AUTOUR DE L'ÉQUIRÉPARTITION

Ce document a pour but de s'entrainer à l'écrit d'analyse et probabilités. Étant donné un réel x, on note $\lfloor x \rfloor$ sa partie entière et $\{x\} = x - \lfloor x \rfloor$ sa partie fractionnaire. On dit qu'une suite de réels $(x_n)_{n \geq 1}$ est équirépartie modulo 1 si pour tout $0 \leq a \leq b \leq 1$ on a

$$\lim_{n \to +\infty} \frac{\operatorname{Card} \left\{ k \in \llbracket 1; n \rrbracket, \left\{ x_k \right\} \in [a, b] \right\}}{n} = b - a.$$

On commence par rappeler les équivalences classiques suivantes, l'équivalence entre les points i) et iii) étant connue sous le nom de critère de Weyl.

Théoreme: Étant donnée une suite de réels $(x_n)_{n\geq 1}$, les assertions suivantes sont équivalentes.

- i) La suite $(x_n)_{n\geq 1}$ est équirépartie modulo 1.
- ii) Pour toute fonction continue $f:[0,1]\to\mathbb{R}$ on a

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(x_k) = \int_{0}^{1} f(x) dx.$$

iii) Pour tout entier p > 0, on a

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} e^{2i\pi px_k} = 0.$$

Exercice 1 (Preuve du critère de Weyl)

 $1.\ Montrer\ que\ i)\ implique\ ii).$

Indice : on pourra vérifier que ii) est vraie pour les fonctions en escalier, puis raisonner par densité.

2. Montrer que ii) implique i).

Indice: on pourra encadrer l'indicatrice entre deux fonctions continues bien choisies.

- 3. Montrer que ii) implique iii).
- 4. Montrer que iii) implique ii).

Indice : on pourra raisonner par densité via le théorème de Weierstrass.

Exercice 2 (Équirépartition et écriture en base 10)

Dans cette partie, on s'intéresse à l'équirépartition des décimales de 2^n en base 10.

- 1. Montrer que log(2) est irrationnel, où log désigne le logarithme en base 10.
- 2. Montrer que si α est irrationnel, alors la suite $(x_n)_{n\geq 1}$ de terme général $x_n=n\alpha$ est équirépartie modulo 1.

Étant donné un entier $n \geq 1$, on désigne par $a_{k(n)}(n)a_{k(n)-1}(n)\dots a_1(n)$ l'écriture en base 10 de 2^n , où k(n) est le nombre de décimales et $a_j(n) \in \{0,1,\dots,9\}$ pour $1 \leq j \leq k(n)$ et $a_{k(n)}(n) \neq 0$

$$2^{n} = \sum_{j=1}^{k(n)} a_{j}(n) 10^{j-1}.$$

3. Pour $n \ge 1$, on pose $a_n := a_{k(n)}(n)$ la première décimale de 2^n et pour $1 \le j \le 9$, on considère la proportion

$$\tau(j,n) := \frac{Card(k \in \{1,\ldots,n\}, \ a_k = j)}{n}.$$

Montrer que la limite $\lim_{n\to+\infty} \tau(j,n)$ existe et expliciter cette limite.

Exercice 3 (Non-équirépartition de la suite $(\log(p_n))_{n>1}$ modulo 1)

On montre ici que si p_n désigne le n-ième nombre premier, alors la suite $(x_n)_{n\geq 1} = (\log(p_n))_{n\geq 1}$ est non-équirépartie modulo 1. Pour $k \in \mathbb{N}^*$, on pose

$$I_k := \inf\{n, p_n > e^k\}, \quad I_{k-\frac{1}{2}} := \inf\{n, p_n > e^{k-\frac{1}{2}}\},$$

et

$$S_k := \sum_{n < I_k} \mathbb{1}_{[0, \frac{1}{2}]} \left(\left\{ \log(p_n) \right\} \right), \quad S_{k - \frac{1}{2}} := \sum_{n < I_{k - \frac{1}{2}}} \mathbb{1}_{[0, \frac{1}{2}]} \left(\left\{ \log(p_n) \right\} \right).$$

- 1. Montrer que $S_k = S_{k-\frac{1}{6}}$.
- 2. Déduire du critère de Weyl et du théorème des nombres premiers que $(\log(p_n))_{n\geq 1}$ est non-équirépartie modulo 1.

