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HJB and fHJB

General HJB:

95 + LS + sup[f(x, u)ﬁ

= g0 u)] =0, (1)

Game theory: HJB Isaacs equation

aS . oS
E—I—LS—FSI;JJpH‘}f[f(X, u, v)a—i—g(x7 u,v)| =0. (2)
fHJB 5
0°S oS
O3+ LS+ suplf(x ) oo + g(x, )] =0 (3)

We're particularly interested in the case when
L = a(x)Dg%, a € (0,2].
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CTRW and optimal payoff equation

A random variable  in DOA (S-stable law) if as n — oo

L lisi 7 (4)

in distribution, for some a,, b,, where Z is stable. In other
notation, as n — oo if v(dr) is the law for ~; waiting times

1

Joo e~ T ©)
for 5 € (0,1).
Waiting times 7; € DOA(3-stable law), 5 € (0,1).
Denote X(n) = >_7 ;v; and Zx(t) = inf,{n: X(n) > t}
Jumps & € DOA(a-stable law), o € (0,2], & € RY.
The process Yz, (t) = Zizil(t) &i is the CTRW.
Control set U at every jump: &(u;), i € N.
Set of all possible controls for all jump times: MIA|S

U={io=(u,uwm,...)},uecU. (6’51[g



Fractional calculus
Basics

@ Fractional integral defined via iterations for f € S, Schwartz
space: Let If(x) = [*__f(y)dy for f € S.

1KF(x) = (k—11)| /_;(x — y)*" Y (y)dy, for ke N. (7)

Now replace integer k by fractional 3:

1BF(x) = I'[lﬁ] /_X (x — y)*"1f(y)dy, for 3>0. (8)

@ Related fractional derivative for § € (0,1):

@10 _ d sy, (9)

dxB dx
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Fractional calculus

@ The left-sided Caputo derivative for 5 € (0,1) is defined for
fes by

1 X df(y) _
DA f(x) = / X—y de. 10
e Fractional Laplacian operator (—V)*:

o L e

@ The operators —Dgf, and (—V)%/2 are generators of stable
Levy motions.

@ A general (B-stable Levy motion L; can be described by the
following log-characteristic function:

logE[e?t] = —tkP|0|° (1 — iBsign(0)tan(B7/2)) + itmb (12)

M[ATS]|
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Fractional calculus

Mittag-Leffler function: power series definition

A Mittag-Leffler function Eg o(z) is defined as:

Pl T L F[pkta]  2mi JHa M-z

for a, 3 > 0,z € C, and where Ha denotes a Hankel path, which is
a contour starting and finishing at —oo and encircling the disc
IA| < |z|*/# counter clockwise.
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Fractional calculus
Examples of Caputo derivatives of functions

* — -8B
o Dyf(e) = tPE11 p(\t) — g,
o Dyi(cosh(VAL) = t 7By 5(A2) — iy,

° D(’;Bt(H(t)) =0, where H(t) is the unit Heaviside function.
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Fractional calculus
Mittag-Leffler function: examples

For example,

Ei1(z) = €7 (14)
and
Eio(z) = &1 (15)
V4
and _
Era(7?) = S'”z(z). (16)
MIATS
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Fractional calculus
Simple fDE

For g € (0,1], A € R,

Dghy () = Ay (1), (17)

with initial condition
y(0) = yo. (18)

Solution is given by
y(t) = yoEgyl()\t’B). (19)

When 8 =1, y(t) = y0 > ;2 r(/,\:zg) yoet, a standard result.
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CTRW and optimal payoff equation

Waiting times ; € DOA(3-stable law), 8 € (0,1).
Denote X(n) = >_7 ;i

Denote Zx(t) = inf,{n: X(n) > t}

Jumps & € DOA(a-stable law), o € (0,2], & € Re.

The process Yz, (t) = Zizél(t) & is the CTRW. Y considered
at jump times only is a Markov process.

@ Controlling jump sizes to optimise payoff:
o Control set U at every jump time

@ Set of all possible controls for all jump times:
U={i=(u,uwm,..)}ueU. (20)

MIATS]
(DIO[C]



Fractional calculus

@ The optimal payoff function S(t,y) is defined as follows:

S(t,y) = spESo(y + Y(t.@), t=0.  (21)
acl
e Scaling jump sizes by 71/ and waiting times by 71/8 then
Y7 (1) = S22 r/eg () and
S7(t.y) = sup ES§(y + Y7(t, ). (22)
neU

uel

S7(t,y) = sup [s&m / " (dr /P
t T(r_ y 7_1/oz vidr 7-1/5 .
[Ty + e/t )} (23)

As T — 0, assume Vt > 0, y € R, S7(t,y) — 5(t,y), where § MAS
belongs to domains of the stable generator L and Aéﬁ. DlO/C



Fractional calculus
Extensions and other versions

@ Motion during waiting times can be deterministic, e.g. in case
d = 1, with a generator of the form f(x)<. l.e. the process
Y is piecewise deterministic.

