6(D,)) 0, f
0(4/m + 54/ +3)
¢ I

1+5 n+3+6(D,)

SR Sl i) 8fn )n-1(v).

n:O 1+(5 Tl**‘i’(g

¢n+1( )

It follows that

H[(l +OVH 4 6(Da)) " 0)(L+ 6VH + 6(Da))0s fl 72 e

g \/TQn:\Qﬁ |(x +6\/@+6<Dz>> soufll’ .
1 5F 5(0.)) 5ol
Sl s (O (B0
This implies that
(4.10) (L + 6VH +6(Da)) 0l (1+ 6VH + 8(Da))0u fl 72wz ) < 4If 172w -
By taking r = 1, we deduce from (4.7), (4.8), (4.9) and (4.10) that for all 0 <t < T, 0 < 5 < 1,

ld 1 s s
5 95070 + =2 9501210, < 3llgs(O)L0) + 2Ca Dl HE g5 (1)

When the source satisfies (4.1) with » = 1, we obtain that for all 0 < ¢ <T,0 < < 1,

d 1., .
£(||95(t)||?1,0)) + 5\\H296(t)||f1,0) < 6llgs(®)1F1.0)-

It follows that for all 0 <t <T,0< 0 <1,
U 6tmmyia,e _
lgs(®)I1E1,0) + 5/0 S HE g5(7) 1710y dr < €NI(1+ 0VH +5(D2)) " g0l 0)-
This implies that for all 0 < § <1,

9517w (o,21, 002 ) + 172 9532 0,y o0 w2y < (€ + 1)l gollfy,o)-



26 N. LERNER, Y. MORIMOTO, K. PRAVDA-STAROV & C.-J. XU

Finally, by writing

2= LS (g1 Lise) IE 24
los@lf = 57 3 [ (€7 (14 0yfn s 5 +00) " Faantt- O

T+°° [1 -2 ded

”H295HL2([0T] H(.0) (R ))*/ Z n+ ) /Rg>2(1+5 n+§+5<€>> |fzgn(t’f)|22€7ﬂ_t’

with g, = (g(t,2,-), ¥n)L2(r,)> Where F. denotes the partial Fourier transform in the position
variable, we deduce from the monotone convergence theorem by passing to the limit when § — 0
that

||g||L°° ([0,T],H(1-0) (R2 ,)) +|[HE 9||L2 (0,7, HLO (B2 )) = <(C+1)e T||90||%1,0)'
This ends the proof of Lemma, 4.1. O

4.2. Convergence of approximate solutions. We prove the existence of a local solution for
the Cauchy problem associated to the spatially inhomogeneous Kac equation with small initial
fluctuations belonging to H(1:0) (]wa) as the limit of a sequence of approximate solutions:

Theorem 4.2. Let T > 0. Then, there exist some positive constants cg > 1, g > 0 such that for
all go € HEO(R2 ) satisfying

llgoll(1,0) < €0,
the Cauchy problem associated to the spatially inhomogeneous Kac equation

-T
(4.11) Org +v0:9 + Kg =T(g,9),
g|t:0 = 90,

admits a weak solution g € L>([0,T], H 0 (R2 ) satisfying
||g||L°° ([0,T],H-0) (R2 ) + ||H29||L2 ([0,7), HE0O R2 ) < CO||90||(1,0)~

x,v

Proof. Let 0 <A< 1, T >0 and go € H®0) (RZ ) be an initial fluctuation satisfying

- . - . €0 1 A
412 <2, with 0<& = f( , : ) < e,
(4.12) lgoll1.0) < o, v Sfo=m coe3T " 4CCrcpe3T’ 20/2CCLegetT/ ~ “0

where ¢g > 1, €9, C1,C > 0 are the constants defined in (1.11) and Lemmas 2.4, 4.1. We define
(4.13) Go(t) = exp (— dt(VH + (D)) i Jgo, 0<t<T,

with 0 < 6 < 1. We notice that

(4.14) 190/l Los (0,77, 500 R2.,)) < ll90ll(1,0) < €0-

We deduce from (4.14) and Lemma 4.1 that we can construct a sequence of solutions (§n)n>0
belonging to L>([0,T], H(*0) (R ,)) and satisfying the Cauchy problem

0 ~n aat~n ’C~n =T ~n7~n 5 >07
(4.15) {t9+1+v In+1 + Kgnt1 (Gn>Gnt+1); n >

Gn+1lt=0 = 9o,

together with the estimates

(4.16) ||gnHL°°( [0,7],HGO®R2 ) T HH2gnHL2( 0,7],H1.0 (R2 ) < coe’ HQOH(LO) < €o;

'rv x,v

for all n > 1. Indeed, if we assume that for some n > 0,
gnll Lo (0,77, 500 (2 ,)) < €0,
we deduce from (4.12) and Lemma 4.1 that there exists a solution
Gn+1 € LOO([O»T]»H(LO)(Ri,v))»
to the Cauchy problem (4.15) satisfying
gn-+1ll Loe 0,7, a0 (R2 )y + H’Hggn-&-l||L2([0,T],H(1v0>(R§,v)) < coe®™ [ goll(1,0) < <o-
Then, we consider the difference

(417> Wy = §n+1 - gnv
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for any n > 0. We deduce from (4.15) that for all n > 1,

(4.18) By, + vy + Ky = T (G, wn) + T (wn—1,Gn),
wn|t:0 = 0.

We define

(4.19) Wns = (14 6VH+6(D,)) tw,, 0<d5<1.

By using the multiplier (1 + 6vH + 6(Dy))"%w,, in HEO(R2 ), we deduce from (1.9) and (4.19)
that
1d
2.dt

+ Re([(l + 5@ + 5<Dm>)_ 711](1 + 5\/% + 6<Dw>)awwn757 wn,é)(l’o)
= Re((L+ 6VH + 8(Dy)) T (n, (1 + 6VH + 6(Da))tns), was) g o
+Re((L+6VH + (D) ' T((1+ 0VH + 6(Du))wn-1,5:Gn), Wn.s) (1 o)

—([wnsl171.0)) + Re(Kwn,s, wn 5)(1,0) + Re(0dntwn 5, wn.5) (1,0

since [(1 + 0vVH + 6(D,))*,K] = 0. We deduce from (1.11) and (4.10) that for all 0 < ¢ < T,
0<0<1,

1d 1 s
5 7 wns@lI0) + G172 wns(ONE0) = lwons (o)

< 2w st 0) + [(1+0VH +6(De)) T (G, (14 6VH)wn 5), wn8) 4 |
+ (14 8VH + 8(D2)) ™' T (G, (D2 )wn,5) W05 |

+ [((1 4+ 0VH 4 6(D2) "' T (1 + 3VH)wn 1,5, 5n) s Wn5) 1 0]

+ (L4 6VH + 8(D2) ' T(5(Da)wn—1,5,Gn) s Wnis) (1 o |

(4.20)

since K is a selfadjoint operator and Re(v0ywn 5, wn,s)(1,0) = 0. We deduce from Lemma 2.4 with
t= O, 61 = 6 and (jl,jg) = (0,1) that for all 0 < § < 1,

(421) (1 +6VH + 6(Dy)) T (G, (1 + 5\/77{)wn,5)7wn,5)(170)| < Culgnll1.0) 172 wn 517y 0)-
We also deduce from Lemma 2.4 with ¢t = 0, 6; = § and (j1,72) = (1,0) that for all 0 < 6 <1,
(4.22)  [((1+0VH +8(Dy) " 'T((1 + VH)wp—1,6, Gn) , W)

< G Gl 1,00 |1 H 2w sl (1,0)-
On the other hand, it follows from Lemma 2.4 with r = 1 that for all 0 < § <1,

(4.23) \((1+5\/ﬁ+6<Dx>)‘1F(§n75<D->wn6) Wn.s) (1,0)]
= |(T(@ns (Da)wn5) 6(Da)* (14 OVH A 6(D2) ) s )|
< Cillgalla.o Dy HEwn sl 2@z )I6(Da)*(1 + 6VH +8De)) T Hiwnsll 12w ,)
< C’l||§n||(1,o)||H%’wn,5||%1,o),

(1,0)’

since

(4.24) 18(D2)(1 + 6VH +6(D2)) " erzez,, ) < 1.

