Analysis of a one-sided limit order book
model

Florian Simatos

Eindhoven University of Technology

Workshop on Piecewise Deterministic Markov Processes
Rennes, May 17, 2013

Partly based on on-going joint work with J. Reed (NYU)



Limit order book

Limit order book: financial tool

» Allows traders to place orders to be realized in the future

Limit order (buy order):

» Trader wants to buy asset at price p
» Nobody currently wants to sell at this price
» Order stocked in book, fulfilled as market fluctuates

Market order (sell order)

» Fulfills largest buy order in book

» Book determines price of asset
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Limit order book

Complicated model

» Two-sided book: limit sell orders/market buy orders
» Cancellations

» Intricate arrival processes

> ...

Focus on one feature:

» State of the book influences arrivals
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State of the book influences arrivals

Arrival of new order
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New order far to the left:

» May never be fulfilled
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State of the book influences arrivals

Arrival of new order
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New order far to the right:

» Pays too much
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State of the book influences arrivals

Arrival of new order
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{New order placed in the vicinity of price]
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Model

Asymptotic behavior of the price

Scaling limit



Model

2K A< H—

Po

Discrete time Markov chain

» State space: finite point processes on R = (—o0, 00)

Two parameters

» m € (0,1): probability of new order

» X € R: random variable, distance of new order with
respect to current price
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Model
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Po
At each time step:

» Remove rightmost order with probability 1 — =
» Add order with probability = at p + X
» Li.d. displacements (X, k > 0)

Boundary condition

» If book empty, start again with one order at 0
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Model
Case X4 <0 Case X4 >0

y |
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At each time step:
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Ps = pa+ X5
At each time step:

» Remove rightmost order with probability 1 — =
» Add order with probability = at p + X
» Li.d. displacements (X, k > 0)

Boundary condition

» If book empty, start again with one order at 0
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Model

PR H—¢

Do

At each time step:

» Remove rightmost order with probability 1 — =
» Add order with probability = at p + X
» Li.d. displacements (X, k > 0)

Boundary condition

» If book empty, start again with one order at 0
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Model
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Point process on R

» Model on (0, c0) by taking exponential transformation

» Multiplicative rather than additive displacement
(geometric Brownian motion)
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Model

NZ.

2K

Total number of orders in the book

» Random walk reflected at 0

7N
Do

18



Asymptotic behavior of the
price



Price process

Pr: position of rightmost order at time k
Asymptotic behavior of p;, as k — +o00?

Assume ™ > 1/2

» m < 1/2: pr = 0 infinitely often
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Asymmetric behavior

Price moves freely to the right

> With probability 7P(X > K), jump > K

Price “slowed down” by orders sitting to its left

» Orders to the left act as a barrier

)eé >§/ NZ \Z
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> With probability 7P(X > K), jump > K
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pr — +oo for 7 large enough?
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Main result

Theorem
If EX > 0, then pp — +oo.

Remarks

» [£X > 0: price drifts to the right, no barrier
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Main result
Theorem
If EX > 0, then pp — +oo.
If EX < 0and P(X > 0) > 0, then:

1
> — +oo if ™ > ;
Pk 1+a

> pp— —oo if T <

l—i—a'
h = inf E(e%% 0,1].
where a inf (e”*) € (0,1]

LProof: Coupling with branching random waIkJ
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Branching random walk

Each step:

» Each particle removed and replaced by random number of
particles

» Each new particle at random distance from “parent”

>
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Branching random walk

Each step:

» Each particle removed and replaced by random number of
particles

» Each new particle at random distance from “parent”

< HK—X

Coupling via tree representation

» Add genealogy/filiation between particles/orders
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Branching random walk as dynamics on tree

Start from random tree T

» Geometric offspring distribution, parameter 7
> Li.d. labels ~ X

» Root is blue, other nodes black
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Branching random walk as dynamics on tree

[Tree representation]

» @: alive
» @: not born
» @: dead
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Branching random walk as dynamics on tree

[Tree representation]

