Contrôle continu $n^{\circ}2$ (19.12.06)

Exercice $n^{\circ}1$:

On considère une variable X de loi gaussienne centrée réduite, i.e. $X \sim \mathcal{N}(0,1)$.

i) Quelle est la densité de la variable X^2 ?

Cette question valait 2 points. Soit f une fonction continue bornée quelconque. Par définition :

$$\mathbb{E}\left[f(X^2)\right] = \int_{\mathbb{R}} f(x^2) \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx.$$

En utilisant la parité, puis le changement de variable $x^2 = y$ (i.e. $dx = dy/2\sqrt{y}$), on obtient

$$\mathbb{E}\left[f(X^2)\right] = 2\int_{\mathbb{R}^+} f(x^2) \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx = \int_{\mathbb{R}^+} f(y) \frac{e^{-y/2}y^{-1/2}}{\sqrt{2\pi}} dy.$$

La variable X^2 a pour densité la fonction $x \to \frac{1}{\sqrt{2\pi}} \, x^{-1/2} \, e^{-x/2}$ sur \mathbb{R}^+ , i.e. $X^2 \sim \Gamma(1/2,1/2)$.

Soient U et V deux variables indépendantes de loi $\Gamma(1/2,1/2)$, c'est à dire deux variables positives dont la densité est donnée sur \mathbb{R}^+ par $x \to \frac{1}{\sqrt{2\pi}} \, x^{-1/2} \, e^{-x/2}$.

ii) Quelle est la densité de U+V?

Indice: on pourra remarquer que pour tout x > 0:

$$\int_0^x \frac{dy}{\sqrt{y(x-y)}} \equiv \int_0^1 \frac{dy}{\sqrt{y(1-y)}} = \pi.$$

Cette question valait 2 points. Considérons une fonction continue bornée f. Par définition :

$$\mathbb{E}\left[f(U+V)\right] = \frac{1}{2\pi} \int_{\mathbb{R}^{+2}} f(u+v) \frac{e^{-(u+v)/2}}{\sqrt{uv}} du dv.$$

On pose x = u + v, y = u. On a alors dudv = dxdy et

$$\frac{1}{2\pi} \int_{\mathbb{R}^{+2}} f(u+v) \frac{e^{-(u+v)/2}}{\sqrt{uv}} du dv = \frac{1}{2\pi} \int_{x=0}^{+\infty} \int_{y=0}^{x} f(x) e^{-x/2} \frac{dx dy}{\sqrt{y(x-y)}}.$$

D'après le théorème de Fubini

$$\frac{1}{2\pi} \int_{x=0}^{+\infty} \int_{y=0}^{x} f(x)e^{-x/2} \frac{dxdy}{\sqrt{y(x-y)}} = \frac{1}{2\pi} \int_{x=0}^{+\infty} f(x)e^{-x/2} \left(\int_{0}^{x} \frac{dy}{\sqrt{y(x-y)}} \right) dx,$$

et d'après l'indice

$$\frac{1}{2\pi} \int_{x=0}^{+\infty} f(x)e^{-x/2} \left(\int_0^x \frac{dy}{\sqrt{y(x-y)}} \right) dx = \int_{x=0}^{+\infty} f(x) \left(\frac{1}{2}e^{-x/2} \right) dx.$$

On a donc

$$\mathbb{E}\left[f(U+V)\right] = \int_0^{+\infty} f(x) \left(\frac{1}{2}e^{-x/2}\right) dx.$$

On reconnaît la densité d'une loi exponentielle de paramètre 1/2, i.e. $U+V\sim\mathcal{E}(1/2)$.

Considérons à présent X_1 , X_2 , Y_1 et Y_2 des variables gaussiennes centrées réduites, indépendantes, et posons $R_1^2 := X_1^2 + Y_1^2$ et $R_2^2 := X_2^2 + Y_2^2$.

iii) Déduire de ce qui précède la loi de R_1 .

Cette question valait 2 points. D'après la question i), les variables X_1^2 et Y_1^2 suivent des lois $\Gamma(1/2,1/2)$. Comme X_1 et Y_1 sont indépendantes, leurs carrés le sont aussi. D'après la question ii), on peut alors affirmer que $R_1^2 = X_1^2 + Y_1^2 \sim \mathcal{E}(1/2)$.

iv) Quelle est la loi de $min(R_1^2, R_2^2)$?