We also deduce from (4.24) and Lemma 2.4 with » = 1 that for all 0 < § < 1,
(4.25) \((1 +0VH + (D >) ( (Da)wn—1,6:Gn)s Wns) 1 0|

= [(C({Da)wn—1,6,Gn),0(D)* (1 + OVH + 6(Da)) " 0 6) e )|

< Cl||wn71,5||(1,o)|\H§§n||(1,0)||5<Da:>2(1 +6VH + 6(Dx))  HEwn sl 22 )
< Cl”’wn—l,ﬁll(l,O)HH%gn (




28 N. LERNER, Y. MORIMOTO, K. PRAVDA-STAROV & C.-J. XU

It follows from (4.20), (4.21), (4.22), (4.23) and (4.25) that

1d 1.
(4.26) 5 —(lwns®llti0) + G 1M wns(ON0) < Blwns(BI0)

+ 2C1 |G (8) 1,00 [H 2 wn s () 1710y + 2C1 [wn—1.6 ()] 1,0) 172 G (0l (1,0 172 win,5() | 1,0) -
We deduce from (4.16) that

1 d 3 El
**(Hwn,é(t)”%,o)) + @”szn,&(t)né,o) < 3||wn,5(t)||%1’0)

2dt
+2e* coCullgoll o |12 wn 6 (D)171,0) + 4CCT wn—1,5(OIF1 017 5 (1) IF1.0)-
It follows from (4.12) that

d ]. s 5~
2 (s @I 0) + 55172 wns 710y < 6llwns()F1,0) +8CCE lwn—1,6 (e 0) 172 Gn(B)IIEs 0
We deduce from (4.12), (4.16), (4.18) and (4.19) that for all 0 <t <T,0< 6 <1,

|
Jan 5Ol + 55 [ <S5

t
< 80C? / D w1 5(7) 120 [HE G (7) 4 0y

< 8CCE w16l qo71,m0.0 2 ) P2 G0l 72 0,11, 00082 )

S A2||U}n—17§|

2
Le=([0,T, HLO(RZ ,))°
It follows that forallm >1,0< § <1,

lwn.sll oo o0, 00 @2 ) < Mlwn—18llL= 0,11, 500 2 ,));

1#3 wnsll 20,11, m00 2, )) < V2O W1 6]l Lo (o,77,H0.0 R2 ))-
Recalling (4.19), we obtain that for alln > 1,0 < § < 1,

llwn,sll Lo 0,7, 0 (R2 )y < A [I(1+ SVH + 5<Dw>)71w0HLOC([O,T],HUvU)(R;v))

< Awoll L= jo,7, 50 (R2 )

[HE w5l 20,77, 00 @2, )) < V2ON[(1+ SVH + 8(Da)) " woll < (0,7, 100 (R2.,))
< V20X |lwol| oo o, 1), 0.0 (B2 )) -

By passing to the limit when 6 — 0, it follows from (4.19) and the monotone convergence theorem
that for all n > 1,

. nll Lo (j0,7], H®0 (R2 ) < 01l oo ([0, 1], H-0 (R2 ))>
(4.27) ool < Al |
(4.28) 1H2wnll Loy, H00 @2 L)) < V20N |wol| oo po.17, 00 @2, )) -
We deduce from (4.17), (4.27) and (4.28) the convergence of the sequences
(4.29) g= lim g inL=([0,T], H"O(RZ,)),

n—-+oo ?
(4.30) G= lim Hig, inL(0.7],H"O(R],)).

Let H = 1Ig, be the Heaviside function. The convergences

H(t)g= lm H()g, i L=((~o0,T], HEO®2 ).

H(t)G= lim H(t)H?§, in L*((—oo,T],H(RZ ),

n—-+4oo
imply
(4.31)  H(t)g= lm H(t)jn, Ht)G = lim H(t)H?§, in 2'((-00,T),.7"(R2,)).

n—-+00 n—-+o0o
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We obtain that for all ¢ € .7 = C3°((—o0,T), 7 (R2Z ,)),
(HWG, 9) 77 = lim (HO)HZGn, ¢)5+7 = lim (H(t)gn H2¢) 57

n—-+oo
=(Ht)g, H2p) 7.7 = (H{t)H2 g, p) 7+ 7,

where .#* stands for the anti-dual (anti-linear forms) of .# and where (-, -) #~ # denotes the duality
bracket. It follows that

(4.32) G="Hz2g.
By passing to the limit in the estimate (4.16), we deduce from (4.29), (4.30) and (4.32) that
”g”L‘X’([O,T],H(l’U)(]Rgm)) + ||H%9||L2([o,T],Hu»O)(Rg_U)) < 00€3T||90H(1,0)-
We find as well from (4.31) that
(4.33) O(H(g) = Tm O(HDF),  H(twdeg= lm H({)dug.
with limits in .Z#*. Tt follows from (1.9), (1.10) and (4.31) that
(4.34) H()Kg = lim H()Kgn,
with limit in .#*. On the other hand, we obtain that for all ¢ € .F,
(4.35)  [(H()T(gn> Gn+1), )7+, 7 — (H(t)L(9,9), ) 7+, 7|
< KH®OT(Gn = 9, Gnt1)s ) 77| + [{HOT(gs Gni1 — 9), ) 7,7
We deduce from Lemma 2.4 with r = 1 that

(HOT G — g, Gus1)s @) 55| < / H(O(C@Gn = 9, Gs1), 9)12ez,,ldt

<G /OT 190 (t) = 9Ol 1.0 H2 Gnrr (8) | 1,0 172 0(8) || L2 (2 )t
It follows from (4.16) that
(4.36) (HOT(Gn — 9 Gnt1), 0) 7+ 7]
< Cillgn = gll Loy, 500 @2 ) IHEGnr1ll 20,177,500 @2 ) IHE @l L2 (0,77, 22R2 )
< eoCilIHE @l 20,7, 2282 ) 190 — 9l Lo (o.17. 500 @2 ) -
We deduce from (4.29) and (4.36) that
(4.37) HETOO<H(t)F(§n = 9,Gn+1), )z, = 0.

We deduce from Lemma 2.4 with » = 1 that

(HOT(g, Gni1 — 9), ) 7+,2| < /RH(t)I(F(g,énH —9),9)r2re2 ,)ldt

T
< 01/0 gl 1,0 [1H2gn+1() = H2 ()l 1,0 H2 o) || 2Rz )t
It follows that

(4.38) [(H()L(9, Gn+1 — 9), )7+ 7|

< C1llgll o (o, 50 (r2 ))||H%<P||L2([0,T},L2(R§,v))||7'i%§n+1 - H%QHL?([O,T],H(lﬂ)(Rgm))~

x,v

We deduce from (4.30) and (4.38) that

(4.39) Jim  H(I(g, gosr — 9) =0,
with limit in .Z#*. It follows from (4.35), (4.37) and (4.39) that
(4.40) tim H(OT (G Go) = HOT(9.0).

with limit in .%#*. We deduce from (4.15), (4.33), (4.34) and (4.40) that
Oy(H(t)g) +v0,H(t)g + KH(t)g = H()I'(g,9) + do(t) ® go,
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that is,
{&g +v0:9 +Kg =1(g,9),
9git=0 = go-
This ends the proof of Theorem 4.2. O

4.3. Uniqueness. The following result provides the uniqueness for the Cauchy problem (4.11) in
Theorem 4.2 when the initial fluctuation is sufficiently small [|go[ 1,0y < 1.

