The subelliptic heat kernel and the associated

Brownian motion on the K-contact model spaces

Jing Wang
Joint work with Fabrice Baudoin

Purdue University

May 31th, 2013



Table of Contents

Preliminaries
The subelliptic heat kernels on S?"*+1 and H?"+1

Cayley transform of Brownian Motion on H?"*! to S?7+1

Work in progress



Riemannian manifold

log(p™'q)

elt)=exp(tlog(p'q))

Figure: Riemannian manifolds



Riemannian manifold

log(p™'q)

elt)=exp(tlog(p'q))

Figure: Riemannian manifolds

We call (M, T(M),g(:,-)r(m)) a Riemannian manifold where
» M is a differentiable manifold of dimension n,
» T(M) is a tangent bundle of M and dimT (M) = n,
> g(-,-) is be a positive definite metric on T(M).



Model spaces of Riemannian manifolds
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Subriemannian geometry

Subriemannian manifolds: Riemannian manifolds with constraint
on admissible direction of movement.

Figure: Parallel parking



Subriemannian manifold

(M, H(M),g(,)H(m)) is a Subriemannian manifold where
» M is a differentiable manifold of dimension n,
» H(M) C T(M) is a braket generating sub-bundle with
dimH(M) < n,
> &(*,")H(m) is be a positive definite metric on H(M).



Subriemannian manifold

(M, H(M),g(,)H(m)) is a Subriemannian manifold where
» M is a differentiable manifold of dimension n,
» H(M) C T(M) is a braket generating sub-bundle with
dimH(M) < n,
> &(*,")H(m) is be a positive definite metric on H(M).
H(M) is referred to as the horizontal space of T(M).



Contact Riemannian manifolds

» A contact Riemannian manifold (M, 0, g) is a Subriemannian
manifold of co-dimension 1, endowed with a contact form 6
and a metric g.
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Contact Riemannian manifolds

» A contact Riemannian manifold (M, 0, g) is a Subriemannian
manifold of co-dimension 1, endowed with a contact form 6
and a metric g.

» The vertical direction is given by the Reeb vector field.

» A K-contact Riemannian manifold is a contact Riemannian
manifold for which the Reeb vector field is a Killing vector field.



K-contact model spaces

> The Heisenberg group H?>™1 = {(z1,--- ,z,,t) € C" x R}
with group law

(z,t)(Z,t)=(z+Z,t+t' +2lmz-Z)

is a flat K-contact manifold.
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K-contact model spaces

» The K-contact sphere
S ={z= (21, ,z041) € C", 2] = 1}
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K-contact model spaces

» The K-contact sphere
S ={z= (21, ,z041) € C", 2] = 1}

is a K-contact manifold with constant sectional curvature 1.

St —s §27*L 5 CP".

» The K-contact hyperbolic space

n
H"" = {z € C" 2|}y = |z = ) lal® = 1)
k=1

is a K-contact manifold with constant sectional curvature —1.

St —s 2"+ — CH".



The subelliptic heat kernels on S?"*+1 and H?"+1



Subelliptic heat kernel on Heisenberg group H2"1

Theorem (Gaveau, 1976)

The subelliptic heat kernel of the sub-Laplacian %LHan is given by

(z t)—l/ 27 nex E_ HZH2 27 J
pete ~ (2ms)™ Jg \sinh2r P\s 2s ) tanh2r ) 7




The small time behavior of the subelliptic kernel on H?"*!

[Beals, Gaveau, Greiner, 2000] The small time asymptotics of the
kernel are:

» On the degenerated cut-locus, i.e. (0,0),

Cn
PS(O, 0) ~ sn+tl
» On the cut-locus, i.e. (0,t), 6 # 0,

C

pS(O7 9) ~ Sﬁ

» Outside of the cut-locus, i.e. (z,t), z#0, t # 0,

pS(27 t) ~

1
n+3
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Figure: Hopf fibration

St — H*"*' — CH".

St — s2+1 - CP",



Subelliptic heat kernel on SU(2)

A basis of su(2) is formed by the Pauli matrices:

0 1 0 i 0
(e ) =00 ) 7ol 5

for which the following relationships hold

[X,Y]=2Z, [Z.X]=2Y, [Y,Z]=2X.



