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Limit order book

Limit order book: financial tool

◮ Allows traders to place orders to be realized in the future

Limit order (buy order):

◮ Trader wants to buy asset at price p

◮ Nobody currently wants to sell at this price

◮ Order stocked in book, fulfilled as market fluctuates

Market order (sell order)

◮ Fulfills largest buy order in book

◮ Book determines price of asset
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Limit order book

: limit order

✞✝ ☎✆Limit order ↔ new point

✞✝ ☎✆Market order ↔ rightmost point removed
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Limit order book

Complicated model

◮ Two-sided book: limit sell orders/market buy orders

◮ Cancellations

◮ Intricate arrival processes

◮ . . .

Focus on one feature:

◮ State of the book influences arrivals
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State of the book influences arrivals

Arrival of new order
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State of the book influences arrivals

Arrival of new order

New order far to the left:g

◮ May never be fulfilled

3 / 18



State of the book influences arrivals

Arrival of new order

New order far to the right:

◮ Pays too much
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State of the book influences arrivals

Arrival of new order

✞✝ ☎✆New order placed in the vicinity of price
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Model

Asymptotic behavior of the price

Scaling limit



Model

Case X4 > 0

p3+X4
p0

Discrete time Markov chain

◮ State space: finite point processes on R = (−∞,∞)

Two parameters

◮ π ∈ (0, 1): probability of new order

◮ X ∈ R: random variable, distance of new order with
respect to current price
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Model

Case X4 > 0

p3+X4
p0

At each time step:

◮ Remove rightmost order with probability 1 − π

◮ Add order with probability π at p + X

◮ I.i.d. displacements (Xk, k ≥ 0)

Boundary condition

◮ If book empty, start again with one order at 0
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Case X4 > 0

p3+X4
p1

At each time step:

◮ Remove rightmost order with probability 1 − π

◮ Add order with probability π at p + X

◮ I.i.d. displacements (Xk, k ≥ 0)

Boundary condition

◮ If book empty, start again with one order at 0
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Model

Case X4 > 0

p3+X4
p2

At each time step:

◮ Remove rightmost order with probability 1 − π

◮ Add order with probability π at p + X

◮ I.i.d. displacements (Xk, k ≥ 0)

Boundary condition

◮ If book empty, start again with one order at 0
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Model

Case X4 > 0

p3+X4
p3

At each time step:

◮ Remove rightmost order with probability 1 − π

◮ Add order with probability π at p + X

◮ I.i.d. displacements (Xk, k ≥ 0)

Boundary condition

◮ If book empty, start again with one order at 0
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Model

p3

Case X4 < 0

p3+X4

Case X4 > 0

p3+X4

At each time step:

◮ Remove rightmost order with probability 1 − π

◮ Add order with probability π at p + X

◮ I.i.d. displacements (Xk, k ≥ 0)

Boundary condition

◮ If book empty, start again with one order at 0
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Model

Case X4 > 0

p3+X4p3+X4
p4 = p3

At each time step:

◮ Remove rightmost order with probability 1 − π

◮ Add order with probability π at p + X

◮ I.i.d. displacements (Xk, k ≥ 0)

Boundary condition

◮ If book empty, start again with one order at 0
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Model

Case X4 > 0

p3+X4 p5 = p4 + X5

At each time step:

◮ Remove rightmost order with probability 1 − π

◮ Add order with probability π at p + X

◮ I.i.d. displacements (Xk, k ≥ 0)

Boundary condition

◮ If book empty, start again with one order at 0
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Model

Case X4 > 0

p3+X4
p6

At each time step:

◮ Remove rightmost order with probability 1 − π

◮ Add order with probability π at p + X

◮ I.i.d. displacements (Xk, k ≥ 0)

Boundary condition

◮ If book empty, start again with one order at 0
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Model

Case X4 > 0

p3+X4
p7

At each time step:

◮ Remove rightmost order with probability 1 − π

◮ Add order with probability π at p + X

◮ I.i.d. displacements (Xk, k ≥ 0)

Boundary condition

◮ If book empty, start again with one order at 0
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Model

Case X4 > 0

p3+X4
p8

At each time step:

◮ Remove rightmost order with probability 1 − π

◮ Add order with probability π at p + X

◮ I.i.d. displacements (Xk, k ≥ 0)

Boundary condition

◮ If book empty, start again with one order at 0
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Model

Case X4 > 0

p3+X4
p9

At each time step:

◮ Remove rightmost order with probability 1 − π

◮ Add order with probability π at p + X

◮ I.i.d. displacements (Xk, k ≥ 0)

Boundary condition

◮ If book empty, start again with one order at 0
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Model

Case X4 > 0

p3+X4
p9

Point process on R

◮ Model on (0,∞) by taking exponential transformation

◮ Multiplicative rather than additive displacement
(geometric Brownian motion)
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Model

Case X4 > 0

p3+X4
p9

Total number of orders in the book

◮ Random walk reflected at 0
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Asymptotic behavior of the
price



Price process

pk: position of rightmost order at time k

Asymptotic behavior of pk as k → +∞?