Theorem 4.3. Let T > 0. Then, there exists a positive constant £g > 0 such that if
91,92 € LOO([O’ T]’ g0 (R;v))’
are two solutions of the Cauchy problem associated to the spatially inhomogeneous Kac equation

(4.41) {8tg+v3mg+’Cg =T(g,9),
gli=0 = go,
with the same initial fluctuation
go€ HYO(RZ,), lgollr.0) < &o,
satisfying
195l oo (jo,77, H 0 (R2 )y < €0, H2g; € LQ([O,T]»H(LO)(Ri,U)), J=12.
Then, the two solutions are identical
VO<t<T, gi(t)=galt).
Proof. Let g1, g2 € L>([0,T], H:9(R2 ,)) be two solutions of the Cauchy problem
g +v0:9+Kg=T(g,9),
{gt—o = Yo,
associated to the same initial datum
g0 € HYOR2 ), lgoll1,0) < €0
satisfying

3 s :
(4.42) ||gj||Loo([O’T]’H(1,0)(R§’v)) < @, Hz2g; € L2([O’T]’H(170)(Ri,v))7 ji=12,

where C, C1,ep > 0 are the constants defined in (1.11), Lemma 2.4 and Theorem 4.2. We consider
the difference f = g1 — g2. This function satisfies the Cauchy problem

(4.43) Ouf +v0uf +Kf =T(g1, f) +T(f,92),
fli=0 = 0.

We define

(4.44) fs=(1+oVH+ DN, 0<d<1.

By proceeding as in (4.18) and (4.19), we use the multiplier (1+8vH +6(D,))~2f in HIO(R2 ).
The very same arguments allow to prove as in (4.26) that for all 0 < 6 < 1,

1d 1 s
§$|\f5(t)||%170) + 5||H2f6(t)||%1,0) <3| £5(DF10)

+2C1[|g1() | (1,0 ||’H%f5(t)|\%1,0) +2C1 1 £5(t) 11,0 112 92 ()l 1,0) 172 £5 ()| 1,0)-
It follows from (4.42) that for all 0 < § <1,

1 d 2 3 s 2
3 st + 15172 S0
< 3||f6(t)||(21,o) + 201||91HLoo([o,T],H(LM(R;v))||H5f6(t)||%1,o) + 4CCf||f5(t)||?1’0)HH'fgg(t)H%LO)

3 s EX
<3O0 + 75172 5Ol 0) +ACCENFsOlIf1 o) 7 921 0)-
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We deduce that for all 0 < 6 <1,

||f6( i) < 8llfs @)t 0) (1 + CCFIHE g2(1)IIF1 0

that is,

d e
(101, gy ex0 (=5t =5CCE [ () pr)) <0
It follows from (4.42), (4.43) and (4.44) that for all 0 < § < 1,

t
1500170y < 10+ 8VE +6(D.0) " FO) gy exp (364 5CCE [ [#E () yr)

< ||f(0)||%170) €Xp (8T + 80012||H%92||2L2([o,T],H(l,O)(Rg’v))) =0,
since f(0) = 0. This proves that fs(t) = 0 for all 0 < ¢t < T. According to (4.44), this ends the
proof of Theorem 4.3. g
5. GELFAND-SHILOV AND GEVREY REGULARIZING EFFECT

We aim at establishing that the Cauchy problem (4.41) enjoys some Gelfand-Shilov regularizing
properties with respect to the velocity variable and Gevrey regularizing properties with respect to
the position variable.

5.1. A priori estimates with exponential weights. We begin by establishing some a priori
estimates with exponential weights satisfied by the sequence of approximate solutions (gn)n>o0
defined in (4.15) for sufficiently small initial data:

Lemma 5.1. Let T > 0. Then, there exist some positive constants c,e1 > 0, 0 < dg < 1 such that
for all initial data ||gol|(1,0) < €1, the sequence of approzimate solutions (Gn)n>0 defined in (4.15)
satisfies for all 0 < 01 <1,0< 6 < g, n>1,

(5.1) [|M5, (5t)§n||ioo([o,T},H<1,0>(Rg)v)) + ||H%M51 (5t)§nH%2([07T},H<1,0>(R%“))
+ ||<Dm>ﬁM61 (5t)§n||2L2([0,T]7H(1,0)(Rg,v)) < CGCTHQOH%LO),
with

exp (¢ (VH + (D T )
1+ 6y exp (¢ <f+< o))
Let 0 < <1and0 < d; <1. We define
(5.2) 56, = Ms, (68)Gn, 1 > 0.

Ms, (t) =

The functions h,, 5,5, depend on the parameters 0 < § <1 and 0 < §; < 1. For simplicity, we omit
this dependence in the notation and write h,, for h, s5,. We notice from (4.13) that

ho(t) = (1+ 61 exp (St(VH + (D)) =7)) g, 0<t<T,
satisfies

(5.3) 1holl Lo (0,77, 500 &2 ) < llgoll(1,0-

By using that
1

Gn = (Ms, (56)) " By = (61 + exp (= StVH + (D)) =57 o,
the equation
tGn+1 + v029n+1 + Kgns1 = T'(Gn; Gnt1),
reads as

1

(Ms, (5t))713thn+1 —S(VH+(D,)T exp (—6t(VH + (D >)25“)hn+1 + 00y (M5, () hnsa
+ (M, (56)) " Khpyr = T((Ms, (56)) ™ b, (Ms, () ™ i),
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since according to (1.9), the linearized Kac operator K = f(H) is a function of the harmonic
oscillator acting only in the velocity variable, which therefore commutes with the exponential
weight (Ms, (575))_1. It follows that

2s

S(VH + (D,)) =
1+ 61 exp (6t(\/ﬁ + (D)) 231)
+ Khyy1 = My, (56T ((Ms, (58)) " By (Ms, (68)) ™ hnga).

By integrating with respect to the £-variable and coming back to the direct side, we deduce from
Lemma 3.1 and (3.3) that we can choose the positive parameter 0 < & < ¢¢ in order to ensure that
the multiplier

(55) Q:Q(UvDWDI):1_ng(vaDv7Dz)a
is a positive bounded isomorphism on L?(R2 ) such that for all u € ./ (R2 ),

(5.4) Ophnyr — Bt + My, (5t)0(Ms, (58)) " Ophn i1

(5.6) Re((v0y + ag (v, Dy))u, QU)LQ(RE,U) >
C1||7"[%U||2L2(1R32,v) + 615H<D1>ﬁu”%2(ﬂ{im) - CQHUH%Q(R;U)'

Furthermore, we notice from Lemma 3.2, (3.7) and (3.8) that the symbol Q(-,&) belongs to the
symbol class S(1,T) uniformly with respect to the parameter £ € R. The operator @ is therefore
commuting with any operator of the type f(D,). It follows from (1.13), (1.14) and (5.6) that there
exist some positive constants c3, ¢4 > 0 such that for all u € y(Riyv),

(5.7)  Re((v0y + K)u, Qu)r2(rz ) = 03||H%“H%2(Rgm) + 03||<Dx>ﬁu||%2(R%U) - C4||u||%2(Rim)'
Applying the estimate (5.7) to the function (Dg)u, we obtain that for all u € #(R2 ),
(5:8)  Re(v0, + K, (Do) Qu)paea ) = coll Ml gy + sl (D) Fruly ) — callul?y g,
since the operator K only acts in the velocity variable. We define
(5.9) Pnsy = (1+ 6aVH + 62(Dy))  hy, 0< 8y <1.
By using the multiplier
(Do) (1 + 02V H + 62(D0)) T QL+ 02VH + 62(Di)) " i,
in LQ(R;U), we deduce from (5.4) that

1d
Sq Q" hn 1.6, 171 0) + Re(Khn 11,55, (D) *Qhng1.5,) 12z )

+ Re((1 + 02VH + 02(Dy)) ~* Mj, (5t)v(Ms, (5t)) T Ouhnyt, (Da)?Qhnt1,6,) ;»

~Re( S(VH + (D)=
1+ 61 exp (St(VH + (D,))=+1)
= Re((1 + 6aVH + 62(D)) My, (56)T((Ms, (5)) ™, (M, (58))

(RZ,.)

