Fiche de TD nº3:

- 1 Soit $(X_n)_{n\geq 1}$ une sous-martingale telle que toutes les v.a.r. X_n aient même loi.
- [a] Montrer que $(X_n)_{n\geq 1}$ est une martingale.
- [b] Montrer que, pour tout réel $a, (X_n \vee a)_{n\geq 1}$ et $(X_n \wedge a)_{n\geq 1}$ sont des martingales.
- [c] En déduire, que si n > m, pour tout réel a, sur l'ensemble $\{X_m \ge a\}$, X_n est p.s. supérieur ou égal à a.
- [d] En déduire que $X_1 = ... = X_n = ...\mathbb{P} p.s.$

2

[a] Un exemple de martingale qui converge p.s. mais n'est pas bornée dans \mathbb{L}^1 .

Sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, on considère une famille de variables aléatoires $(Y_n, \epsilon_n)_{n\geq 1}$ indépendantes telle que pour tout n, la loi de Y_n est

$$\frac{1}{2}(\delta_{A_n}+\delta_{-A_n}),$$

où $(A_n)_{n\geq 1}$ est une suite de réels positifs fixés, et la loi de ϵ_n est

$$\frac{1}{n^2}\delta_1 + (1 - \frac{1}{n^2})\delta_0.$$

On définit, pour tout $n \geq 1$, $\mathcal{F}_n = \sigma(Y_1, \epsilon_1, ..., Y_n, \epsilon_n)$ et $M_n = \sum_{k=1}^n \epsilon_k Y_k$. Montrer que $(M_n)_{n\geq 1}$ est une martingale par rapport à la filtration $(\mathcal{F}_n)_{n\geq 1}$ et qu'elle converge p.s. Montrer qu'on peut choisir $(A_n)_{n\geq 1}$ telle que cette martingale ne soit pas bornée dans \mathbb{L}^1 .

[b] Un exemple de martingale qui converge p.s. vers ∞ .

Sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, on considère $(\xi_n)_{n\geq 2}$ une suite de variables aléatoires indépendantes telles que

$$\mathbb{P}(\xi_n = -n^2) = \frac{1}{n^2} \text{ et } \mathbb{P}(\xi_n = \frac{n^2}{n^2 - 1}) = 1 - \frac{1}{n^2}.$$

On pose $M_n = \xi_2 + ... + \xi_n$ pour $n \ge 2$. Montrer que $(M_n)_{n\ge 2}$ est une martingale telle que $M_n \xrightarrow[n\to\infty]{p.s.} +\infty$.

 $\boxed{3}$ Une preuve de la loi du 0-1 de Kolmogorov par la théorie des martingales.

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes. On définit :

$$\mathcal{F}_n = \sigma(X_1, ..., X_n), \ \mathcal{F}_\infty = \sigma(\cup_{n \ge 1} \mathcal{F}_n)$$

$$\mathcal{F}^n = \sigma(X_n, X_{n+1}, ...), \ \mathcal{F}^\infty = \cap_{n \ge 1} \mathcal{F}^n$$

Soit $A \in \mathcal{F}^{\infty}$. Montrer, en utilisant la martingale $(M_n, n \ge 1)$ définie par $M_n = \mathbb{E}(\mathbb{1}_A | \mathcal{F}_n)$ pour $n \ge 1$, que $\mathbb{P}(A) = 0$ ou $\mathbb{P}(A) = 1$.

- [a] Soit (\mathcal{F}_n) une filtration (suite croissante de tribus) d'un ensemble Ω . $\bigcup_{n\in\mathbb{N}}\mathcal{F}_n$ est-elle toujours une tribu?
- [b] Que dire d'une martingale (resp. d'une sous-martingale, d'une surmartingale) par rapport une filtration constante?
 - 5 Une réciproque du théorème d'arrêt.

Soit $(X_n)_{n\geq 1}$ un processus sur un espace de probabilité filtré $(\Omega, \mathcal{F}, \mathcal{F}_{n\geq 0}, \mathbb{P})$ intégrable et adapté. Montrer que, si l'on a $\mathbb{E}(X_\tau) = \mathbb{E}(X_0)$ pour tout temps d'arrêt borné τ , alors $(X_n)_{n\geq 1}$ est une martingale.

[6] Une autre version du théorème d'arrêt.

Soient $(X_n)_{n\geq 1}$ une martingale sur un espace de probabilité filtré $(\Omega, \mathcal{F}, \mathcal{F}_{n\geq 0}, \mathbb{P})$ et T un temps d'arrêt vérifiant $\mathbb{P}(T<+\infty)=1$, $\mathbb{E}(|X_T|)<\infty$ et $\mathbb{E}(|X_n|\mathbb{1}_{\{T>n\}})\to_{n\to+\infty}0$.