@ This only slightly changes the equation for the optimal payoff,
adding an extra term with the generator of the motion during
waiting time intervals.

© running costs- for waiting and for jumping, apart from
arriving: represented by functions f and g.

© Time and position dependence:

X; = X;—l + ’Yn(Xn—l)a (24)
and
Yy = Y1+ &(Yn-1), (25)
and the process we study is Yz, (¢). %g



Fractional calculus
Construction of the jump process

For an arbitrary Feller process Y with a generator LY, it is always
possible to construct a family of measures p, -(y, d§), such that

Yo = Yo +&(Yi1), (26)

where £,,n € N are r.v.'s with distributions given by s, -, and such
that

/ My 2O MY, (g de) > LoF(ey). (27)
R T

Then 5

Essentially, in such a case we obtain the same form of payoff

equation.
M[ATS]|
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Fractional calculus

Let 7 — 0, obtain the limiting equation of the form:

D3S(t,y) = —LS(t,y) + H(u,t,y,D,S). (29)
First, we study

DS(t,y) = —LS(t,y) + f(t,y), (30)

We study the case when L : D(L) — Cso(R?), with the resolvent
set p(L) including the right half plane. More precisely this theory
applies to L = —|V|*, a € (0,2] and to

2
L= Zf{j:l a,-,j%a)g + 27:1 b,-d%, where a; j, b; are constants.

Applying Laplace transform and re-arranging:

S0 = MV ) so(y) + (VT 7). (3rfEEE



Fractional calculus
Mittag-Leffler function

Other representation of the Mittag-Leffler function:

1 stll/P f—a 00
Eg,a(—tﬁL) — / Lds — / e*rtLl/B K@a(r)dr,
Ha(e) 0

27 s 41
(32)
where
1 r?f=2sin(ar) — rP~sin((B — a)n)
Kso(r) = = ,
5.alr) 7r r28 4+ 2rfcos(fm) + 1 (33)
We will need
1 rB sin( )
K == . 4
5.5(r) 7 r2f +2rBcos(Br) + 1 (34)
Here e~"""" is a bounded operator. M[ATS]
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Fractional calculus
A Laplace transform and an unbounded operator L

Let L: D(L) — Coo(RY), such as L = (—V)%, a € (1,2], and
B € (0,1). Then the following holds:

AB—e

— At a—1 B _
tY T Ego(—t°L)dt = ———.
/0 ¢ Bal ) (MI+1L)

(35)

Consider L : D(L) — L2(RY) first. The power series representation
of Eﬁ,a(—thL)f holds for any vector f of L, satisfying

> ||L"f
3 [L7F ] 2 (rey "< oo (36)
n!
n=1
for any t > 0. This set of vectors is dense in L2(R?). C.(RY)
dense in L2(R9). Approximate functions in Coo(R?) by functions in
C.(RY) C L2(RY). NTATS

Apply the inverse Laplace transform to obtain the mild form. DICIC



Fractional calculus
Mild form of the equation

Do ¢S(t,y) = —LS(t,y) + f(t, y) (37)
turns to
S(t,y) = Eg1(—t°L)So(y)
+/O (t — s)PLEs s(—(t — s)PL)f(t,y)ds. (38)
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Fractional calculus
Application to the limiting payoff equation

Theorem

Let B (0,1), L=(-V)*, a€(l,2orL=37_, aJdXd—f,XJ
where ajj are constants. The fDE

DyS(t,y) = —LS(t,y) + H(t,y,u,D,S(t,y))  (39)

has the mild form

S(t,y) = Eg1(—t*1)So(y)
+/0 (t— s)ﬁflEg,g(—(t —s)PL)H (t,y, u, D,S(t,y))ds. (40)
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Fractional calculus
Assumptions:

@ The domain of L is D = C2(R?), unbounded as an operator
in Co(RY), e.g. L=(-V)% a € (L,2].

o e Fllcims) < tO|f | cogeay.

