MODÈLES ALÉATOIRES EN BIOLOGIE

Exercices - Série 3

Exercice 1. Autour des fonctions génératrices

On rappelle que si X est une variable aléatoire à valeurs entières, sa fonction génératrice G_X est définie par $G_X(s) := \mathbb{E}[s^X]$ pour $s \in [0, 1]$.

- 1. Calculer la fonction génératrice d'une variable de loi de Bernoulli $\mathcal{B}(p)$, de loi binomiale $\mathcal{B}(n,p)$, de loi géométrique $\mathcal{G}(p)$ sur \mathbb{N} , de loi de Poisson $\mathcal{P}(\lambda)$.
- 2. Montrer que si X et Y sont deux variables indépendantes à valeurs entières alors on a la relation $G_{X+Y} = G_X \times G_Y$.
- 3. Montrer que $\mathbb{E}[X] = G'_X(1)$, retrouver ainsi les moyennes des lois ci-dessus.

Exercice 2. Itération d'une homographie

D'après l'exercice précédent, la fonction génératrice d'une loi géométrique sur \mathbb{N} est donnée par $G(s) = \frac{p}{1-qs}$ où l'on a posé q=1-p. On souhaite déterminer l'expression de la n-ième itérée de la fonction G, i.e. $G_n:=G\circ G\circ\ldots\circ G$.

- 1. On suppose tout d'abord que p=1/2. Trouver les solutions de l'équation G(s)=s.
- 2. Exprimer $\frac{1}{G(s)-1}$ en fonction de $\frac{1}{s-1}$.
- 3. En déduire que $\frac{1}{G_n(s)-1}=\frac{1}{s-1}-n$ puis $G_n(s)=\frac{n-(n-1)s}{(n+1)-ns}$
- 4. Lorsque $p \neq 1/2$, on montre que

$$\left(\begin{array}{cc} 0 & p \\ -q & 1 \end{array}\right)^n = (q-p)^{-1} \left(\begin{array}{cc} 1 & p \\ 1 & q \end{array}\right) \left(\begin{array}{cc} p^n & 0 \\ 0 & q^n \end{array}\right) \left(\begin{array}{cc} q & -p \\ -1 & 1 \end{array}\right).$$

En déduire que

$$G_n(s) = \frac{pq^n(1-s) + p^nq - p^{n+1}}{q^{n+1}(1-s) + qp^ns - p^{n+1}} = \frac{\mu^n(1-s) + \mu s - 1}{\mu^{n+1}(1-s) + \mu s - 1}.$$

Exercice 3. Un exemple d'arbre de Galton-Watson

On considère une variable aléatoire X à valeurs dans $\{0,2\}$ dont la loi est donnée par : $\mathbb{P}(X=0) =: p$ et $\mathbb{P}(X=2) =: q=1-p$. On désigne par \mathcal{T} l'arbre de Galton-Watson dont la loi de reproduction est la loi de X. On note Z_n le nombre d'individus à la n-ième génération, autrement dit on a $Z_0=1$ et $Z_{n+1} = \sum_{k=1}^{Z_n} X_{k,n}$ pour $n \geq 0$, où les variables $(X_{k,n})_{k \geq 1, n \geq 0}$ sont indépendantes et de même loi que la variable X.

- 1. Calculer la fonction génératrice $G_X(s)$ de la variable X. En déduire la probabilité d'extinction de l'arbre \mathcal{T} .
- 2. Que vaut $\mathbb{E}[Z_n]$ le nombre moyen d'individus à la génération n?