FEUILLE D'EXERCICES # 4

Exercice 1 Modèle de Wright-Fisher

Soient k et N deux entiers tels que 0 < k < N. On définit par récurrence une suite de variables $(X_n^N)_{n\geq 0}$ de la façon suivante : $X_0^N := k$ et pour pour tout $n\geq 0$ et $i\in\{0,\ldots,N\}$, la loi de X_{n+1}^N sachant que $X_n^N = i$ est la loi binomiale $\mathcal{B}(N,i/N)$.

- 1. Montrer que la suite $(X_n^N)_{n\geq 0}$ est une martingale.
- 2. Montrer que lorsque n tend vers l'infini, $(X_n^N)_{n\geq 0}$ converge presque sûrement et dans \mathbb{L}^p pour tout $p\geq 1$.
- 3. Décrire la loi de la variable limite X_{∞}^{N} .

Exercice 2 Sur les arbres de Galton-Watson

Soit $P = \sum_{n \geq 0} p_n \delta_n$ une loi de probabilité sur \mathbb{N} et $(X_{n,k})_{n \geq 1,k \geq 1}$ une famille de variables aléatoires indépendantes et identiquement distribuées de loi P. On définit par récurrence une suite $(Z_n)_{n \geq 0}$ telle que $Z_0 := 1$ et pour $n \geq 0$:

$$Z_{n+1} := \sum_{k=1}^{Z_n} X_{n+1,k}.$$

La suite Z_n représente le nombre d'individus à la génération n d'un arbre de Galton-Watson de loi de reproduction P. On adopte ici la convention $\sum_{\varnothing} = 0$ de sorte que si $Z_n = 0$ alors $Z_{n+1} = 0$. On désigne par $T := \inf\{n \ge 0, Z_n = 0\} \in \mathbb{N} \cup \{+\infty\}$ le temps d'extinction de l'arbre.

- 1. Établir les points suivants :
 - (a) Si $p_k = 1$ pour un $k \in \mathbb{N}$, i.e. $P = \delta_k$, alors $Z_{n+1} = kZ_n = \cdots = k^{n+1}Z_0$.
 - (b) Si $p_0 = 0$ et $p_1 < 1$ alors $\mathbb{P}(Z_n \nearrow \infty) = 1$. Autrement dit, la taille de l'arbre tend vers l'infini avec n (comparer au jeu de pile ou face).
 - (c) Si $p_0 + p_1 = 1$ alors $\mathbb{P}(Z_n \setminus 0) = 1$. Autrement dit, l'arbre s'éteint presque sûrement et la loi du temps d'extinction T est géométrique.

Dans toute la suite, nous supposerons que :

$$Z_0 = 1$$
, $0 < p_0 \le p_0 + p_1 < 1$, $p_k < 1$ pour tout $k \in \mathbb{N}$.

On note $m := \mathbb{E}[Z_1]$ lorsque cette moyenne existe, et $\sigma^2 = \mathbb{E}[Z_1^2] - \mathbb{E}[Z_1]^2 \in \overline{\mathbb{R}}_+$.

2. Montrer que si $m < +\infty$, alors $\mathbb{E}(Z_n) = m^n$ pour tout $n \ge 0$ et si $\sigma^2 < \infty$ alors

$$\operatorname{var}(Z_n) = m^n \sigma^2 \frac{m^n - 1}{m^2 - m}$$
, prolongé en $n\sigma^2$ si $m = 1$.

Le cas m=1 est dit critique, les cas m<1 et m>1 sont respectivement dits sous-critique et sur-critique.

3. Montrer que la probabilité d'extinction vérifie $\mathbb{P}(T<+\infty)=\lim_{n\to+\infty}P(Z_n=0)$.

4. Soit g la fonction génératrice de $X_{1,1}=Z_1$, i.e. $g(s):=\mathbb{E}[s^{Z_1}]=\sum_{m\geq 0}p^ms^m$, et soit g_n la fonction génératrice de Z_n , i.e. $g_n(s)=\mathbb{E}[s^{Z_n}]$. Montrer que l'on a la relation

$$g_n = \underbrace{g \circ g \circ \ldots \circ g}_{n \text{ fois}}.$$

- 5. Remarquer que $\mathbb{P}(Z_n = 0) = g_n(0)$ et en déduire d'une part que, si $m \leq 1$ alors l'extinction est presque sûre i.e. $\mathbb{P}(T < +\infty) = 1$, et d'autre part que si m > 1 alors $\mathbb{P}(T < +\infty)$ est l'unique racine dans]0,1[de l'équation de point fixe g(s) = s. Expliciter cette probabilité lorsque la loi de reproduction est une loi géométrique $\mathcal{G}(p)$.
- 6. Montrer que la suite $Y_n := Z_n/m^n$ est une martingale. En déduire que le comportement asymptotique de Z_n lorsque n tend vers l'infini.
- 7. On cherche maintenant à préciser ce comportement asymptotique dans les cas critique et sur-critique. On suppose tout d'abord que m=1 et $\sigma<+\infty$. En faisant un développement de Taylor de la fonction g à l'ordre 2 en zéro, montrer que
 - (a) $\lim_{n\to+\infty} n\mathbb{P}(Z_n>0) = 2/\sigma^2$;
 - (b) $\lim_{n\to+\infty} \mathbb{E}[Z_n/n|Z_n>0] = \sigma^2/2$;
 - (c) $\mathcal{L}(Z_n/n|Z_n>0)$ tend lorsque n tend vers l'infini vers la loi exponentielle $\mathcal{E}(2/\sigma^2)$.
- 8. On suppose maintenant que m > 1 et $\sigma < +\infty$. Montrer que la martingale (Y_n) converge presque sûrement et dans \mathbb{L}^2 vers une variable positive Y_{∞} qui vérifie :
 - (a) $\mathbb{E}[Y_{\infty}] = 1 \text{ et } \text{var}(Y_{\infty}) = \sigma^2/(m^2 m);$
 - (b) $\phi_{\infty}'(0) = -1$, et $\phi_{\infty}(ms) = g(\phi_{\infty}(s))$, où l'on a posé $\phi_{\infty}(s) := \mathbb{E}[e^{-sY_{\infty}}]$.