Subelliptic heat kernel on SU(2)

A basis of su(2) is formed by the Pauli matrices:

0o 1 0 i i 0
(5 ) (0 e ) (e 5
for which the following relationships hold
[X,Y]=2Z, [Z,X]=2Y, [Y,Z]=2X.

The sub-Laplacian is then given by

L=X>+Y2



Subelliptic heat kernel on SU(2)

[Baudoin, Bonnefont, 2008] To study £, we will use the cylindric
coordinates:

(r,0,z) — exp(rcosdX +rsinfY)exp(zZ)
B cos(r)e”? sin(r)e’(?=2)
n —sin(r)e=(0=2)  cos(r)e = )’

0<r< , 0 €[0,2n], z € [-m,7].

with

We therefore obtain the radlal part of sub-Laplacian

L 0?2 G, 0?
L= 92 + 2 cotan 2r8—+tan r@



Subelliptic heat kernel on SU(2)

We have the integral representation of the subelliptic heat kernel:
Proposition (Baudoin, Bonnefont, 2008)
Fort >0, re[0,7/2), z € [-7,7],

+00 )2
_ (ytiz)
pe(r,z) = 4t qe(cos r cosh y)dy,
Vart /

where q; is the Riemannian heat kernel on S3




Geometry of S2"+1

Taking into account the Hopf fibration St — S2™!1 — CP”

0 0

(Zla"' azn) — (ei Zyy 7ei Zn)~

Introduce a new set of coordinates

wy ot w, ot ot )
)

V422 1+ 2 V1

where p = /3771 |wj|?, 0 € R/27Z, and (wy,- -+, w,) € CP".

(le'” 7Wn70)—> (



Geometry of S2"+1

Taking into account the Hopf fibration St — S2™!1 — CP”

0 0

(z1,-++ ,zp) — (ei Z1, ,ei zp).

Introduce a new set of coordinates

wy e wy el it
ViR Vi ¢1+p2> |
where p = /3771 |wj|?, 0 € R/27Z, and (wy,- -+, w,) € CP".

Then
_9
00

(le'” 7Wn70)—> (

T



sub-Laplacian on K-contact manifolds

> The associated sub-Laplacian L on S?"*1 is the lift of the
Laplacian on CP".

» By the symmetries, it's enough to compute the radial part of L
with respect to the cylindrical variables (p, 0).

- 2 02 [((2n—1)(1 + p?)
L= (1+p%) 8p2+<

2

0 0
+(1+ P2)0> a*p‘*‘Pzﬁ-




sub-Laplacian on K-contact manifolds

> The associated sub-Laplacian L on S?"*1 is the lift of the
Laplacian on CP".

» By the symmetries, it's enough to compute the radial part of L
with respect to the cylindrical variables (p, 0).

L= (1402 5 +<(2n— 1)(1+p?)

2
ap? ap

0 0
+(1+P2)P> ap‘*‘Pzﬁ-

Let p = tanr, then

_ 72+((2n—1)cotr—tanr)g + tan? riz
o or 902

r~



sub-Laplacian on K-contact manifolds

> The associated sub-Laplacian L on S?"*1 is the lift of the
Laplacian on CP".

» By the symmetries, it's enough to compute the radial part of L
with respect to the cylindrical variables (p, 0).

- 2 02 [((2n—1)(1 + p?)
L=(1+p7) 8p2+<

2

0 0
+(1+ P2)P> a*p‘*‘Pzﬁ-

Let p = tanr, then

2 5 o
=572 + ((2n — 1) cot r — tan r)a o+ tan rag

~

» The Riemannian distance § form the north pole satisfies

cosd = cos rcosf.



Spectral decomposition of the subelliptic heat kernel

» K-contact structure < T and L commute.

» The idea is to expand p:(r,0) as a Fourier series in 6, by
letting

+o0
pt(r7 9) = Z eikg(rbk(ta r)7

k=—00



Spectral decomposition of the subelliptic heat kernel

Fort >0, rc|0,%), 0 € [-m,n], the subelliptic kernel has the
following spectral decomposition:

+oo  +o0o
m—+|kl+n-1
plrd) = s 3 S emelk e (")

k=—00 m=0

.ef)\'"’kt+ik0(cos r)|k| 'Dr,;rl’lkl(cos 2r)7

where A\, = 4m(m + | k| + n) + 2|k|n and P,’,’fl"kl(x) is a Jacobi
polynomial.