hn+1,527 <DI>2th+1,52)

L2(RZ )
1
thrl) ) thJrl,Ez) (1,0

since [IC, (1 4+ dovV/H 4 d2(D,)) '] = 0. We obtain that
1d
YT 1Q"*hn11.6, 1.0y + Re((v0z + K)hn 1.6, (Dx>2th+1,az)L2(R3m)

+ Re([As, 5, (5)0 (45, 5,(6) " = 0] Oshns1 6, (Da)?*Qhnt1.6:) 12 g2

< O(VH + (D))= hg1,6, [l 0,0) |(VH + (D) 551 Qhn1,6,  1.0)

+ [ (14 82V H + 02(D2)) ™ My, (ST (M, (58) oy (M5, (68)) ™ o), QPing1,62) (5

(5.10)

with

2s
M, (6t eIt (VHA(Da)) 41
(5.11) A4, (6t) = 5 (01) _

L+ 02VH +62(Da) (14 6yv/H + 62(Dy))(1 + 6168t/ HH (D) 1)
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It follows from Lemma 2.4 with » = 1, (5.8) and (5.10) that for all 0 < 6 < 1, 0 < §; < 1,
0<8<1,0<t<T,

Ld

2 dt
< Cillhnlla,o) M2 hnga .o 1H2 Qhnts,l1,0) + callhnyrs 110
+ Ol (VH 4 (D)) =5 hg6, | 1,0) | (VH 4 (D)) 55 Qhr 5.l 1,0)

-1

+ }(I:A61762 (6t)U(A51,52 (6t)> - U] awhn+17527 <DE>2th+1752>L2(Ri W) |

We use the following instrumental lemmas:

(5.12) QY * P16, P10y + callHE Putr 6 71,0y + el (D) =5 R, 1710y

Lemma 5.2. There exists a positive constant ¢; > 0 such that for all f € 7 (R2 ),
I(VH A+ (D))= fll,0) < eslIHE flln,0) + es1{D2) =7 fll 1,0y
Proof. Let f € .#(R2 ). We decompose this function into the Hermite basis in the velocity variable

+oo
F@,0) = ful@)tn(v),
with )

fn(x) = (f(l‘, ')7'(/Jn)L2(Ru)'
We deduce from (2.11) that

A+ 7l = (e 3 [(02( e 1+ ©) T o)
n=0

2 s

< (3 [+ 1)+ 0] R E) = UH g+ 1D 1, )
n=0

S IH™ fllao) + (D)= fllaoy S IHE Fllro) + 1(D2) = fll1,0)-
This ends the proof of Lemma 5.2. 0

Lemma 5.3. For all 0 < m < 1, there exists a positive constant ¢, > 0 such that for all
fes®R:,),

IH™Qfll1,0) < EmlH™ fll1,0)-
Proof. We notice from (3.9) that

613 1471w S o (1472 + %) Y]

L2(R3 )
2 2

<Joor(141+ ), #lfor (17507 a0

4 4

since [@, (D,)] = 0. By using again (3.9), it follows from the fact that the multiplier @ is a bounded
operator on L*(R2 ) that

)
L2(R3 )

G.14) Qo ((1+n2+ )" )0

2\ m
< w 2 l ’
L2(R2 ) ~ Hop ((1 Tt 4 ) )<Dm>'f L2(R2_,)
S IH™(Da) flle2ez ) = H™ fll1,0)-
On the other hand, we notice from (3.7), (3.8), (5.5) and Lemma 3.2 that

[opw((1 0’ + f)m>7Q} € Op” (S({(v,m))>™2,T)) € Op™(S(1,Tv)),

4
uniformly with respect to the parameter £ € R, because 0 < m < 1. This implies that
2
w 2 l m < —
(5.15) [[ope (17 +F)7) Q1] L, | NP lsez ) =100

We deduce from (5.13), (5.14) and (5.15) that
[H™Qf 1,00 S IH™ fll1,0)-
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This ends the proof of Lemma 5.3. O
We deduce from Lemmas 5.2 and 5.3 that
I(VH + (D))= fll1,0)[|(VH + (D)) =T Qf [l 1,0
S (M2 a0 + IKD2) = flla,0) IHEQF 0y + (D) =5 QFll1.0y)
S AHE FIIf0) + (D) =5 £l 0),

since the operator @ is bounded on L*(R2 ) and commutes with the operator (D)=t Tt
follows from (5.12) and Lemma 5.3 that there exist some positive constants 0 < dg < 1, ¢g,¢7 > 0
suchthatfora110<§<50,O<51<1 0<0<1,0<t<T,

(5.16) Q1 2h, 2llfr0) + ol ME hnrr 5, 1F1,0) + 6l (D) T hr 6171 o)

2 dt
< crllhall 0y 112 Pt l1,0) 172 g6, 1,0y + €7l ns1.6, 17 0)
-1
+ ’ ( [A61,52 (6t)v (A61,62 (6t>) - U} amh’ﬂ+1,62 9 <DZ>2QhTL+1,62)L2(]R2 'u) | .
We use the two following instrumental lemmas:

Lemma 5.4. There exists a positive constant ¢, > 0 such that for all f € S(R2,), 0 < 4§ <1,
0<6<1,t2>0,

(D25 (s, (50)0(Miy (51)) ™ = ). < E18t5 (D) =5 Fl 10

Proof. Let f € S (R3 U) We decompose this function into the Hermite basis in the velocity variable

400
v) = Z fn(@)n(v),  fu(z) = (f(=, ')7¢n)L2(]R,U)-
n=0
By using the identities (6.3) satisfied by the creation and annihilation operators
v v
At = (5 =0 )b = Vit sty At = (5+0)bn = Viitur, v=A4 + A,
we notice that

(5.17) ( exp(&t(\/»+< D E 251) Ul+51exp (5t(\/>—|—< &)=+ = ) v)}" s
' 1+ 6y exp (VA + (€) 7)) exp (St(VH + (€))77) .

exp(5t( n+32 +<§>)2S+176t<1/ %+<§>>2‘%>—1

<1+51exp(5t( n+%+<£>)23i1>)
. iofn(g)\/ﬁexp <6t< n—%+<§))m—5t( n+§:<§>)25“)—1wnh
n=0 (1 + 41 exp (5t(1/n — 1+ <§>) 2S+1)>

where F, stands for the partial Fourier transform with respect to the position variable. We notice
that for all x > 0,

'¢n+1

+o00
= Z fn(f) vn+1
n=0

2s 2s S ol dy
(5.18) OS(\/mHO)““*(\/EHQ)““:25+1/ VIV + (€))7

S
<

T (2s+ DVE(VE 4+ (€)FE

Tt follows from (5.18) for alln >0,¢>0,0<§ <1,

()Sexp(ét(y/n—k%—k(f))ﬁiil—6t(\/n+ + )2%1) /OAleydy</0Azeydy,

with

3

A, :515[( n+§+<§>)23i1 —~ (\/n+%+<£>
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sot

(25—1—1)\/@( n+ 1 +<€>)ﬁ

This implies that there exists a positive constant cg > 0 such that for allmn >0,t>0,0< 4§ <1,

(5.19) 0 < exp (§t(\/n+ ; + <§>) =i _ 5t(,/n+ % + <5>)Q%) 1

sot 23 st 1 1
< ot cst -3 T 31,
< exp (2L < esite (n) (g

(25 + 1)y /n+ 3() 77

On the other hand, we have for alln > 1,¢>0,0<§ <1,

o<i-ew (~af(ynrg+10) 7 - (frogr )T = [ e
ao=aif(yfn 3 10) 77 (- @)™

It follows from (5.18) that
o<i-ew (~af(ynr5+16) ™ - (fh-g+0) ")

<a|(yn+te@)T - (Yn-te@)TT < s -
[( 2 ) ( 2 ) } (25—1—1)\/7?%( n_%+<§>)zs+1

This implies that there exists a positive constant cg > 0 such that foralln >1,¢>0,0<§ <1,

B20) 0<1-e (= at](yfn+ 3+ ©) 77 - (yfn-3+©) ) < st Hig

By noticing that

Ay =

with

—1

V2r||(D,) 5 (Mg, (8t)v (A451(6t)) =) fll 10y =

’k£>ier< exp (SHVH -+ ()FH) 1+ brexp SV + (§)7F )__U).;'f
1+51exp(6t(f+<> HT) exp (SH(VH + (€)= ’

we deduce from (5.17), (5.19) and (5.20) that for all 0< 6 <1,0<d; <1,¢>0,
- 7J)f||(1 0)

. CS&ecst(Zan||H25H+1(]R )n<:> ) +095t(z (Y e—— )<n>) .