Exercice 4 (Non-équirépartition de la suite $(\ln(n))_{n\geq 1}$)

Dans cette deuxième partie, on montre que la suite $(x_n)_{n\geq 1}=(\{\ln(n)\})_{n\in\mathbb{N}^*}$ est dense dans [0,1] mais non-équirépartie.

- 1. Montrer que la suite $(\{\ln(n)\})_{n\in\mathbb{N}^*}$ est dense dans [0,1].
- 2. Soient n dans \mathbb{N}^* et $F: \mathbb{R} \to \mathbb{C}$ une fonction de classe C^1 . Établir la formule suivante

$$\frac{1}{n}\sum_{k=1}^{n}F(k) = \frac{1}{n}\int_{1}^{n}F(t)dt + \frac{1}{n}\int_{1}^{n}\left(\{t\} - \frac{1}{2}\right)F'(t)dt + \frac{F(1) + F(n)}{2n}.$$

3. Montrer qu'il existe une suite complexe $(\varepsilon_n)_{n\in\mathbb{N}^*}$ qui tend vers 0 lorsque n tend vers l'infini et telle que

$$\frac{1}{n}\sum_{k=1}^{n}e^{2i\pi\ln(k)} = \frac{e^{2i\pi\ln(n)}}{2i\pi+1} + \varepsilon_n.$$

- 4. En déduire que la suite $(\ln(n))_{n\geq 1}$ n'est pas équirépartie modulo 1.
- 5. (Un peu plus difficile). Fixons un intervalle [a,b] avec $0 \le a < b < 1$ (resp. $0 < a < b \le 1$). Pour $m \ge m_0$ assez grand, on choisit une suite d'entiers $(N_m)_{m \ge m_0}$ de sorte que $e^{m+b} < N_m < e^{m+1}$ (resp. $e^m < N_m < e^{m+a}$). Montrer que la proportion

$$\frac{\operatorname{Card}\left\{k \in [\![1;N_m]\!],\ \{\ln(k)\} \in [a,b]\right\}}{N_m}$$

peut converger vers des limites différentes selon le choix de N_m .

Exercice 5 (Retour sur les polynômes trigonométriques aléatoires) On considère la suite de polynômes trigonométriques

$$f_n(x) := \frac{1}{\sqrt{n}} \sum_{k=1}^n a_k \cos(2\pi kx), \quad x \in [0, 1], \quad n \ge 1,$$

où la suite $(a_k)_{k\geq 1}$ est une suite de variables aléatoires indépendantes et identiquement distribuées définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et telles que $\mathbb{E}[a_k] = 0$ et $\mathbb{E}[a_k^2] = 1$. On considère par ailleurs une variable aléatoire X de loi uniforme sur [0,1], indépendante de la suite $(a_k)_{k\geq 1}$ et on note \mathbb{E}_X l'espérance associée, autrement si h est une fonction mesurable bornée

$$\mathbb{E}_X[h(X)] = \int_0^1 h(x)dx.$$

On veillera à bien distinguer l'espérance \mathbb{E} associée aux coefficients $(a_k)_{k\geq 1}$ et \mathbb{E}_X associée à la variable indépendante X.

- 1. Calculer $\mathbb{E}[f_n(X)^2]$, quelle est sa limite lorsque n tend vers l'infini?
- 2. Calculer $\mathbb{E}_X[f_n(X)^2]$, quelle est sa limite lorsque n tend vers l'infini?
- 3. (Question plus difficile). Montrer que sous la probabilité \mathbb{P} , pour presque toute réalisation de X, la suite $(f_n(X))_{n\geq 1}$ converge en loi vers une gaussienne $\mathcal{N}(0,1/2)$.