» @: alive
» @: not born
» @: dead

[Representation on the Iine}
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Branching random walk as dynamics on tree

[Tree representation]

» @: alive
» @: not born
» @: dead
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Limit order book as dynamics on tree — 1/2

Run deterministic dynamic on 7T

Only rightmost order “reproduces”:

» l: @ with largest label

T
If ] has a black child: first @ — @ ]
1 #2
®

1 Xp 6

Eilse, ] — @
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Limit order book as dynamics on tree — 2/2

I';: labels of blue nodes at time k

Theorem
(T'x, k > 0) is a realization of the limit order book process.
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Limit order book as dynamics on tree — idea of proof

Run deterministic dynamic on 7T

Only rightmost order “reproduces”:
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Else, ll — @ 4N 6
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Case pp — —oo: proof
Assume EX <0, P(X >0) >0and 7 < 1/(1+ a)
Proof of p, — —o0

» M. position of rightmost particle in BRW
» Well-known: M, — —oo

» Fix some L: then p; < L for k large enough
T

Finite

Labels < L
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Case pp — +oco: proof

Assume:

» EX <0, P(X >0)>0and 7w >1/(1+ a)
»orEX >0

Goal: prove p, — 400
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Case pp — +oco: proof

Key observation

» Initial order at 0

» Event {Initial order stays forever in the book}
independent of what happens in (—oo, 0)

» Orders placed in (—oco, 0) may as well be instantaneously
removed

TEEEED CEERLLE
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Case pp — +oco: proof

Consequence

» 7’: remove from 7 all nodes with label in (—oc, 0) and
their descendants

Initial order stays forever in the book

3
T is infinite
3

Branching random walk with barrier at 0 survives

Theorem (BRW with a barrier)
g = P(7T" is infinite) > 0.

12/18



Case pp — +oco: proof

Proof of p, — +oc:

» Each time, probability ¢ > 0 that new order stays forever

» Renewal sequence that pushes the price to oo
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Scaling limit



Set-up
(B(k),k > 0): critical limit order book

» Displacement distribution X: EX > 0

1
> T = 5: total number of orders = critical random walk

Renormalize B as follows:

[énm([a, b)) = - B(n*t)([na, nb@

» Scale mass by n—!, time by n? and space by n

» (pn(t),t > 0): renormalization of price process (p(k))

Different boundary condition:

» Always an order at 0

14 /18



Conjecture

Conjecture

(ﬁn,ﬁn) = (ﬁ,ﬁ) as n — oo, where p is a reflected
Brownian motion with variance [EX and B is Lebesgue
measure on [0, p|:

~ 1 [P®)
B(t)(A) = M/() ]]_{meA}dQB.

Proof

» Tightness + identification
» Tightness of B, “easy”: martingale arguments

» If B,, = B, then p,, = sup supp(ﬁ) = sup supp(ﬁ) =p
(continuous mapping)
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Proof strategy 1/3: continuous mapping

B = ®(7): after scaling, B,, = <I>(7')

Well-known: ’ﬁ = 7A’

» Genealogical structure: continuous random tree
» Labels of nodes: Brownian snake

B,, = ®(T): meaning?

» Can be done for branching random walk (?)

16/18



Proof strategy 2/3: Laplace transform

“Classical” approach for superprocesses

Control convergence of I [exp ((ﬁn(t), f))]
» If B,, = B, then
E (e<1§(t),f>> —F (e<1§(0),f>) +
t ~
| B[O (45w)? — EXF/(p(w)))] du
0
with p = sup supp(ﬁ)

» B = [0, RBM] solves this

» Uniqueness?

17/18



Proof strategy 3/3: regenerative trees
Assume X € {1,0,—1,—2,...}
Key observation (same as before)

» Excursions of (p(k),k > 0) above level a > 0 are i.i.d.

18/18



Proof strategy 3/3: regenerative trees

Ppn = p: satisfies the same property and is continuous
Theorem (Weill'07)

p codes a Lévy tree (scaling limit of Galton Watson tree).

Identify reflected Brownian motion through its length

18/18
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