It follows that there exists a positive constant cig > 0 such that for all 0 < § < 1,0 < é; < 1,
t>0,

)

LZ(]ngv)

-1

Vr||(D y3551 (Mj, (5t)v(Ms, (6t))

Nl=

N

(D) 25 (M, (3ty0 (M, (61)) ™ — fmun<qﬁwm%§jwughﬂﬂ )
< e108te! | (Dy) 75 £l 1.0,
O

Lemma 5.5. There exists a positive constant ¢o > 0 such that for all f € y(Riv), 0<6<1,
0<6 <1,0<t<T,

Mo, (58) v, VH] (M5, (58) ™ ]| 1.9 < E2(0TeT + 1) ]l 1.0)-
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Proof. Recalling that v = A + A_, we may write

-1

(5.21)  Ms, (8t)[v, VH] (Ms, (5t)) " = Ms, (58)[ A, VH] (Ms, (51))
+ M51 (6t) [A—a \/ﬁ] (M51 (6t))

—1

Let f € #(R2 ). We decompose this function into the Hermite basis in the velocity variable

+o00
v) = Z fn(@)n(v),  fu(z) = (f(=, ')7¢n)L2(]RU)-
n=0
By proceeding as in the proof of Lemma 5.4, we notice that

Fo (M5, (58)[ Ay, VH) (M5, (58)) " f)

S 1 3y 7 edt ”+%+<5>)%i175t( n+%+(§>)%i1 _q
n=0

1+ ;% n+5+(€)) 2T

Fo(Ms, (61)[A_, VH] (M5, (51)) " f)

5t(\/mm T HEN THT —5t(/mt T H(E) T _

_an (\/n+;—\/n—;)(e NPT =Y = 1—&-1)?%—17

where F,, stands for the partial Fourier transform with respect to the position variable. We deduce
from (5.19) and (5.20) that

(5:22) || Ms, (5)[As, VH] (M, (58) " £]17, o,

2n + 2 12
24”+2 (022651 (n) ™€) T + 1)l fullfs e,y < (P2 + 1)

(5.23) ||J\/f51 (ot [A—a\r](Mle 5t) f”(l 0)

2n _ .
<D (@M THO T + Dllullin ) < (67 + DSy

It follows from (5.21), (5.22) and (5.23) that there exists a positive constant ¢z > 0 such that for
all fe #(R2,),0<6<1,0<0,<1,0<t<T,

| M, (30)[o, VI (Ms, (56)) 1|1 < (6T + 1) fll 1.0,
This ends the proof of Lemma 5.5. d

We notice from (5.11) that

As, 5, ()0 (As, 5, (68)) " = v = Mg, (58)o(Ms, (58)) " — v

52<D1’> -1 -1
+ 1 —|—62\/g—|—(52<D9¢> M51 (5t)[1}, \/ﬂ] (M51 (5t)) <DI> :
It follows that
|([As,.5,(6t)v(As, s, (575)) — 0] 0zhnt1,55 <D‘”>2Qh”+1’52)L2(R§,U)|
’([Mal (0t) (M[sl (6t)) to — 0] 03hn11,55 Qhnt1,6,) 10)‘
Dy) -1 -1
| oy Mo OO0 VAN (M5, (50) ™ (D2) 7 Duhot e Qhsrn) |
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that is
| ([A61,52 (5t>U(A61,62 (5t)) - U] 89chn+1,52a <D$>2Qh"+1»52)L2(R§_U) }

< |({Da) [Mé (580 (M, (5)) ™ = 0] g1, QD) Ouhins15,) 1 |

-1

D)
‘(1 + 62xf+ 62(D >M§1 () lo, VHI (M5, (80) @0’

since according to (5.5), @ is commuting with any function of the operator D,. We deduce from
Lemmas 5.4 and 5.5 that there exists a positive constant c1; > 0 such that for all 0 < § < &,
0<6;<1,0<6,<1,0<t<T,

(5.24)  |([As, 0, (0t)v(As, 5,(51))

<Dac>7lazhn+1,52 5 th+1,52)

—1
- 'U] axhn+1,527 <Dx>2th+1152)L2(R§ 1J)|

< 0115T6611T||<Dx>ﬁhn+1,62||%1,0) + 011||hn+1,62||%1,0)7
since @ is a bounded operator on L?(RZ ) and

[
1+ 52\/77-1- 02(Dy)
It follows from (5.16) and (5.24) that for all 0 < § < g, 0< 91 <1,0< 65 <1,0<t< T,

L(L2(RZ,))

1 d s - R
§§||Q1/2hn+1,62||%1,0) + 6l H2 hngrs 110y + (c6 = c18Te™ ) (D) =7 g1 5,171 )

< erllballpoe o,y ma o @2 ) IHE Pl o) + (e7 + cin) [ Prsr6 [1F1,0):
since according to (5.9), we have
1#H2 hni15, 0l 1.0) < IH2 hnsall 1.0y
We may assume that the constant 0 < §y < 1 is chosen sufficiently small so that
c1100TeM T < C—G.

Under the assumption

1nll 2oy 0022 ) < 277

we obtain that for all 0 <0 < dp, 0< 91 <1,0< 5, <1,0<¢t<T,

d S S
£||Q1/2hn+1,52 1710y + 2661 H2 P15, 110y + €6ll{Da) =5 hngr.6, 171 )
< col|H2 hnt1lGr0) + 20121Q" * Pns1.6 130

with c12 = (7 + 1) [[(QY?) | £(z2) > 0. We deduce from (4.15), (5.2) and (5.9) that for all
0<86<38,0<6,<1,0<8,<1,0<t<T,

t
QY2 1,5, () 1710y + o / 220 (2 HE Bpr,5, (D) 10y + D) 7 g 6, (7)1 )T

t
< 22| QYV2(1 + 62VH + 52<Dx>)7190||%170) + 06/0 e2er2(t=m) ||H%hn+1(7')||%1,0)d7'

t
< QY% 1 gl + o / D HE Dy (1) 707,

since

hnt1,6,(0) = (14 62VH + 62(Dg)) " (1 +61) g0
By passing to the limit when d; — 0, it follows from (5.9) and the convergence monotone theorem
that forall 0 < § <dg,0< 61 <1,0<t<T,

t
QY i1 (1) 1710y + co / 22T (2 H 5 B ()17 0y + (D) 58 hargr (7)) ) )

t
< QY22 12y g0 liP o) + o / D HE D1 (1) 71,0y
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We obtain that for all 0 < § < dg, 0 < §; < 1,

(5:25)  Nrnt1 I e 0,71, 000 g2, )+ 12 Pnta I o, 11 a0 a2y
+ H<Dm>mhn+1||%2([0,T],H(170)(Rgm)) < c13e”2 7| gol[? 0y,

with 122
Q2
7‘(’([’2) > 0

C6

Ce Ce ) <z

a. e, — T — & )