Cette question valait 2 points. D'après la question iii), $R_1^2 = X_1^2 + Y_1^2 \sim \mathcal{E}(1/2)$. De la même façon, on montre que $R_2^2 = X_2^2 + Y_2^2 \sim \mathcal{E}(1/2)$, et comme (X_1,Y_1) est indépendant de (X_2,Y_2) , on peut affirmer que R_1^2 est indépendant de R_2^2 . Le problème revient alors à trouver la loi du \min de deux variables exponentielles de paramètre 1/2. Pour cela, on considère la queue

$$\mathbb{P}(\min(R_1^2, R_2^2) > x) = \mathbb{P}(R_1^2 > x \text{ et } R_2^2 > x) = \mathbb{P}(R_1^2 > x) \times \mathbb{P}(R_2^2 > x) = e^{-x/2} \times e^{-x/2} = e^{-x}.$$

On reconnaît la queue d'une loi exponentielle de paramètre 1, i.e. $\min(R_1^2, R_2^2) \sim \mathcal{E}(1)$.

Exercice $n^{\circ}2$:

A une variable aléatoire X à valeurs réelles, on associe sa fonction caractéristique $\psi_X(t) := \mathbb{E}[e^{itX}]$. On rappelle que si X admet des moments d'ordre un et deux, ils sont donnés par :

$$\mathbb{E}[X] = -i \,\psi_X'(0), \text{ et } \mathbb{E}[X^2] = -\psi_X''(0).$$

i) Calculer la fonction ψ_X lorsque $X \sim \mathcal{B}(n,p)$, et $X \sim \mathcal{E}(\lambda)$.

Cette question valait 2 points. Une variable de loi binomiale peut être vue comme une somme de variables de Bernoulli indépendantes. En effet, si $(X_i)_{i=1\dots n}$ sont i.i.d. de loi $\mathcal{B}(p)$, alors $X:=\sum_{i=1}^n X_i\sim \mathcal{B}(n,p)$. La fonction caractéristique d'une variable de Bernoulli étant donnée par $\psi(t)=(1-p)+pe^{it}$, on conclut que si $X\sim \mathcal{B}(n,p)$ alors

$$\psi_X(t) = \left((1 - p) + pe^{it} \right)^n.$$

Un calcul direct est aussi possible, il suffit de reconnaître la formule du binôme de Newton :

$$\psi_X(t) = \sum_{k=0}^n C_n^k p^k e^{ikt} (1-p)^{n-k} = ((1-p) + pe^{it})^n.$$

Pour une variable de loi $\mathcal{E}(\lambda)$, un calcul direct donne $\psi_X(t)=rac{\lambda}{\lambda-it}$.

ii) En déduire l'espérance et la variance d'une loi binomiale et d'une loi exponentielle.

Cette question valait 2 points. Pour la loi binomiale, le calcul donne

$$\psi_X'(0) = inp, \quad \psi_X''(0) = -np(1 - p + np).$$

On en déduit $\mathbb{E}[X] = np$, $E[X^2] = np(1-p+np)$, d'où var(X) = np(1-p). Pour la loi $\mathcal{E}(\lambda)$, on trouve $\psi_X'(0) = i/\lambda$, $\psi_X''(0) = -2/\lambda^2$ et on en déduit :

$$\mathbb{E}[X] = 1/\lambda$$
, $E[X^2] = 2/\lambda^2$ d'où $var(X) = 1/\lambda^2$.

iii) Si $(X_i)_{i=1...n}$ sont i.i.d de loi $\mathcal{E}(\lambda)$, quelle est la fonction caractéristique de $S_n := \sum_{i=1}^n X_i$? Cette question valait 2 points. Les variables étant indépendantes, la transformée de Fourier de la somme est le produit des transformées de Fourier, d'où

$$\psi_{S_n}(t) = \left(\frac{\lambda}{\lambda - it}\right)^n.$$

Exercice $n^{\circ}3$:

Soit $(X_i)_{i\in\mathbb{N}^*}$ une suite de variables aléatoires i.i.d. de loi $\mathcal{E}(\lambda)$.

i) Lorsque n tend vers l'infini, que peut-on dire de S_n/n où $S_n := \sum_{i=1}^n X_i$?

Cette question valait 3 points. D'après l'exercice précédent, on peut affirmer qu'une variable exponentielle admet des moments d'ordre un et deux avec $\mathbb{E}[X]=1/\lambda$ et $var(X)=1/\lambda^2$. La suite étant i.i.d., la loi forte des grands nombres permet d'affirmer que lorsque n tend vers l'infini :

$$\frac{S_n}{n} \xrightarrow{p.s.} E[X_1] = \frac{1}{\lambda}.$$

ii) Même question avec la suite $\sqrt{n} \left(\frac{S_n}{n} - \frac{1}{\lambda} \right)$?

Cette question valait 3 points. D'après le théorème limite central, on peut affirmer que :

$$\sqrt{n}\left(\frac{S_n}{n} - \frac{1}{\lambda}\right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1/\lambda^2),$$

ou encore

$$\sqrt{n} \times \lambda \left(\frac{S_n}{n} - \frac{1}{\lambda} \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1).$$