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Growing and dividing populations: what triggers the
growth?



What triggers the bacterial growth?

Different ways of investigation:

I details the intracellular mechanisms
still poorly understood

I Observe and understand the population dynamics

HERE: we focus on this second way: a phenomenological
approach?



Population dynamics observations

Different characteristics of the cells may be observed. In the
previous movie:

I the age distribution

I the size distribution

I the 2 daughters sizes

I the growth rate distribution

I the age-at-division distribution

I the size-at-division distribution

I the genealogical influence (inheritance of some traits)...

Question: Can we deduce laws from our observations?
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Steps towards such ”laws” (and outline of the talk)

1. Make the most of direct observations

2. Make assumptions or simplifications

3. Build model(s)

4. Calibrate the model(s): estimation of unobserved parameters

5. Back to the data to (in)validate the model(s)



1. Direct observations

In the previous movie: 1 photo is taken and analysed each minute
or each 2 minutes.
We have 2 types of data::

I Data as in the initial movie: all descendants till a certain
time, several microcolonies (Stewart et al, Plos Biol., 2005)

I 1 daugther cell kept at each generation, till a certain time,
several lineages (Wang, Robert et al, Current Biology, 2010)
microfluidic device

THE WAY WE OBSERVE THE DATA INFLUENCE THE
MATHEMATICAL MODELLING.



1. Direct observations

Division of the cells: distribution of the ratio (size of daughter/size
of mother)



1. Direct observations
Bacterial growth: commonly admitted after much debate:
exponential growth:

dx

dt
= κx .

Figure: Monod’s 1942 thesis on B. Coli culture cells.



1. Direct observations

Growth of the cells: variability among exponential growth rates



Direct observations

Recent data (Stewart et al, Plos Biol, 2005)



1. Direct observations
Growth of the population: exponential with Malthus parameter λ
(almost) equal to the (average) individual growth rate κ.
Doubling time (= Log(2)/κ) of approx. 20 min. Well-known fact
by biologists.
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2. Assumptions

Approximation assumptions based on direct observations:

I daughter cell size= half of mother cell size

I growth rate = constant among cells (neglect variability)

dx

dt
= κx

I infinite nutrient and space

I first cell selected at random



2. Assumptions

Models assumption:

I no memory

I a particle of size x may divide with a division rate B
depending on age
OR

I a particle of size x may divide with a division rate B
depending on size
OR

I a particle of size x may divide with a division rate B
depending on size AND age AND/OR something else...



3. Models

2 main ways of translating mathematically the previous
assumptions:

1. probability: model each cell

2. PDE: model the population of cells, considered either as large
or in expectancy



3. Models: Branching processes modelling

Piecewise Deterministic Markov Processes (PDMP):

I We start with a singe cell of size x0.

I The cell size grows exponentially according to a constant rate
κ, , in a deterministic way.

I at each size, a cell has an instantaneous probabillity rate B to
divide (jump); B depend on either its size x or its age a (time
elapsed since the time of its birth).

I At division, the mother cell gives rize to two offsprings of age
0 and initial size x1/2, where x1 is the size of the mother at
division.

I The two offsprings start independent growth (Markov
property) according to the (deterministic) rate κ and divide
according to the (probabilistic) rate B.



3. The probabilistic model
close to models of V. Bansaye, B. Cloez, ...

I The population evolution is associated with an infinite random
marked tree. Let

U =
∞⋃
n=0

{0, 1}n with {0, 1}0 := ∅.

I To each node u ∈ U , we associate a cell with size at birth
given by ξu and lifetime ζu.

I u− denotes the parent of u. Thus

ξu =
ξu−

2
exp

(
κζu−

)
.



3. Models: Back to PDE...

I To each cell labeled by u ∈ U , we associate a birth time bu.

I X (t) =
(
X1(t),X2(t), . . .

)
process of the sizes of the

population at time t, or A(t) =
(
A1(t),A2(t), . . .

)
of ages at

time t.