2c7” 2c74/crzec2T 0

where the positive parameter £y > 0 is defined in (4.12), the sequence of approximate solutions
(gn)n>0 is well-defined. Then, we consider the sequence (hy)n>0 defined in (5.2) and we notice

from (5.3) that

c1s = Q212 1QY2) Mz 12y +
Under the assumption

(5.26) lgoll(1.0) < €1, With 0 < &1 = inf (50,

C6
”hOHLN([QT],H(LO)(R%U)) < lgoll(1,0) < %
On the other hand, we deduce from (5.25) and (5.26) that the condition
Co
[l oo o, OO 2 ) < 2o
implies that
Co
<2
~ 2cq
We may therefore deduce from (5.25) that for all 0 <6 < dp,0< 6 <1, n>1,

ns1ll Lo o, 00 (R2 )

rnll e o 17, 00002 ) IHE Bl 0 7, 100022 )
+ D) T hallZa o 1y, oo ez yy < c13€** 7 [l901F1 0)-

This ends the proof of Lemma 5.1. By passing to the limit when é; — 04 in the estimate (5.1), we
deduce from the monotone convergence theorem the following result:

Lemma 5.6. Let T'> 0. Then, there exist some positive constants c,e1 > 0, 0 < dg < 1 such that
for all initial data ||gol|1,0) < €1, the sequence of approzimate solutions (Gn)n>0 defined in (4.15)
satisfies for all 0 <6 < dg, n > 1,
1Mo(88)gnl[ 7 jo.17, 100022,y + 1 H2 Mo ()Gl L2 0,17, mr000e2 )
+ H<DI>mMU((st)gn”%2([0,T],H(1w0)(R?Tm)) < ceMgollfr.0)s

with
Mo(t) = exp (t(VH + (D)) 757).

5.2. Gelfand-Shilov and Gevrey regularities. We begin by noticing from the Cauchy-Schwarz
inequality and (2.18) that for all 0 < § < dp, 0 < 01 < 1,

exp (20t(VH + <Dx>)227+1)
(1+ 81 exp (St(VH + (D)) =57))

M5, (56)F (1) 0 = ( Z(ONIC)

< [1Mo(268) f ()| 0 1 (B) ] 1,09

By passing to the limit when §; — 04 in this estimate, we deduce from the monotone convergence
theorem that for all 0 < § < g,

1Mo (58) f (0)1F10y < 1Mo (268) F ()l 1oy I F (D)l 109
This implies that for all 0 < § < Jyp,

(5.27) ||M0(5t)f||2Loo([o,T],H<1,0>(Rg’v)) < [[Mo(268) f1| oo 0,7y, a0 r2 ) L F | oo (0,77, 0 (2 ) -

By using that (§,)n>1 is a Cauchy sequence in L ([0, T, H*0) (R2 ), we deduce from Lemma 5.6
and (5.27) that (Mo(6t)gn)n>1 is a Cauchy sequence in L>([0, T], HO(R2 ),

~ ~ T ~ ~
[ Mo (68)Gn+p — M0(5t)9n||2Loo([o,T]7H<1,0> (R2.,)) < 2y/ce? 901l 1,0yl Gn+p — gn||L°°([O,T],H(1v0)(]R§:’v))a
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for all 0 < § < 570. Let h be the limit of the Cauchy sequence (MO(%Ot)gn)nZl in the space
L>([0,T], H:9(R2 ). By noticing that

(MO (%Ot)) Hmo([o T],H(.0) (B2 ,))

- (MO(%%)) (MO((SQOt)gn_h)HLOO([O,T],H(l*O)(Ri,v))

do
- |
2 Leo([0,T],H®O(R2 )

< Mo(

we deduce from (4.29) and the uniqueness of the limit that g € L>°([0,T], H(LO)(Ri’v)) the solution
to the Cauchy problem (4.11) is equal to

(5.28) g=(Mo(é—ot))ilhzexp(—ft(\/»—l-( >)2e+1)h.

On the other hand, it follows from Lemma 5.6 that for all n > 1,

90 )\ ~ T
(5.29) |0 (%21) g0 < Ve  llgollcuo)-

L= ([0, T],HLO(RE )

By passing to the limit in the estimate (5.29) when n — +oo, we deduce from (5.28) that
_2s

(5'30) ||h||L°°([O,T]7H(1>U)(Rgm)) = H exp ((51t(\/77 + <D$>) 2ot )gHL°°([O,T],H(1>0)(R§,v))

cT
<Vee? |lgoll1,0),

with §; = %" > 0. Next, we notice that

2s+1 . EEo LA S
(5.31) Vz,c>0, J:kexp(— s+ cx2s+1) = (Me%ﬂ +l)
s ck
2s s s 2s
_ (R (Calr 1) -
ch:lk k! —_ cQsjlk )
since
5T )k s
k>0, (ETT  eami

E! -
Let f € #(R2,) be a Schwartz function. We decompose this function into the Hermite basis in
the velocity variable

+oo
U) = Z fn(x)wn(v)v fn(x) = (f(%, ')7’(/)n)L2(RU)-
n=0

We deduce from (5.31) that for all k > 0,
(5.32) [(VH + (Da))F exp (= Sut(VH + (D)= £I|7, o

L L) o)

< (BALEER
2851 2§+1 (10)

It follows from (5.30) and (5.32) that the solution to the Cauchy problem (4.11) satisfies for all
0<t<T, k>0,

) :
V¥ exp ( — 0it(VH + (Dm>)2‘§%) exp (51t(\/’7'7 +(Da)) = )9(t)’|(1,0)
k

25 4+ 1\ %5k (k) 72
< ( 2501 ) t25+1 \[6 3 ||90H(1 0)-
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This implies that there exists a positive constant C' > 1 such that

2541

1
(5.33) VO<t<T,Vk >0, [[(VH+(D)*9)l0) < Eckﬂ(kw) 5t

|90H(1 0)-

It proves the Gelfand-Shilov property in Theorem 1.1. We may therefore notice from (5.33) that
forall0<t<T, k>0,

gl v ez, S IVH +(D2)*g(#)ll(1,0) < +oe.
This implies in particular that
VO<t<T, g(t)eC®R2,).
On the other hand, we notice that for all p > 0,

(534) 6Pg t T, U Zaxgn t T wn( ) with gn(t,l') = (g(tVTv ')ﬂ/}n)Lz(Rv)a

since

8§gn(t, 17) = (8£g(tv Z, ')7 wn)L2(Rv)-
It follows from (5.34), Lemma 6.1 and the Sobolev imbedding that there exist some positive con-
stants C1, Cy, C3 > 0 such that for all k,I,p >0, e >0,

—+oo
(5.35)  [[0*0L0Pg(t) | Lo s L2y < D 10290 (B) ]| oo o) 10° 0 ton [l L2 e )

n=0

02 k41 2 +1 23+ g
=0 <75) oo 1—906,0)e 25 " + 5n’
' 1nf(522f1 1) (k) Z 1029 (E) || oo () (( 0) 0)

CQ k41 25+1 5+1 2041, 3T
<G(mry) Z e
= N5 1) (k1) ZH P g ()| 1 ) (1 = Gp0)e o),

where 4, o stands for the Kronecker delta, i.e., 5,“0 =1ifn=0, dp,0=0if n # 0. We notice that
the estimate (5.30)

VO<t<T,  [lexp (it(VH + (D)% )g(0)]{,)

+o00 2s
1 2s+1 2
nE_OHexp( 1 \/n+2+< ) gn(t) Hl(Rw)fce l190ll{1,0y < +

implies that

1 PeEas e
636 wo<t<T, s e (aieyfnt 5+ (00) T )ou@] < Ve T laolloo.
We have

19212 a) = = / €2 (€)% g (€) [P

— o [leen (= 2ne(fnt 5 + €))% exp (31t (fn+ 5+ )7 Vante)[ae

‘We obtain that

s

1 1 2s+1
P 2. < — - 5
(537) 10290 (D)l 2.y < 5 eXp( 51t<”+ 2) )

X /R<§>2Pe*51t<5>2“2% <§>2’ exp (51t(\/n + % + <§>> ﬁ)%({)rdﬁ

_2s
YO <t <T,¥p>0,Y¢ €R, (£)Pe ntO=H

By using that

51t 25— s s s s
(a7 (&)= )p)%eﬂslt(g)ﬁ (28 +1\ = (p!) 241 (28 + 1\ = 2041
p' S(Slt o 361t
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it follows from (5.36) and (5.37) that for all 0 < ¢ < T, n,p > 0,