- [a] Montrer que $\mathbb{E}(|X_T|\mathbb{1}_{\{T>n\}}) \to_{n\to+\infty} 0$.
- [b] Montrer que $\mathbb{E}(|X_{T \wedge n} X_T|) \to_{n \to +\infty} 0$.
- [c] En déduire que $\mathbb{E}(X_T) = \mathbb{E}(X_0)$.
- 7 Identité de Wald : Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. i.i.d. de loi $p\delta_1+q\delta_{-1}+r\delta_0$ $(0\leq p,q,r<1,p+q+r=1)$. On pose $S_0=0,\,S_n=X_1+\ldots+X_n$ pour $n\geq 1$ et on se donne $a,b\in\mathbb{N}$ tels que a<0< b.
 - [a] Soit $T = \inf\{n \ge 0 \mid S_n \not\in]a, b[\}$. Montrer T est un t.a. fini presque sûrement.
 - [b] Soit $\lambda \in \mathbb{R}$ et $\phi(\lambda) = pe^{\lambda} + qe^{-\lambda} + r$. Montrer que $(Y_n)_{n \geq 1}$ est une martingale avec $Y_n = e^{\lambda S_n} \phi(\lambda)^{-n}$.
 - [c] Soit λ tel que $\phi(\lambda) \geq 1$. Montrer que $\mathbb{E}(e^{\lambda S_T}\phi(\lambda)^{-T}) = 1$. On suppose maintenant que p = q = 1/2.
 - [d] Calculer $\mathbb{E}(S_T)$, $\mathbb{P}(S_T = a)$ et $\mathbb{P}(S_T = b)$.
 - [e] Soit $\alpha>1.$ Calculer $\int_{\{S_T=a\}} \alpha^{-T} d\mathbb{P}$ et $\int_{\{S_T=b\}} \alpha^{-T} d\mathbb{P}$.
 - [f] Calculer $\mathbb{E}(T|S_T)$ et $\mathbb{E}(T)$.
- 8 Problème de la ruine du joueur : Un joueur joue à pile ou face avec une pièce non nécessairement équilibrée; on note p la probabilité d'obtenir pile lors d'un jet. Il reçoit un euro de la banque s'il obtient pile et en donne un à la banque s'il obtient face. Sa fortune initiale est de $a \in \mathbb{N}^*$ euros et celle de la banque de $b \in \mathbb{N}^*$ euros. Le joueur joue jusqu'à sa ruine ou celle de la banque. On modélise ce jeu de la manière suivante : $(Y_n)_{n\geq 1}$ est une suite i.i.d. de loi $p\delta_1 + q\delta_{-1}$, où q = 1 p. On note S_n la fortune du joueur après n parties. On pose

$$S_0 = a \text{ et } S_n = a + \sum_{i=1}^n Y_i.$$

Soit $Y_0 = a$ et $T = \inf\{n \ge 1 \mid S_n = 0 \text{ ou } a + b\}.$

- [a] Déterminer la nature du processus $S = (S_n)$ suivant les valeurs de p.
- [b] Cas $p \neq q$. On supposera p > q. Ecrire la décomposition de Doob de la sous-martingale S et préciser son compensateur prévisible A. En déduire $\mathbb{E}(T) < \infty$; préciser alors la valeur de $\mathbb{P}(T < \infty)$ et donner une expression de $\mathbb{E}(T)$ en fonction de $\rho = \mathbb{P}(S_T = a + b)$. On défini pour s > 0 $U_n = s^{S_n}$ pour tout $n \in \mathbb{N}$. Déterminer s pour que U soit une martingale non constante; vérifier qu'alors la martingale arrêtée $(U_{T \wedge n})$ converge \mathbb{P} -p.s. et dans \mathbb{L}^1 vers U_T . En déduire les valeurs de ρ puis $\mathbb{E}T$.
- [c] Cas p=q. Vérifier que S est une martingale de carré intégrable et préciser son compensateur prévisible B. En déduire $\mathbb{E}(T)>\infty$; préciser alors la valeur de $\mathbb{P}(T<\infty)$. Vérifier qu'alors la martingale arrêtée $(S_{T\wedge n})$ converge \mathbb{P} -p.s., dans \mathbb{L}^2 et dans \mathbb{L}^1 vers S_T . En déduire les valeurs de $\mathbb{E}S_T$, ρ puis $\mathbb{E}T$.