Feuille de travaux pratiques # 4

Les chaînes de Markov dans Scilab

Il existe essentiellement deux façons de simuler une chaîne de Markov $(X_n)_{n\geq 0}$ avec Scilab:

- 1. À la main, i.e. on définit la suite $(X_n)_{n\geq 0}$ par récurrence, de "proche en proche".
- 2. À l'aide du générateur grand $(n, \text{"markov"}, Q, x_0)$ qui, étant donnés un entier n, une matrice de transition $Q \in \mathcal{M}_d(\mathbb{R})$, et un entier $x_0 \in E := \{1, 2, \dots, d\}$, revoie directement n états successifs (X_1, \dots, X_n) d'une chaîne de Markov à valeurs dans E, de matrice de transition Q et issue de $X_0 = x_0$.

Les deux méthodes ont leurs avantages et leurs inconvénients. On préférera la première lorsque :

- l'espace d'état est infini ou de très grand cardinal;
- on dispose d'une formule de récurrence explicite du type $X_{n+1} = f(X_n, U_{n+1})$.

Au contraire, la seconde méthode sera privilégiée lorsque :

- l'espace d'état est de petit cardinal;
- la matrice Q est facilement implémentable dans Scilab

Exercice 1 Tour de chauffe

Soient $(\varepsilon_n)_{n\geq 0}$ une suite de variables aléatoires indépendantes de loi $\mathcal{B}(1/2)$ sur $\{-1,+1\}$ et la chaîne de Markov $Z=(Z_n)_{n\geq 0}:=(\varepsilon_{n+1},\varepsilon_n)_{n\geq 0}$.

- 1. Écrire deux programmes renvoyant une trajectoire (Z_0, \ldots, Z_n) de la chaîne Z, chacun utilisant une des deux méthodes décrites plus haut.
- 2. Estimer la probabilité stationnaire de la chaîne Z. On pourra par exemple représenter la loi empirique de Z_N pour N assez grand, ou élever la matrice de transition à une puissance assez grande.

Exercice 2 Modèle de Wright-Fisher, le retour

Soient k et N deux entiers tels que 0 < k < N. On considère la chaîne de Markov $(X_n^N)_{n \ge 0}$ à valeurs dans $E := \{0, \dots, N\}$, issue de $X_0^N := k$ et dont la matrice de transition est donnée par :

$$Q_{ij} = \mathbb{P}(X_{n+1}^N = j | X_n^N = i) = \binom{N}{j} \left(\frac{i}{N}\right)^j \left(1 - \frac{i}{N}\right)^{N-j}.$$

- 1. Écrire un programme qui prend en entrée les entiers k, N, n et qui génère et trace une trajectoire $(X_m^N)_{m=0...n}$.
- 2. Même question si on considère le modèle "avec mutation", c'est-à-dire la chaîne $(\widetilde{X}_n^N)_{n\geq 0}$ dont la matrice de transition est

$$\widetilde{Q}_{ij} = {N \choose j} \left((1-u)\frac{i}{N} + v\left(1 - \frac{i}{N}\right) \right)^j \left(\left(u\frac{i}{N} + (1-v)\left(1 - \frac{i}{N}\right)\right)^{N-j},\right.$$

où $(u, v) \in]0,1[^2$ sont les taux de mutations.

3. Comparer les comportements asymptotiques qualitatifs des chaînes $(X_n^N)_{n\geq 0}$ et $(\widetilde{X}_n^N)_{n\geq 0}$.

Exercice 3 Agrégation limitée par diffusion interne

On considère un modèle de diffusion sur la droite \mathbb{Z} . On pose $A_0 = \{0\}$, puis on itère le processus suivant. Étant donné un ensemble $A_n \subset \mathbb{Z}$ contenant 0, on considère une marche aléatoire symétrique $(S_k)_{k\geq 0}$ issue de 0 et arrêtée lorsqu'elle sort de A_n . On définit alors A_{n+1} comme l'ensemble $A_n \cup \{x\}$ où x est le point de sortie de la marche. Par exemple, l'ensemble A_1 est choisi uniformément parmi les deux ensembles $\{-1,0\}$ et $\{0,1\}$. Notons $G_n := \min A_n$ et $D_n := \max A_n$, de sorte que A_n est de la forme $A_n = \{G_n, G_n + 1, \ldots, D_n - 1, D_n\}$. Puisque le cardinal de A_n est n+1, on a $D_n - G_n = n$. Ainsi, A_n est caractérisé par $X_n := D_n + G_n$. On peut montrer que si $|X_n| = 0$, alors $|X_{n+1}| = 1$ et que si $|X_n| > 0$, alors

$$|X_{n+1}| = \begin{cases} |X_n| - 1 & \text{avec probabilité } \frac{1}{2} + \frac{|X_n|}{2(n+2)}, \\ |X_n| + 1 & \text{avec probabilité } \frac{1}{2} - \frac{|X_n|}{2(n+2)}. \end{cases}$$

- 1. Écrire un programme qui génère une trajectoire de la chaîne inhomogène $(|X_m|)_{m=0...n}$.
- 2. Vérifier empiriquement que lorsque n tend vers l'infini, la suite X_n/n tend presque sûrement vers zéro.