Sub-Laplacian in Cylindric coordinates

» L can also be observed as
Lu=div(Vu), Yue C3(M),

where V# is the horizontal gradient.

» Let A denote the Laplace-Beltrami operator of the standard
Riemannian structure on M,

L=A—T?



The subelliptic heat kernel on S?7*!

Since
L=A-T?

and
LT =TL <« K-contact structure
We formally have

£ 22
etL — e— metA



The subelliptic heat kernel on S?7*!

Let g; be the Riemannian heat kernel, such that

aat (g¢(cosrcos@)) = A(ge(cos rcosb)),

we have the integral representation of the subelliptic heat kernel:

Proposition

Fort >0, re[0,7/2), 6 € [-7,n],

1 T (y+4i0)2
pe(r,0) = T e~ 4 g¢(cosrcoshy)dy.
—00



Green function of the conformal sub-Laplacian on S?7*1

We recover the Green function of the conformal sub-Laplacian
—L+ n%



Green function of the conformal sub-Laplacian on S?7*1

We recover the Green function of the conformal sub-Laplacian
—L+ n%

Proposition

The Green function of the conformal sub-Laplacian —L + n® on
S?1*1 s given by

n\2
G(r,0) = ()
871" *t1(1 — 2 cos r cos ) + cos? r)n/2

This coincides with the result by Geller (1980).



Asymptotics of the subelliptic heat kernel in small times

» On the degenerated cut-locus, i.e. (0,0),

Cn
pt(0,0) ~ tn+1

» On the cut-locus, i.e. (0,0), 8 #0,

Cn
pt(07 9) ~ ﬁ
» Outside of the cut-locus, i.e. (r,0), r #£0, 6 # 0,

Cn
t+3

pt(r7 9) ~



The Subriemannian distance

By Léandre’s result, the Subriemannian distance d(r,6) on S2"*1 is
B d?(r,0)
4

lim ¢l 0) =
lim tn pe(r,9)
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The Subriemannian distance

By Léandre’s result, the Subriemannian distance d(r,6) on S2"*1 is
B d?(r,0)
4

lim ¢l 0) =
lim tn pe(r,9)

» For 0 € [—m, 7],
d?(0,0) = 26| — 62

> For 6 € [-m, @], re (0,%),
o(r,0) + 0)?tan? r

sin®(0(r, 9))
where ¢(r,0) is the unique solution in [—7, 7] to the equation

d?(r,0) =

arccos(cos ¢(r, ) cos r)
/1 —cos?rcos?o(r, )

o(r,0) + 6 = cosrsinp(r,0)



The Subriemannian distance

By Léandre’s result, the Subriemannian distance d(r,6) on S2"*1 is
B d?(r,0)
4

lim ¢l 0) =
lim tn pe(r,9)

» For 0 € [—m, 7],
d?(0,0) = 26| — 62

» For 0 € [-m,x], r € (0, g)
(o(r,0) + 0)%tan?r
sin®(¢(r, 0))
where ¢(r,0) is the unique solution in [—7, 7] to the equation

d?(r,0) =

arccos(cos ¢(r, ) cos r)
/1 —cos?rcos?o(r, )

o(r,0) + 6 = cosrsinp(r,0)

In particular, the sub-Riemannian diameter of S?"*+1 is 7.
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Subelliptic heat kernel on H?3

When n = 1, H3 is isomorphic to the Lie group SL(2,R),with the
Hopf fibration
SO(2) — SL(2,R) — H?

where H? is the 2-dimensional hyperbolic space.
A basis of its Lie algebra s[(2,R) is formed by the matrices:

1 0 0 1 0 1
(o ) r=(1 o) 2= (5 5 )
for which the following relations hold

[X,Y]=2z, [X,Z]=2Y, |[Y,Z]=-2X.

The sub-Laplacian hence writes:

L= X%+ Y2



Subelliptic heat kernel on H?3

[Bonnefont, 2012] By introducing the cylindrical coordinates:
(r,0,z) — exp(rcosOX + rsin@Y) exp(zZ)

with
r>0, 0€l0,2n], z € [-m, 7.