T o1t 1\ =557 2s + 1\ %p 2541
(5:33)  102gu ()l < Ve T llgoll oy exp (= 5 (n+5) 7 ) (S) T )
2 2 so1t
We deduce from (5.35) and (5.38) that for all 0 < ¢ < T, k,I,p > 0,

[0 0,029 (8)]| o (=, L2 (R, ))

T Cy k+l 95+ 1\ 255p 2541 2541
< C ( ) ( ) k! ! N2t
> \/Ee 2 ||90||(1,0) 3 inf(€252tl , 1) S(Slt ( ) ( ) (p ) 2

+oo s s
2 1 - o1t 1\ =77 o1t 1\ =7
5 (0 e (5 B ) o (- 1))

If we choose

851t

T 4s+2
we obtain that there exist some positive constants Cy, Cs > 0 such that forall0 < ¢t < T, k,l,p > 0,

O

2541

=) Nlgoll 1.0y

F()
kol k414
(539) ||U avag ( )HLW(R L2 Rv)) < C C i 2s+1 (k+l+p) (k )

where
+o0o 1

F(x):Zexp(—%(n—l— §>ﬁ>, x> 0.

Let 19 > 0 be a positive parameter. We notice that for all z > 0
2s+

(5.40) g F ()

f(élx( +1)ﬁ11)25§1+n0 < 511'( +1>T11) 1
"~ 1 n 5 exp 1 n 5 (61 1 E 25:1_,'_770

+oo 1
< ||ZU =TT Lo [O+oo)z et < +00
= (F(n+ d)zm) A

It follows from (5.39) and (5.40) that for any 1y > 0, there exist some positive constants Cs, C7 > 0
such that for all 0 <t < T, k,l,p > 0,

5.41 kol 9P g (t < CoCr kN (1)
(5.41) [07OL08 g ()| Loe (ro L2(R ) < t%w”pﬁ)m( N (1)

We deduce from (5.41) and the Sobolev imbedding theorem that there exist some positive constants
Cg,Cy,C19 > 0 such that for all 0 <t < T, k,l,p >0,

[0*8,029(t)]| Lo 2 )

< Cs(|[v*0,0g(8) | L~ (v, L2 Ro)) + 00T O09(1) ]| Lo (v, L2k )))
k+i+p

C9Cho (k)5 (1) %

T B (kHAp3)+m0
It proves the Gevrey smoothing property in Theorem 1.1.

2541
( D™= llgoll(1,0)-

2s+1

2541
(p!) 2 [|goll(1,0)-

6. APPENDIX

6.1. Hermite functions. The standard Hermite functions (p, )nen are defined for v € R,

O e T (L R Ry e Pl

Vrmve S Var

where a is the creation operator

= (ot

The family (¢, )nen is an orthonormal basis of L2(R). We set for n € N, v € R,

(62) Uale) = 270,27 %), = (2 L)y,
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The family (¢, )nen is an orthonormal basis of L?(R) composed by the eigenfunctions of the

harmonic oscillator
2

H:—Av+%:2(n+%)ﬂpn, 1=>"P,,

n>0 n>0
where IP,, stands for the orthogonal projection

Pnf = (f7 wn)LQ(Rv)wn'
It satisfies the identities

(6.3) Apthy = V4 1hpy1,  A_thy = Vnipy 1,
where
v d
4 AL = -7 —.
(6.4) + 5 + v

Instrumental in the core of the article are the estimates on the Hermite functions given in the
following lemma which are an adaptation in a simpler setting of the analysis led in the work [27]
(Lemma 3.2).

Lemma 6.1. We have

|
(6.5) Vgl >0, 0ROkl e < 2ty EELEDE
n:
1
(6.6) Vr> §,V€ >0,Vn, k,0 >0,
3

i 23Hrer \RHL
[v* Ol L2y < VE(U;fénp)eXp@Tnﬁﬁ—+5np)(ﬂﬁfgiij> (k)" (1)

where 6y, 0 stands for the Kronecker delta, i.e., 00 =11ifn =0, 6,0 =0 if n #0.

Proof. The estimate (6.5) is trivial if k = = 0, since the family (¢, )nen is an orthonormal basis
of L%(R). We notice from (6.3) and (6.4) that

(6.7) v = (Ay + A )Y = vV + 11 + Vi1,
(6.8) Outn = 5(A- — A = Vil — VT T,

This implies that
1
[v¥nllLz@)y = V2 + 1, [|0v¥nll2@®) = 5V 2n+1,

since (¥ )nen is an orthonormal basis of L?(R). It follows that the estimate (6.5) holds as well
when (k,1) = (1,0) or (k,1) = (0,1). We complete the proof of the estimate (6.5) by induction.
We assume that the estimate holds for any k,1 > 0, kK + 1 < m, with m > 1. Let k£, > 0 such that
k+1=m. It follows from (6.7) and (6.8) that

karlaqlﬂ/}n - \/mvkall)w"Jrl + \/ﬁvkait/)n,1 - lvkaiilrwna
1 1
Vo, = 5\/ﬁvk87i¢n_1 - §m”kaf}¢n+1-
We deduce from the induction hypothesis that
040k gnlzamy < VAT T ) + VAl O e + U0 nllzace

< ght (I{;—H—H”L—&-l)!(l+ Vvnyn+1 )><2k+1 (k+1+n+1)!

n! 2 2/(k+i+tnt )(k+titn nl

)

1 1
[R5 4 p2ry < 5\/ﬁ||”ka7lﬂ/}n71”L2(R) tgvnt 1w 0 tbn 1l L2 ()

EIETESIEN Vi ) < or [EETERE DY
n! 2 2/(k+i+n+)(k+i+n)/ ~ n! '

< 2k
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This ends the proof of the estimate (6.5). We then prove the estimates (6.6). When n = 0, we
deduce from (6.5) that

VE, 120, [0*0ollram < 26k 1) < 275 VIV

since
g (k+D)! Kt
Con=""Jy =2
It follows that
1 23 +7er ket
> = > kgt < = NrIn”
VP2 2Ve > 0,k 020, ok obviollia < \/E(inf(gr 1)) kD)7,
since

22+7‘ r

HVRVILS () ) < VB () Ry

The estimates (6.6) therefore hold when n = 0. When k =1 = 0 and n > 1, the estimates (6.6)
also hold since [|1y||z2(r) = 1. From now, we may therefore assume that £ +1> 1 and n > 1. We
notice that for all n > 1,

+oo nA " +o0o
nl=T(n+1)= / e tdt = (7) / ne” (=g s
0 € 0

= (2) et () 0men = ()

Vn>1, n? <vV2Vnle?.

1
vr > §,V€ > O,

so that

It follows that
1 n T
(6.9) Vr > §,Vn >1, n? <+V2Vnler < \/i(n!e") .