I X (t) has values in the space of finite point measures on
R+ \{0} via

MX (t) =

]X (t)∑
i=1

δXi (t), MA(t) =

]A(t)∑
i=1

δAi (t)

I If we keep only 1 daughter cell at each jump: always 1 and
only 1 Dirac mass δXi (t), with i = number of division till time
t.



3. Age model: renewal equation ( PhD of A. Olivier)

I Set, for (regular compactly supported) f

〈n(t, ·), f 〉 := E
[ ∞∑
i=1

f
(
Ai (t)

)]
.

I Methods: tagged fragment approach (Bertoin, Haas, ...),
many-to-one formula (Bansaye et al, 2009 and 2011, Cloez,
2011, ...)

I We have (in a weak sense):

∂tn(t, a) + ∂an(t, a) = −B(a)n(t, a),

n(t, 0) = 2

∞∫
0

B(a)n(t, a)da OR n(t, 0) =

∞∫
0

B(a)n(t, a)da

I Therefore the mean empirical distribution of A(t) satisfies the
deterministic renewal equation.



3. Size model: growth-fragmentation equation

I Set, for (regular compactly supported) f

〈n(t, ·), f 〉 := E
[ ∞∑
i=1

f
(
Xi (t)

)]
.

I Methods: tagged fragment approach (Bertoin, Haas, ...),
many-to-one formula (Bansaye et al, 2009, Cloez, 2011, ...)

I We have (in a weak sense) IF we keep the 2 daugthers at each
generation:

∂tn(t, x) + ∂x
(
κx n(t, x)

)
+ B(x)n(t, x) = 4B(2x)n(t, 2x).

I Therefore the mean empirical distribution of X (t) satisfies the
deterministic transport-fragmentation equation.



3. Age and Size model: PDE
n(t, a, x) density of cells of size x and age a.
PDE obtained from the PDMP (as previously) or by a mass
balance:

∂

∂t
n +

∂

∂a
n +

∂

∂x

(
κxn
)

= −B(a, x)n(t, a, x),

n(t, a = 0, x) = 4

∞∫
0

B(a, 2x)n(t, a, 2x)da

with n(0, a, x) = n(0)(a, x), x ≥ 0.
IF B = B(x) : back to growth-fragmentation equation
IF B = B(a) : back to renewal equation
IF we keep only 1 daughter at each generation: the boundary
condition becomes:

n(t, a = 0, x) = 2

∞∫
0

B(a, 2x)n(t, a, 2x)da



4. Model calibration

To test the models, we first need to calibrate them.
Only non measured parameter: the division rate B.
Estimation procedure:

I mathematical analysis: asymptotic regime (PDMP or PDE)

I estimation methods

I comparison of calibrated model results and data



Long-time asymptotics: PDE - Age model

Classical problem, solved for a long time: see e.g. the textbooks
Metz and Diekmann, 1981 and B. Perthame, 2007.
if we look at a solution under the form n(t, a) = eλtN(a), a ≥ 0

∂

∂a
N + λN = −B(a)N, N(0) = 2

∞∫
0

B(a)N(a)da.

Explicit solution: N(a) = N(0)e
−λa−

a∫
0

B(s)ds
, and λ is uniquely

determined by the boundary condition: either λ = 0 (1 branch) or

2

∞∫
0

B(a)e
−λa−

s∫
0

B(s)ds
da = 1



Long-time asymptotics: PDE - Size model

if we look at a solution under the form n(t, x) = eλtN(x), x ≥ 0
∂
∂x (κxN(x)) + λN(x) = −B(x)N(x) + 4B(2x)N(2x)dx ,

N(x) ≥ 0,
∫∞
0 N(x)dx = 1.

(1)

Here it stands that κ = λ and (Michel, 2007 or MD, Gabriel, 2010)∫
R+

∣∣n(t, x)e−λt − 〈n(0), x〉N(x)
∣∣xdx → 0 as t →∞

Very active field of research: Pakdaman, Perthame, Salort ;
Balagué, Canizo, Gabriel... and for PDMP: ask people of WS2!