Subelliptic heat kernel on H?3

[Bonnefont, 2012] By introducing the cylindrical coordinates:
(r,0,z) — exp(rcosOX + rsin@Y) exp(zZ)
with
r>0, 0€l0,2n], z € [-m, 7.
We have the radial part of the sub-Laplacian:
2 2

0 0 5 0
L= a2 + 2 coth 2r8— + tanh rﬁ



Subelliptic heat kernel on H?3

Proposition (Bonnefont, 2012)
The heat kernel on SL/(E,/R) is given for t > 0,r >0,z € R by

+00 (y—iz)? )2
p:(r, z 4t s;(cosh rcosh y)d!
Pt( ) 47T \/4? / t( y) y
et / too 2 v il arch(cosh r cosh y) J
= —_— t y
2
(47t)° oo \/cosh2 rcosh?y — 1

where s; is the heat kernel associated with the Lalpacian.



Subelliptic heat kernel on H?3

Proposition (Bonnefont, 2012)
The heat kernel on SL/(E,/R) is given for t > 0,r >0,z € R by

+00 (y—iz)? )2
p:(r, z 4t s;(cosh rcosh y)d!
Pt( ) 47T \/4? / t( y) y
et / too 2 v il arch(cosh r cosh y) J
= —_— t y
2
(47t)° oo \/cosh2 rcosh?y — 1

where s; is the heat kernel associated with the Lalpacian.

» The subelliptic heat kernel on SL(2,R) is then just obtained
by wrapping the one of SL(2,R).
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Hopf fibration of H?"*!

By taking into account the symmetries of the fibration
st — H*" — CH",
we use the new coordinates
Wy et w, el eif

2,0 e R/27Z, and w € CH".

(Wi, -+, Wy, 0) — (

where p = /377 |w;



Hopf fibration of H?"*!

By taking into account the symmetries of the fibration
st — H*" — CH"

we use the new coordinates

(Wla"' 7Wn7‘9)—> (

wy el wy e oif
Vi 121
where p = /377 |wj|?, 0 € R/2nZ, and w € CH". The radial

part of the sub-Laplacian on H?"*1 is

.92 5 "
L= 2 ((2n—1)cothr+tanhr)a + tanh rog

where p = tanhr.



Sub-Laplacian on H?"+!

On the universal covering of H27+1, the Hopf fibration is

R} — H20+1 — CH".
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pH2n+1 (r 0

+00 (y—i0)2 i0)2
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Sub-Laplacian on H?"+!

On the universal covering of H27+1, the Hopf fibration is

R} — H20+1 — CH".

.Then we can obtain the subelliptic kernel on H?2n+1

pﬁ?nfl(r 9) \/7 /+OO b e q¢(cosh r cosh y)dy,
47
2 w2 —u?
where gy(cosh §) = [UrtLe oo e” & sinhusin

(2m)nt+iy/rt (cosh u-+cosh 6)"*1 du is the

Riemannian heat kernel assouated to the Laplacian A issued from
the north pole (Gruet, 1996).



The subelliptic kernel on H?"*! and its universal covering

Proposition

Fort >0, r € [0,+00), 6 € (—o0,+00), the subelliptic kernel on
H2n+1 js then

(y—i0)2—u?

H/z?fl(r 6) F(n+1)e " e St +°°/+°° e a sinhusin (3%)
Pe T (2m)m+2t (cosh u + cosh rcoshy)”+1

dudy.



The subelliptic kernel on H?"*! and its universal covering

Proposition
Fort >0, r € [0,+00), 6 € (—o0,+00), the subelliptic kernel on

H2n+1 js then

(y—i0)% —u?
nii F(n+1)e " e St +°°/+°° ac sinh usin (3¥)
r,0) = dud
P (n6)= (2m)nt+2t (cosh u + cosh rcoshy)”+1 Y

We can then easily deduce the subelliptic heat kernel on H?"+1:

Proposition

Fort >0, r € [0,+00), § € [—m, 7], the subelliptic heat kernel on
H2"+1 js given by

(y—io— Zk‘m)

ll2

M(n+1)e " ttae TED PED g 4t sinh usin

P (o) = )M / / €
(2m)r+2t (cosh u + cosh rcosh y)

