Contrôle continu # 2

Durée : 2 heures, aucun document autorisé.

Question de cours. [4 points]

Donner deux caractérisations distinctes du mouvement brownien réel.

Exercice 1. [6 points]

On considère deux suites indépendantes $(a_k)_{k\geq 1}$ et $(b_k)_{k\geq 1}$ de variables aléatoires indépendantes et identiquement distribuées de loi $\mathcal{N}(0,1)$. Pour $n\geq 1$, on définit alors le processus $(X_n(t))_{t\in\mathbb{R}}$ par la formule :

$$X_n(t) := \frac{1}{\sqrt{n}} \sum_{k=1}^n a_k \cos\left(\frac{kt}{n}\right) + b_k \sin\left(\frac{kt}{n}\right).$$

- 1. Montrer que le processus $(X_n(t))_{t\in\mathbb{R}}$ est un processus gaussien et préciser sa fonction de covariance.
- 2. Montrer que pour tout $t \in \mathbb{R}$, les variables $X_n(t)$ et $X'_n(t) := \frac{d}{dt}X_n(t)$ sont indépendantes.
- 3. Montrer que lorsque n tend vers l'infini, le processus $(X_n(t))_{t\in\mathbb{R}}$ converge en loi (au sens des marginales de dimension finie) vers un processus gaussien $(X_\infty(t))_{t\in\mathbb{R}}$. Préciser sa fonction de covariance.

Exercice 2. [4 points]

Soit $(B_t)_{t\geq 0}$ un mouvement brownien réel et $(\mathcal{F}_t)_{t\geq 0}$ sa filtration naturelle. On admet l'existence d'un processus continu et adapté X tel que $X_0=0$ et vérifiant l'équation suivante, pour tout $0 \leq t < \tau := \inf\{s > 0, X_s \notin]-\pi/2, \pi/2[\}$

$$X_t = -\int_0^t \frac{\tan(X_s)ds}{(1 + \tan(X_s)^2)^2} + \int_0^t \frac{dB_s}{1 + \tan(X_s)^2}.$$

- 1. Que dire du processus $(Y_t)_{0 \le t < \tau}$ défini par $Y_t := \tan(X_t)$?
- 2. En déduire que $\tau = +\infty$ presque sûrement et que $(X_t)_{0 \le t < \tau}$ est récurrent dans $]-\pi/2,\pi/2[$.

Exercice 3. [6 points]

Soient T > 0 et $(B_t)_{0 \le t \le T}$ un mouvement brownien réel. Soient $0 = t_0 < t_1 < \ldots < t_N = T$ une partition de l'intervalle [0, T] et $(e_t)_{0 \le t \le T}$ un processus élémentaire adapté à la filtration naturelle brownienne

$$e_t = \sum_{k=1}^{N} e_{t_{k-1}} \mathbb{1}_{[t_{k-1}, t_k[}(t).$$

L'intégrale de Stratonovich du processus e_t contre le mouvement brownien est alors définie par :

$$\int_0^T e_t \circ dB_t := \sum_{k=1}^n \frac{e_{t_{k-1}} + e_{t_k}}{2} (B_{t_k} - B_{t_{k-1}}).$$

Autrement dit, si l'intégrale d'Itô correspond à une méthode d'intégration "rectangle à gauche", l'intégrale de Stratonovich correspond à une méthode d'intégration "point milieu". L'intégrale de Stratonovich $\int_0^T X_t \circ dB_t$ d'un processus adapté $(X_t)_{0 \le t \le T}$ est alors définie comme la limite d'une suite $\int_0^T X_t^n \circ dB_t$ où X^n est une suite de processus élémentaires convergeant vers X dans \mathbb{L}^2 . On admettra que cette limite existe et qu'elle est indépendante de la suite approximante.

1. Calculer l'intégrale au sens de Stratonovich du mouvement brownien contre lui-même

$$\int_0^T B_t \circ dB_t.$$

2. Plus généralement, si f est une fonction de classe C^2 , en effectuant un développement limité à l'ordre un de f', montrer que

$$\int_0^T f'(B_t) \circ dB_t = f(B_T) - f(B_0).$$

3. Soit g une fonction de classe C^2 sur $\mathbb R$ et soit X_t un processus adapté vérifiant la relation

$$X_t = \int_0^t g(X_s) \circ dB_s, \ \forall t \in [0, T].$$

Soit Y_t le processus défini par l'intégrale d'Itô

$$Y_t = \int_0^t g(X_s) dB_s, \ \forall t \in [0, T].$$

Montrer que pour tout $t \in [0,T]$

$$X_t - Y_t = \frac{1}{2} \int_0^t g(X_s) g'(X_s) ds.$$