4. Estimation methods (Size Model)

3 methods:

I use the ”all cells” distributions: ”indirect/inverse” approach,
based on N(x) or N(a)

I use the ”at division” distributions: ”direct” approach:
PDMP or B(x)N(x)/

∫
BNdx

I use both ! ”direct” approach: measure of both
B(x)N(x)/

∫
BNdx , and N(x)

Here we can use both schemes and select the most accurate
The indirect scheme needs less data and is the only possible one in
many situations



4.1. First method: an indirect approach
1st historical observations, the simplest and often the only possible
ones, and confirms the asymptotic behaviour:

Observation (from Kubitschek, 1969): DOUBLING TIME and
STEADY SIZE DISTRIBUTION.



4.1. First method: an indirect approach

Size distribution

cf. movie at the beginning: 33000 observations
(Blue: 1 branch, Green: whole tree)



4.1. First method: all cell distribution

Age distribution

cf. movie at the beginning: 33000 observations
(Blue: 1 branch, Green: whole tree)



4.1. Inverse Problem for the age model

(known from the 1980’s. See Gyllenberg et al., 1982)

Quite simple: you have a (noisy) measure of N(a), you look for
B(a), and the explicit relation

N(a) = N(0)e−λa−
∫ a
0 B(s)ds ,

so by direct calculation

B(a) = −λ− ∂aN(a)

N(a)
.

From a noisy version of N: you need to regularization is needed.



4.1. Inverse Problem for the age model: statistical
treatment

We observe a sample of n cells, of ages a1, · · · , an realizations of
A1, . . . ,An, i.i.d. random variables with density N,
That is, your measure of N(a) is

Nε(a) =
1

n

n∑
i=1

δa=ai

Regularization: kernel method for instance: mollifier ρα

Nε,α(a) = ρα ∗
(

1

n

n∑
i=1

δa=ai )

and define

Bε,α(a) = −λ− ∂aNε,α(a)

Nε,α(a)
.



4.1. Inverse Problem for the size model

Inverse Problem: estimating the division rate B(x)

From: measures of (κ,N) with

∂

∂x
(κxN(x)) + λN(x) = −B(x)N(x) + 4B(2x)N(2x)dx .

Choice of an Hilbert space: L2(R+) (Engl, Hanke, Neubauer,

Regularization of Inverse Problems, 1995)

Theorem (MD, L.M. Tine, J. Math. Biol., 2012)

... If B ∈ Hs , then N ∈ Hs+1.

Similar to the age problem: the equation implies a derivative for N.



4.1. Size model

Estimate B through

L(N) = L(BN), with

L(f )(x) = 4f (2x)− f (x), (2)

L(N)(x) = κ∂x
(
xN(x)

)
+ κN(x), (3)

2 main steps:

I Solve L(f ) = L for f , L in adequate spaces: PDE part the
problem N → H = BN is now linear.

I Find an estimate for L(N) in this adequate space: PDE or
statistical part



For the first step: solve

L(x) = 4H(2x)− H(x),

see [MD, B. Perthame, J.P. Zubelli, Inv. Prob., 2009]
and [MD, L.M. Tine, JMB, 2012] (for general fragmentation)
and soon: work in progress with T. Bourgeron and M. Escobedo...
(for self-similar fragmentation)



4.1 size model: second step
From a measure Nε ∈ L2, estimate

L(N) = ∂x
(
κxN(x)

)
+ κN(x).

degree of ill-posedness 1 for a L2−noise: regularization method to
treat the derivative & gain 1 degree of regularity.

A simple method: Filter L with ρα(x) = 1
αρ( x

α), α > 0 :

Lα,ε = ρα?

(
κNε + κ

∂

∂x

(
Nε
(y

2

)))
, y > 0,

Proposition. For B ∈ Hs , and appropriate

ρ ∈ C∞c (R),
∫∞
0 ρ(x) dx = 1 for α = O(ε

1
s+1 )

||Bε,αNε,α−B N||L2(dx) .
1

α
||Nε−N||L2(dx) +αs ||N||Hs(R+) . ε

s
s+1

(see also Perthame, Zubelli, 2007 - Groh, Krebs, Wagner, 2011)



Indirect Observation Scheme
Step 2: statistical approach

Joint work with M. Hoffmann, P. Reynaud-Bouret & V. Rivoirard
Till now: we have supposed

||N − Nε||L2 ≤ ε

But why an L2 norm ? What about real data ?