H2n+1




Small time asymptotics of the subelliptic kernel on HZ27+1

» On the degenerated cut-locus, i.e. (0,0),

Cn
pt(0,0) ~ tn+1

» On the cut-locus, i.e. (0,0), 8 #0,

G
Nﬁ

pt(07 9)
» Outside of the cut-locus points, i.e. (r,0), r #0, 6 # 0,

Cn
t+3

pt(r7 9) ~



The Subriemannian distance

By symmetry, the Subriemannian distance from the north pole to

any point on H?2"t1 only depends on r and 6. Then

» For 0 € R,
d?(0,6) = 26| + 6?



The Subriemannian distance

By symmetry, the Subriemannian distance from the north pole to

any point on H?2"t1 only depends on r and 6. Then

» For 0 € R,
d?(0,6) = 26| + 6?

» For § € R, r € (0, +00),
(¢(r,0) — 0) tanh? r
sin®(¢(r, 0))

where ¢(r,0) is the unique solution in
(—arccos ( ) ,arccos (i—)) to the equation

d?(r,0) =

1
cosh r cosh r

cosh™*(cosh r cos p(r, §))
\/cosh2 rcos? o(r,0) — 1

o(r,0) — 8 = cosh rsiny(r,8)




The Subriemannian distance

By symmetry, the Subriemannian distance from the north pole to

any point on H?2"t1 only depends on r and 6. Then

» For 0 € R,
d?(0,6) = 26| + 6?

» For § € R, r € (0, +00),
(¢(r,0) — 0) tanh? r
sin®(¢(r, 0))

where ¢(r,0) is the unique solution in
(—arccos ( ) ,arccos (i—)) to the equation

d?(r,0) =

1
cosh r cosh r

cosh™*(cosh r cos p(r, §))
\/cosh2 rcos? o(r,0) — 1

The above formulas also work for H2"*1 if we restrict 6 to [—, 7].

o(r,0) — 8 = cosh rsiny(r,8)




Cayley transform of Brownian Motion on H?"*! to S?7+1



Brownian Motion on the K-contact model spaces

» The Brownian Motion on the Heisenberg group H2"+1 writes:

(Btaﬁtazt) Where (Btaﬁt) — (Bt:flv 7Bp7ﬁt:'lv"' aﬁg) is a
Brownian Motions in R?" and Z, is given by

n t . . . .
2=y [ (Bldg] - plde)
i=170
» What about on the other K-contact model spaces S*"*! and

H2n+1?

» One way to understand it is via Cayley transfom.



The Riemannian case: Stereographic projection

Consider the unit sphere SV and hyperplane

RN ={y = (1, ,yn+1) : ynp1 = O},

The Stereographic Projection from the north pole
P=(0,---,0,1) of SN maps y € RN to x € SN\ {P}




Stereographic projection of Brownian Motion on R" to S”

> Let r = ||y|| for y e RN, and tan 36 = r.

>

1 0
EARN = (1 + cosh)? < Agn + = (N 2) tan 2080>



Stereographic projection of Brownian Motion on R" to S”

> Let r = ||y|| for y e RN, and tan 36 = r.

>

1 0
EARN = (1 + cosh)? < Agn + = (N 2) tan 2060>

» The Brownian Motion on Riemannian sphere BM(S™)
conditioned to be at North pole P at time T is generated by

1 1 0
EAsN + E(N — 2) tan 59%

where T is a random time independent of BM(S").



Stereographic projection of Brownian Motion on R" to SV

T is a negative exponential distributed random variable with
parameter N(N — 2)/8 and independent of BM(SN).

Proposition (T.K.Carne, 1985)

BM(RN) is mapped by stereographic projection to a time-changed
version of BM(SN) conditioned to be at north pole at time T.



Cayley transformation

» Cayley transforms are conformal mappings as analogue of
stereographic projection.



Cayley transformation

» Cayley transforms are conformal mappings as analogue of
stereographic projection.