Assume π > 1/2

◮ π ≤ 1/2: pk = 0 infinitely often
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Asymmetric behavior

Price moves freely to the right

◮ With probability πP(X > K), jump > K

Price “slowed down” by orders sitting to its left

◮ Orders to the left act as a barrier

pk
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Asymmetric behavior

Price moves freely to the right

◮ With probability πP(X > K), jump > K

Price “slowed down” by orders sitting to its left

◮ Orders to the left act as a barrier

pk+1 ≈ pk

pk → +∞ for π large enough?
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Main result

Theorem

If EX > 0, then pk → +∞.

Remarks

◮ EX > 0: price drifts to the right, no barrier
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Main result

Theorem

If EX > 0, then pk → +∞.

If EX < 0 and P(X > 0) > 0, then:

◮ pk → +∞ if π >
1

1 + a
;

◮ pk → −∞ if π <
1

1 + a
;

where a = inf
θ≥0

E(eθX) ∈ (0, 1].

Remarks

◮ EX > 0: price drifts to the right, no barrier

◮ EX < 0: pk → +∞ if π large enough (barrier)
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;

◮ pk → −∞ if π <
1

1 + a
;

where a = inf
θ≥0

E(eθX) ∈ (0, 1].

Remarks

◮ EX > 0: price drifts to the right, no barrier

◮ EX < 0: pk → +∞ if π large enough (barrier)

◮ pk → +∞ if E(eθX) = +∞ for every θ > 0 (!!)

5 / 18



Main result

Theorem

If EX > 0, then pk → +∞.

If EX < 0 and P(X > 0) > 0, then:

◮ pk → +∞ if π >
1

1 + a
;

◮ pk → −∞ if π <
1

1 + a
;

where a = inf
θ≥0

E(eθX) ∈ (0, 1].

✞✝ ☎✆Proof: Coupling with branching random walk
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Branching random walk

Each step:

◮ Each particle removed and replaced by random number of
particles

◮ Each new particle at random distance from “parent”
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Branching random walk

Each step:

◮ Each particle removed and replaced by random number of
particles

◮ Each new particle at random distance from “parent”

Coupling via tree representation

◮ Add genealogy/filiation between particles/orders
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Branching random walk as dynamics on tree

Start from random tree T

◮ Geometric offspring distribution, parameter π

◮ I.i.d. labels ∼ X

◮ Root is blue, other nodes black

X4 X5

X1 X2

X6

X3
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Branching random walk as dynamics on tree✞✝ ☎✆Tree representation

◮ : alive

◮ : not born

◮ : dead

X4 X5

X1 X2

X6

X3

✞✝ ☎✆Representation on the line

X1
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Branching random walk as dynamics on tree✞✝ ☎✆Tree representation

◮ : alive

◮ : not born

◮ : dead

X4 X5

X1 X2

X6

X3

✞✝ ☎✆Representation on the line

X1X3 X1 X2
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Branching random walk as dynamics on tree✞✝ ☎✆Tree representation

◮ : alive

◮ : not born

◮ : dead
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Branching random walk as dynamics on tree✞✝ ☎✆Tree representation

◮ : alive

◮ : not born

◮ : dead

X4 X5

X1 X2

X6

X3

✞✝ ☎✆Representation on the line

X1X6 X5 X4
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Branching random walk as dynamics on tree✞✝ ☎✆Tree representation

◮ : alive

◮ : not born

◮ : dead

X4 X5

X1 X2

X6

X3

✞✝ ☎✆Representation on the line

X1
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Limit order book as dynamics on tree – 1/2

Run deterministic dynamic on T

Only rightmost order “reproduces”:

◮ : with largest label

If has a black child: first →

Else, →

T

X4 X5

X1 X2

X6

X3
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Limit order book as dynamics on tree – 1/2

Run deterministic dynamic on T

Only rightmost order “reproduces”:

◮ : with largest label

If has a black child: first →

Else, →

T

−1 −1

−1 +2

+1

+1
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Limit order book as dynamics on tree – 1/2
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Limit order book as dynamics on tree – 2/2