@ H(u,t,y,p)is Lipschitz in p uniformly in y, i.e., with a
Lipschitz constant x independent of y, and

|H(u,y,0)] < h (41)

for a constant h and all y.
@ A restriction on stability parameters «, 3:

B
6—a+1>0. (42)

Under the above assumptions on H and L, for any Sp € CL (RY)

there exists a unique CL (R?) solution S(t,y) of the mild MIATS]
equation, for all t > 0. D[O]C]



Fractional calculus

The space C([0, T], CL(R?)) has the norm

lo()l = sup_|[¢]lc1(ra) (43)

te[0,T]

Denote by BSTO the space of continuous functions from the closed
convex subset of C([0, T], CL (RY)) with ¢g = Sp.

M[ATS]
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Fractional calculus
Sketch of the proof

Denote the RHS operator by W(-). By triangle inequality:

t

sup_[[W(0)|cirey < sup || [ (t—s)" " Egp(—(t —5)°L)
te[0,T] tefo, 7] Jo

H <U, 5 Y, d¢£;/’ y)> dSHCI(Rd)

+ sup_|[Eg1(—t"L)S(0)]c1(re)- (44)
tel0,T]
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Fractional calculus

Letqbl;éqbzeBsTo.

sup [[W(or — 6?)llcrrey <
O,T]

te|
t
sup | [ (6= )" Ess(—(e = )"0
tefo, 7] 11Jo

1 2
X (H(U»S,% %) - H(U,S,y, Ci;i)/s)) ds

CH(RY)
< ult) (p 6! — ¢§|c1(Rd)) .
s<t
(45)
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Fractional calculus

The RHS operator W is a contraction in the closed convex subset
of C([0, T], CL (R¥)) for small enough T.

As a consequence, it has a unique fixed point, i.e., there is a
unique continuous solution S(t,y) for the mild form of the fHJB,

which is approximated by the iterations of W on Syp(y) by Banach
fixed point theorem.
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Fractional calculus
Theorem 4

The assumptions of the previous theorem remain and we add a
new one:

o |H(u,t,y1,p) — H(u, t,y2, p)| < &ly1 — y2|(1 + |p|) with a
certain constant & > 0.

If So(y) € C2(R?), the unique solution constructed previously
belongs to C2 (RY) and represents a classical solution to the
original fDE.
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Fractional calculus
Sketch of the proof

Denote by BSTO’R’2 the space of functions which are twice
continuously differentiable in y from the closed convex subset BST0

of C([0, T], CL(RY)), have ¢o = Sp and

sup [|¢t]| c2(rey < R (46)
t<T
for some constant R > 0. Then
_ B
f;g||"’(¢r)\|c2(ned) < tsgl;HEﬂ,l( t?1)S(0) o
t
+/ w(s)R(k + &)ds. (47)
0
M[ATS]
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Fractional calculus

Want sup,< 7 [|[W(¢¢)l|c2(rey < R, so that W maps BST R2 to itself.

Re-arrange to obtain an expression for R:

R > sup |Es1(—t"L)S(0)|| c2(re)
t<T

« (1 _ /0 " o(s)ds(r 1 k)) o (48)

If necessary, reduce T to nT for some 7 € (0,1), so that the
denominator is positive.

If (48) is satisfied then W maps Bg’T’Z into itself and consequently
the limit of iterations of W on Sy is also of class C?(RY).

By the previous theorem we know that the solution to the fHJB is
unique in C1(RY), hence, the solution limy_,., W*(Sp) is a unique
solution of class C?(R?). So, by the principle of dynamic

programming, there exists a unique classical solution for the simplddiNE
fHJB on any interval [0, T]. DICC



Fractional calculus
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Fractional calculus
Further research

Still remains to prove ST — S.
What if the restriction on o and 3 is not satisfied?
If L =sup,cyaly)g(u)Dy®, how to analyse the fHJB?

SDE approach to the limiting process, links to fractional
Fokker-Planck equation.

e 6 o6 ¢

@ Applications to insurance, for example considering a difference
of two sums of jumps with waiting times dependent on related
stability parameters 81 and 3> and introducing re-insurance as
an additional running cost.

o CTRW with regenerations in limit order book theory

@ Many-particle systems behaving as a similar CTRW,
mean-field interaction of such systems in games

o CTRW approach to queueing theory MIAS)
(D[O[C]



Fractional calculus

Thank You for listening.
Merci de votre attention.
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