FEUILLE D'EXERCICES # 3

Dans toute la suite, (E, A, μ) désigne un espace mesuré.

Exercice 1 Intégrales et intégrandes ordonnées

Soient f et g deux fonctions intégrables sur (E, \mathcal{A}, μ) vérifiant :

$$\int_{E} f \, \mathrm{d}\mu > \int_{E} g \, \mathrm{d}\mu.$$

Montrer que $\{f > g\}$ est non vide. Donner un exemple dans lequel cet ensemble est réduit à un singleton.

Exercice 2 Intégrabilité et comportement à l'infini

Soit $f: \mathbb{R} \to \mathbb{R}_+$ mesurable telle que $f(x) \underset{r \to \infty}{\longrightarrow} a > 0$. Montrer que f n'est pas intégrable sur \mathbb{R} .

Exercice 3 Formule de transfert

Soient (E, \mathcal{A}) et (F, \mathcal{B}) deux espaces mesurables, $f : E \to F$ mesurable. Soit μ une mesure sur (E, \mathcal{A}) . On note $\mu_f = \mu \circ f^{-1}$ la mesure image de μ par f sur (F, \mathcal{B}) . Montrer qu'une fonction mesurable $g : F \to \mathbb{R}$ est μ_f -intégrable si et seulement si $g \circ f$ est μ -intégrable et que dans ce cas :

$$\int_E g \circ f \, d\mu = \int_F g \, d\mu_f.$$

Exercice 4 $\hat{E}tre\ borné\ dans\ L^1$

Soit $(f_n : E \to \mathbb{R})$ une suite de fonctions mesurables convergeant μ presque partout vers une fonction f mesurable. Montrer que f est intégrable sur E si :

$$\sup_{n\in\mathbb{N}}\int_{E}|f_{n}|\,\mathrm{d}\mu<+\infty.$$

Exercice 5 Primitive

Soit $f:(E,\mathcal{A},\mu)\to\mathbb{R}$ intégrable sur E. Montrer la propriété d'uniforme continuité de l'intégrale :

$$\forall \varepsilon > 0, \exists \delta > 0, \forall A \in \mathcal{A}, \mu(A) \leq \delta \Longrightarrow \int_{A} |f| d\mu \leq \varepsilon.$$

En déduire que, sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, la primitive suivante de f est uniformément continue :

$$F: x \in \mathbb{R}_+ \mapsto \int_{[0,x]} f \, d\lambda.$$

Exercice 6 Critère d'intégrabilité

Soit $f:(E,\mathcal{A},\mu)\to\mathbb{R}$ mesurable. Montrer que f est intégrable sur E si et seulement si :

$$\sum_{n=-\infty}^{+\infty} 2^n \mu \left(\left\{ 2^n \le |f| < 2^{n+1} \right\} \right) < +\infty.$$

A quelle condition sur $\alpha \in \mathbb{R}$ la fonction $f_{\alpha} : x \mapsto x^{-\alpha} \mathbf{1}_{x>1}$ est-elle Lebesgue-intégrable sur \mathbb{R} ?

Exercice 7 Critère d'intégrabilité, bis

Supposons la mesure μ finie. Soit $f: E \to \mathbb{R}$ mesurable. Montrer que f est intégrable sur E si et seulement si :

$$\sum_{n=1}^{+\infty} \mu(\{|f| \ge n\}) < +\infty.$$

Que dire dans le cas où l'on se passe de l'hypothèse μ finie?

Exercice 8 Intégrabilité et sommabilité

Soit $f: \mathbb{R} \to \mathbb{R}$ intégrable sur \mathbb{R} . Montrer que la série de fonctions $\sum_{n \in \mathbb{Z}} |f(\cdot + n)|$ est presque partout convergente sur [0,1] (puis presque partout sur \mathbb{R}).

Exercice 9 Échange de sommes

Montrer que pour toute fonction $f: E \to \mathbb{R}_+$ mesurable :

$$\int_0^{+\infty} \mu(\{f > t\}) \mathrm{d}t = \int_E f \, \mathrm{d}\mu.$$

Montrer que plus généralement pour tout $p \in]0, +\infty[$:

$$\int_{E} f^{p} d\mu = p \int_{0}^{+\infty} \mu(\{f > t\}) t^{p-1} dt.$$

Exercice 10 Intégrabilité et dimension

Soit $\|\cdot\|$ une norme sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ telle que la boule unite B_d soit de mesure de Lebesgue finie. Donner une condition sur d et p pour que la fonction $x \mapsto \|x\|^{-p}$ soit Lebesgue-intégrable sur B_d .

Exercice 11 Lemme de Scheffé

Soit (f_n) une suite de fonctions positives et intégrables sur E, convergeant presque partout vers f intégrable sur E et vérifiant :

$$\int_{E} f_n \, d\mu \xrightarrow[n \to \infty]{} \int_{E} f \, d\mu.$$

Montrer que la suite (f_n) converge vers f dans $L^1(E)$. Le résultat est-il encore vrai si l'on ne suppose plus les fonctions positives?

Exercice 12 Accroissements

Soit $f:[0,1]\to\mathbb{R}$ croissante, continue en 0 et 1, dérivable λ -presque partout. Montrer que :

$$\int_0^1 f'(x) dx \le f(1) - f(0).$$

Donner un exemple de fonction pour laquelle cette inégalité est stricte.

Exercice 13 Exemple d'interversion

Déterminer la limite de la suite $I_n(\alpha)$ ci-dessous selon $\alpha \in \mathbb{R}$:

$$I_n(\alpha) = \int_0^n \left(1 - \frac{x}{n}\right)^n e^{\alpha x} dx.$$

Exercice 14 Interversion et monotonie

Exercice 18. Soit (f_n) une suite décroissante de fonctions mesurables positives qui converge μ -presque partout vers une fonction f. On suppose qu'il existe n_0 tel que f_{n_0} soit intégrable sur E. Montrer que :

$$\lim_{n \to \infty} \int_E f_n d\mu = \int_E f d\mu.$$

Que peut-on dire sans l'hypothèse d'intégrabilité?