Contrôle continu # 1

1 hour, no document allowed.

Exercice 1 Gaussian conditional expectation

Let ${}^{t}(X, Y, Z)$ be a centered Gaussian vector with covariance matrix

$$\Gamma := \left(\begin{array}{rrr} 4 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 1 \end{array} \right).$$

- 1. Compute $\mathbb{E}[X^3|X^2]$.
- 2. What is the density of (Y, Z)? Its Fourier transform?
- 3. Without calculation, compute $\mathbb{E}[Y|Z]$ and $\mathbb{E}[(Y \mathbb{E}[Y|Z])^2]$.
- 4. Compute $\mathbb{E}[X|(Y,Z)]$.

Exercice 2 Conditionning and finite filtration

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space where $\Omega = [0, 1]$, \mathcal{F} is the Borelian sigma field on Ω and \mathbb{P} is the uniform probability. Let us fix K > 1 an integer and $\alpha > 0$ a real number. For $n \in \mathbb{N}$, let us define

$$\mathcal{F}_n := \sigma\left(\left[\frac{j}{K^n}, \frac{j+1}{K^n}\right], \quad 0 \le j \le K^n - 1\right).$$

Last, consider the random variables $(X_n)_{n>0}$ such that

$$X_n := \begin{cases} \alpha^n & \text{if } 0 \le \omega \le K^{-n}, \\ 0 & \text{otherwise.} \end{cases}$$

- 1. Show that (\mathcal{F}_n) is a filtration of $(\Omega, \mathcal{F}, \mathbb{P})$.
- 2. Recall that if $Z: \Omega \to \mathbb{R}$ is \mathcal{F}_n -measurable then

$$Z(\omega) = \sum_{j=0}^{K^n - 1} \beta_j \mathbb{1}_{\left[\frac{j}{K^n}, \frac{j+1}{K^n}\right]}(\omega), \text{ with } \beta_j \in \mathbb{R} \text{ for } 0 \le j \le K^n - 1.$$

Show that $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \frac{\alpha^{n+1}}{K} \mathbb{1}_{X_n > 0}.$

- 3. For which values of α the sequel (X_n) is a martingale with respect to (\mathcal{F}_n) ? A submartingale? A supermartingale?
- 4. Determine the almost sure limit of X_n when n goes to infinity.
- 5. Does the converge holds in \mathbb{L}^1 ? In \mathbb{L}^p for p > 1?