Cr: H — §2M0\ {—epy1}

where —e, 1 is the south pole of S27+1,
» C1 maps the origin on H2"*1 to the north pole on S2"*1. ie.,

C1: 00— €en+1



Cayley transformation

» Recall that on S?"*1 we introduced the cylindric coordinates:

W]_ei9 Wei9 ei9
(Cla"'Cn+l): 727"'7 = 57 5 )
V1t Vi+p2 /14p

where w € CP", p = /> ; [wj|? = tanrs and 0 € R/27Z.




Cayley transformation

» Recall that on S?"*1 we introduced the cylindric coordinates:

wy e w, el elf >
b

(Cla"'cn+l):(ma"'a\/l+p2a\/l+p2

where w € CP", p = /> ; [wj|? = tanrs and 0 € R/27Z.

» By symmetry we only consider the radial coordinates (rs, ) on
S2n+1_



Cayley transformation

» Recall that on S?"*1 we introduced the cylindric coordinates:
Wlei9 Wnei9

e19
/17+p27 7\/1—1_,027\/1—1_,02 )
where w € CP", p = /> ; [wj|? = tanrs and 0 € R/27Z.

» By symmetry we only consider the radial coordinates (rs, ) on
S2n+1_

(C1y - Cnr1) = (

> For (z1,--- ,zn, t) € H2"*! where z € C", let

rH = y/>_i—1 |Zj|?, we consider the radial coordinates (r, t).



Cayley transformation

Cayley transform gives

\

sinrg cos rssinf
)
\/1+cos2rs +2cosrscosf +/1+ cos?rs + 2cos rscost

Cl(rH, t) = <

and
Cy Y (sin rs, sin 6)

2ry 4t
\/(1 + r)? + 4t2 \/(1 + r2)? + 4t2\/(1 —r7)? +4¢2




Cayley transformation

Theorem

For any function F € C®(H?"t1), the relation between —Ljni1
and —Lgans1 + n? via Cayley transform writes:

(—LSzn+1+n2)(h 2(Focy )) by (“Lpenaa F) o Cf !

where he = 1+ 2 cos rs cos § + cos? rs.



Cayley transformation

Corollary

For any function f € C>(S?"*1), we have that

2<th,va>> e,

LH2n+1 (f OCl) = (hc Ocl) (Ls2n+lf + h

where he = 1 + cos? rs + 2 cos rs cos§ and h = h; 2.



Time changed Doob's transform

Theorem (Time changed Doob'’s transform)

Let Y; be the Brownian motion on H?"t1 generated by % Ly2ni1,
and X; be the Brownian motion on S?"1 generated by 5Lg2nt1.
Then Cayley transformation maps Y; to a time changed process

Xfit with At fo 1d5 l"ll(r/-[7 ) Mﬁ, i.e.,

Ci(Y:) = X4

where X! is X; conditioned to be at the south pole —e,,1 at time
T



Time changed Doob's transform

Theorem (Time changed Doob'’s transform)

Let Y; be the Brownian motion on H?"t1 generated by % Ly2ni1,
and X; be the Brownian motion on S?"1 generated by 5Lg2nt1.
Then Cayley transformation maps Y; to a time changed process

Xfit with At fo 1d5 l"ll(r/-[7 ) Mﬁ, i.e.,

Ci(Y:) = X4

where X! is X; conditioned to be at the south pole —e,,1 at time
T and T is an independent random variable with distribution

[F°% e py(0, x)ds

P T > t] = .
[ 1= O+°oe ntp, (0, x)dt




Outline of the proof

Recall

Lyansa (f 0 C1) = (he 0 C1) (LS2"+1f + w> oCy

> Let

2l s2n41(h, f) B Lgni1(hf)
h N h
and X/" and X; be Markov processes generated by %Lh and

Lhf = Leonia f + — n*f,

% LS2n+1 .

Lemma (Doob'’s transform)

X! is X; conditioned to be at the south pole —e,.1 at time T,
where T is a random time with distribution

+oo —n?s
0, x)d:
P [T > t] = =L &0 et

o e tp, (0, x)dt




Outline of the proof

» On the other hand
LH2n+1 (f o Cl) = (thhf) o Cl.

Let Y; be the Markov process generated by %LHan, then

Lemma

Y: is mapped by Cayley transform to a time-changed version of

xh -process:
Xh =cCi(Ye)
with At fo 1dS H= Mﬁ



Work in progress
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