Γk: labels of blue nodes at time k

Theorem
(Γk, k ≥ 0) is a realization of the limit order book process.
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Limit order book as dynamics on tree – idea of proof

Run deterministic dynamic on T

Only rightmost order “reproduces”:

◮ : with largest label

If has a black child: first →

Else, →

T

X4 X5

X1 X2

X6

X3
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Limit order book as dynamics on tree – idea of proof

Run deterministic dynamic on T

Only rightmost order “reproduces”:

◮ : with largest label

If has a black child: first →

◮ Probability π

◮ Displacement ∼ X

◮ Limit order

Else, →

◮ Probability 1 − π

◮ Market order

T

−1 −1

−1 +2

+1

+1
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Case pk → −∞: proof

Assume EX < 0, P(X > 0) > 0 and π < 1/(1 + a)

Proof of pk → −∞

◮ Mk: position of rightmost particle in BRW

◮ Well-known: Mk → −∞

◮ Fix some L: then pk ≤ L for k large enough

T

Finite

Labels ≤ L
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Case pk → +∞: proof

Assume:

◮ EX < 0, P(X > 0) > 0 and π > 1/(1 + a)

◮ or EX > 0

Goal: prove pk → +∞
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Case pk → +∞: proof

Key observation

◮ Initial order at 0

◮ Event {Initial order stays forever in the book}
independent of what happens in (−∞, 0)

◮ Orders placed in (−∞, 0) may as well be instantaneously
removed
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Case pk → +∞: proof

Consequence
◮ T ′: remove from T all nodes with label in (−∞, 0) and

their descendants

★

✧

✥

✦

Initial order stays forever in the book
m

T ′ is infinite
m

Branching random walk with barrier at 0 survives

Theorem (BRW with a barrier)

q = P(T ′ is infinite) > 0.

12 / 18



Case pk → +∞: proof

Proof of pk → +∞:

◮ Each time, probability q > 0 that new order stays forever

◮ Renewal sequence that pushes the price to +∞

12 / 18



Scaling limit



Set-up

(B(k), k ≥ 0): critical limit order book

◮ Displacement distribution X: EX > 0

◮ π =
1

2
: total number of orders = critical random walk

Renormalize B as follows:✎
✍

☞
✌B̂n(t)([a, b]) =

1

n
B(n2t)([na, nb])

◮ Scale mass by n−1, time by n2 and space by n

◮ (p̂n(t), t ≥ 0): renormalization of price process (p(k))

Different boundary condition:

◮ Always an order at 0

14 / 18



Conjecture

Conjecture

(B̂n, p̂n) ⇒ (B̂, p̂) as n → +∞, where p̂ is a reflected
Brownian motion with variance EX and B̂ is Lebesgue
measure on [0, p̂]:

B̂(t)(A) =
1

EX

∫ p̂(t)

0
1{x∈A}dx.

Proof

◮ Tightness + identification

◮ Tightness of B̂n “easy”: martingale arguments

◮ If B̂n ⇒ B̂, then p̂n = sup supp(B̂) ⇒ sup supp(B̂) = p̂
(continuous mapping)

15 / 18



Proof strategy 1/3: continuous mapping

B = Φ(T ): after scaling, B̂n = Φ(T̂n)

Well-known: T̂n ⇒ T̂

◮ Genealogical structure: continuous random tree

◮ Labels of nodes: Brownian snake

B̂n ⇒ Φ(T̂ ): meaning?

◮ Can be done for branching random walk (?)

16 / 18



Proof strategy 2/3: Laplace transform

“Classical” approach for superprocesses

Control convergence of E
[
exp

(
〈B̂n(t), f〉

)]

◮ If B̂n ⇒ B̂, then

E

(
e〈B̂(t),f〉

)
= E

(
e〈B̂(0),f〉

)
+

∫ t

0
E

[
e〈B̂(u),f〉

(
f(p̂(u))2 − EXf ′(p̂(u))

)]
du

with p̂ = sup supp(B̂)

◮ B̂ = [0,RBM] solves this

◮ Uniqueness?

17 / 18



Proof strategy 3/3: regenerative trees

Assume X ∈ {1, 0,−1,−2, . . .}

Key observation (same as before)

◮ Excursions of (p(k), k ≥ 0) above level a > 0 are i.i.d.

a

18 / 18



Proof strategy 3/3: regenerative trees

p̂n ⇒ p̂: satisfies the same property and is continuous

Theorem (Weill’07)

p̂ codes a Lévy tree (scaling limit of Galton Watson tree).

Identify reflected Brownian motion through its length

a

18 / 18
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