We distinguish two cases. When 1 < k + 1 < n, we deduce from (6.5) that for all r > 1/2, ¢ > 0,

(6.10)  [[v*0 |2z < 2° (’”fli'*”) < (k41 +n)"F <25 2n)'
25 \ b+l P AN 25\ k+1 L
<(%) <<k+z>!>r((€(,’§))) < (B explern )tk +-11y

When k41 >n > 1, we deduce from (6.5) and (6.9) that for all r > 1/2,

(k+14n)!
n!

k+1

<(k+1+n)T <252k +20)F
< V228 ") (k4 1))

It follows from (6.10) and (6.11) that for all r > 1/2, e >0, n > 1, k+1>1,

(6.11)  [[v*OhtnllL2r) < 2°

[0* 0 on| L2 m) \f( 2er )>k+lexp(srn21r)((k:+l)!)r.

inf(er, 1
By using that
(k+1)!
KN
we finally obtain that for all # > 1/2, e >0, n > 1, k+1>1,

k k+1
= Cjpy <287,

2%-&-7" T k+1 .
[[0* 8, | L2 ) < \/5( ‘ )) exp(ern2 (kD)™ (1.

inf(er, 1

The estimates (6.6) therefore hold when k +1 > 1 and n > 1. The proof of Lemma 6.1 is
complete. 0]
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6.2. Gelfand-Shilov regularity. We refer the reader to the works [18, 22, 35, 36] and the refer-
ences herein for extensive expositions of the Gelfand-Shilov regularity theory. The Gelfand-Shilov
spaces S#(R), with p,v > 0, p+ v > 1, are defined as the spaces of smooth functions f € C*(R)
satisfying

3C > 1, [9f(v)] < CPH(phre el weR, p>0,
or, equivalently

30 =1, supuIal f(v)] < CPHF (pE(g”,  pog > 0.

veER
These Gelfand-Shilov spaces S%(R) may also be characterized as the spaces of Schwartz functions
f € Z(R) satisfying
3C>0,e>0, [f)|<Ce " weR,  |fE) <ce " ceRr

In particular, we notice that Hermite functions belong to the symmetric Gelfand-Shilov space

Sl1 g (R). More generally, the symmetric Gelfand-Shilov spaces S (R), with ¢ > 1/2, can be char-

acterized through the decomposition into the Hermite basis (1., ), >0, see e.g. [36] (Proposition 1.2),

1
f€SHR) & f € LA(R), Fto >0, [[((f,¥n)r2 exp(ton)), 5o/l < +00
& feLX(R), 3o >0, ™™ fllie < +oo,

where H = —A, + % is the harmonic oscillator and (), >0 stands for the Hermite basis defined
in Section 6.1.

6.3. The Kac collision operator. For ¢ a function defined on R, we denote its even part
. 1
#(0) = 5 (#(0) + 0(=0)).

The following lemma is proved in [31] (Lemma A.1):

Lemma 6.2. Let v € L}, (R*) be an even function such that 6%v(0) € L*(R). Then, the mapping

¢ € C?(R) — lim v(0)(¢(8) — (0))do = /1 /(1 —1)0%(0)¢" (t0)dbdt,
o JR

=70+ Jjo|2e

defines a distribution of order 2 denoted fp (v). The linear form fp (v) can be extended to C1!
functions (C' functions whose second derivative is L= ). For ¢ € CY1 satisfying ©(0) = 0, the
function v@ belongs to L*(R) and

(fp(v), ) = /V(9)¢(0)d9.
Let g, f € Z(R) be Schwartz functions. We define

Ff,g(w) = f(v)g(vs), @54(0,v) Z/R(Ff,g(Rew)—Ff,g(W))dv*7

w

where Ry stands for the rotation of angle # in R2,

Ry — (cos@ —81119) — exp(8J), J=Rs.

[NE]

sinf  cosf
We have
Frg(Row) — Fr g(w) = f(vcosf — v, sin)g(vsind + v, cosd) — f(v)g(vs),
so that by using the notations f, = f(vl), f' = f(v'), f« = f(vi), f = f(v) with
v =wvcosh —w,sind, v, =vsinf +wv,cosd, v,v, €R,
we may write

or.a(0,0) = / (6 S — guf)dos.

Furthermore, we easily check that its even part as a function of the variable 6 is given by

B1.0(0,0) = /R () — g.f)dov. = /R (@f — (§).f) dv.
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Notice that for each # € R, the mapping
(f,9) € Z(R) x ' (R) = ¢y ,4(0,-) € 7 (R),

is continuous uniformly with respect to . In fact, the function Fy, belongs to .7(R?). By
denoting II; the projection onto the first variable, this implies that the function

Ulaffgof,g(ﬁ,v) = /Hl(w)lﬁfiﬁf,g(ﬁ,w)dv*,

is bounded since

(bfsg(07 w) = FfﬁQ(Rew) - Ffvg (w) € y(RQ)’
As a result, the function v — ¢ 4(0,v) belongs to (R) uniformly with respect to 8. Moreover,
the second derivative with respect to 6 of the function ®; g4,

Ff (" w) (% Jw, e Jw) — Fi, (e®7w)e? w,

belongs to .#(IR?) uniformly with respect to . This implies that the second derivative with respect
to @ of the function ¢y, is in #(R) uniformly with respect to 8. We define the non-cutoff Kac
operator as

K(ga f)(U) = <fp(]l(*%,i)ﬂ)7 QOf)g(',U»,

4
when 3 is a function satisfying (1.5). Since ¢ 4(0,v) = 0, Lemma 6.2 allows to replace the finite
part by the absolutely converging integral

Kon)e)= [ 80 [ (1L ~5.)dv)ao = K. 5)0)

16
It was established in [31] (Lemma A.2) that K(g, f) € (R), when g, f € #(R). We also recall
the Bobylev formula providing an explicit formula for the Fourier transform of the Kac operator

P —~

(6.12) Ko 1O = [ 50) [f(esin)fccoso) - 50)fic)] av.
01<%
when f,g € .(R). The proof of this formula may be found in [31] (Lemma A.4).

6.4. Metrics on the phase space. The purpose of this section is to check that the two metrics
r dv? 4 dn? dv? + dn?
0= ———— 1= —
((v,m))?” M(v,n,€)’
defined in (3.5) are admissible (slowly varying, temperate, satisfying the uncertainty principle).
We refer the reader to [29] (Definition 2.2.15) for the definition of an admissible metric and the
definition of an admissible weight associated to an admissible metric. Regarding the metric Ty,
this property is established in [29] (Lemma 2.2.18). As powers of the gain function associated
to the metric Ty, the functions ((v,n))™, with m € R, are admissible weights for the metric T'g.
Regarding the second metric
dv? + dn?
1= 57—
M(v,n,¢§)
we begin by checking that this metric is slowly varying. To that end, it is sufficient to check that

3C > 0,3r > O,V(Uhnl) c RQ’V(UQ,UZ) c Rz,Vf €R,
[v1 —v2]” + [ —m2|? 1

< —M <M < CM .

M(vl,nl,f) <r= C (1117771’5) >~ (’Ug,’l]g,f) < (’Ulvnlaf)

Indeed, when
[v1 = v2]? + | — o
M(/Uhnhf)

=,
it follows from (3.6) that

(6.13) M(v2,m2,6) = 1+ 03 + 03 + (1 + 03 + 13 + )77 <1+ 0f +n2 + [¢[=r
< 14202 + 207 + 2(v1 — v2) + 2(m1 — 12)% + €771 < 2(r 4+ 1) M (v1, 1, £),
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since 0 < s < 1. On the other hand, we have

2
Zs+1

M(vi,m, ) =1+ 02+ + (L+ 02 + 2 + )T S 140 + 07 + €
<1+ 203 4+ 202 + 2(v1 — v9)? 4+ 2(m1 — 12)° + |€]FFT < 2M (va, 2, €) + 27 M (01,71, £).

This implies that M (vi,n1,£) < M(ve,1n92,£) when 0 < r < 1. This proves that the metric I'y is
slowly varying. According to [29] (Lemma 2.2.14), it is sufficient for checking the temperance to
establish that

3C > 0,3N > 0,Y(v,m) € R? Y(vg, 1) € R VE € R,

M(U277727€)
M(Mﬂ?hf)

Indeed, we deduce from (6.13) that

M (v, m2,€) 2(v1 — v2)* + 2(m — 72)?
M(v17771,£) S 2+ M(Ulanlag)

since M (vy,m1,€) > 1. This proves that the metric T'; is temperate. This metric also trivially
satisfies the uncertainty principle since M (vy,71,£) > 1. This implies that 'y is an admissible
metric on the phase space ]Rgm uniformly with respect to the parameter £ € R. As powers of the
gain function associated to the metric I'y, the functions M™, with m € R, are admissible weights
for the metric I'; uniformly with respect to the parameter ¢ € R.

< C(1+ M(vr,m, &) (Jor = val> + 1 — )™

< 2(1 4 M(vg,n1, ) (o1 — v2f* + m — m2]?)),
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