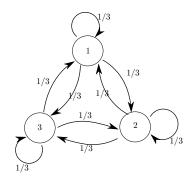
MODÈLES ALÉATOIRES EN BIOLOGIE

Contrôle des connaissances

Questions de cours :

- 1. Au regard du phénomène de fixation des allèles, rappeler la différence principale entre les modèles de Wright-Fisher avec et sans mutation.
- 2. Quel critère concernant la loi de reproduction d'un processus de Galton-Watson permet de déterminer si l'arbre associé va s'éteindre presque-sûrement ou non.

Exercice 1. Chaîne de Markov à trois états



On considère la chaîne de Markov $(X_n)_{n\geqslant 0}$ à valeurs dans l'ensemble $\{1,2,3\}$ et dont les probabilités de transition sont résumées dans le graphe ci-contre.

- 1. Écrire la matrice de transition P de la chaîne $(X_n)_{n\geqslant 0}$. Calculer P^2 et en déduire la valeur de P^n pour tout $n\geqslant 1$.
- 2. Montrer qu'il existe une unique loi stationnaire $\pi = (\pi_1, \pi_2, \pi_3)$ pour P, *i.e.* telle que $\pi P = \pi$, et la calculer.

Exercice 2. Exemple d'arbre de Galton-Watson

On considère une variable aléatoire X à valeurs dans $\{0,1,2,3\}$ dont la loi est donnée par :

$$\mathbb{P}(X=0) = 1/6, \quad \mathbb{P}(X=1) = 1/6, \quad \mathbb{P}(X=2) = 1/3, \quad \mathbb{P}(X=1) = 1/3.$$

On désigne par \mathcal{T} l'arbre de Galton-Watson dont la loi de reproduction est la loi de X. On note Z_n le nombre d'individus à la n-ième génération, autrement dit on a $Z_0 = 1$ et $Z_{n+1} = \sum_{k=1}^{Z_n} X_{k,n+1}$ pour $n \ge 0$, où les variables $(X_{k,n})_{k \ge 1,n \ge 1}$ sont indépendantes et de même loi que la variable X.

- 1. Que vaut $\mathbb{E}[Z_n]$ le nombre moyen d'individus à la génération n?
- 2. Calculer la fonction génératrice $g_X(s)$ de la variable X. En déduire la probabilité d'extinction de l'arbre \mathcal{T} .

Indice: on a la factorisation $2s^3 + 2s^2 - 5s + 1 = 2(s-1)(s^2 + 2s - \frac{1}{2})$.

Exercice 3. Arbre de Galton-Watson binomial

On considère une variable aléatoire X à valeurs dans l'ensemble $\{0,1,2\}$ de loi binomiale $\mathcal{B}(2,p)$. On désigne par \mathcal{T} l'arbre de Galton-Watson dont la loi de reproduction est la loi de X. On note Z_n le nombre d'individus à la n-ième génération, autrement dit on a $Z_0 = 1$ et $Z_{n+1} = \sum_{k=1}^{Z_n} X_{k,n+1}$ pour $n \ge 0$, où les variables $(X_{k,n})_{k \ge 1,n \ge 0}$ sont indépendantes et de même loi que la variable X.

- 1. Selon la valeur de p, déterminer lorsque l'arbre est critique/sous-critique/sur-critique.
- 2. Calculer la fonction génératrice $g_X(s)$ de la variable X. Dans le cas sur-critique, en déduire la probabilité d'extinction de l'arbre \mathcal{T} .