We observe a sample of n cells, of sizes x1, · · · , xn realizations of
X1, . . . ,Xn, i.i.d. random variables with density N, i.e. where

P(X1 ∈ dx1, . . . ,Xn ∈ dxn) :=
n∏

i=1

N(xi )dxi .
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Estimation of N
Goldenschluger-Lepski kernel estimation

Let : R→ R+ continuous function /
∫
K = 1 and

∫
K 2 <∞.

N̂h(x) :=
1

n

n∑
i=1

Kh(x − Xi ) = Kh ?

(
1

n

n∑
i=1

δx=Xi

)
,

Kh = 1
hK (./h) replaces the notation ρα...

How to adaptively select h ? Goldensshluger and Lepski (2009,
2010)
We thus have a statistical estimator L̂n = Kh ? L(λ̂, 1n

∑
δXi

),
we plug the first PDE step to inverse L and its discrete numerical
approximation Lk
which gives us an estimate Ĥ of BN via L−1kn

(
L̂n
)
.

We finally set B̂ = Ĥ/N̂ and B̃ = max(min(B̂,
√
n),−

√
n).



Rate of convergence for the estimation of B

Theorem (MD, Hoffmann, Reynaud-Bouret, Rivoirard, SIAM Num.
Anal., 2012)

If B ∈ Hs (s > 1/2), then (under suitable assumptions)

E
[∥∥∥(B̃ − B)1[a,b]

∥∥∥
2

]
= O

(
n−

s
2s+3

)
.

This rate is optimal and is to be compared with the (provably
optimal) deterministic rate εs/(s+1).



4.2. Second method: direct and full observation

Statistical reconstruction (with M. Hoffmann, N. Krell, L. Robert)
Observation scheme {

(ξu, ζu), u ∈ Un
}
,

with Un ⊂ U a set of n nodes having the property

If u ∈ Un then u− ∈ Un.

3 fundamental cases:

I sparse tree case: a line of descendants (∅, u1, · · · , un)

I full tree case: n = 2kn , kn first generations

I measures stop at a given time (independent of the number of
generations)

Asymptotics taken as n→∞.



4.2. Statistical analysis
We have

P(ζu ∈ [t, t + dt] |ζu ≥ t, ξu = x) = B(xeκt)dt

for the size model, or

P(ζu ∈ [t, t + dt] |ζu ≥ t, ξu = x) = B(t)dt

for the age model from which we obtain the density of the lifetime
ζu = t conditional on the size at birth = x :

f (t, x) = B(xeκt) exp
(
−
∫ t

0
B(xeκs)ds

)
. ,

for the size model or

f (t) = B(t) exp
(
−
∫ t

0
B(s)ds

)
. ,

for the age model



Estimation of B - age model (PhD of A. Olivier - in
progress...)

PDE setting: we observe a sample of n cells, of sizes a1, · · · , an
realizations of A1, . . . ,An, i.i.d. random variables with density
f (a) = B(a)N(a)/

∫
BNda, and it is well-known that (branch tree)

B(a) =
f (a)

∞∫
a
f (s)ds

.

For the whole tree data: ”bias” term: f is replaced by f (a)eλa.



Estimation of B - size model

I We obtain a simple and explicit representation for the
transition kernel PB (which links the daughter size (age) law
to its mother size (age) law) on S = [0,∞), reminiscent of
conditional survival function estimation.

I Under appropriate condition on B close to the conditions for
the eigenvalue PDE problem, the Markov chain on S = [0,∞)
is geometrically ergodic. (but not reversible.)

I Under some assumptions, we have existence (and uniqueness)
of an invariant measure on S

νB(dx) = νB(x)dx

i.e. such that νBPB = νB .

I we have a contraction property which proves the convergence
to the invariant measure uniformly in B ∈ Fλ(c),
ρ ∈M(ρmin), for an appropriate Lyapunov function V .



Key representation

I We conclude

B(y) =
κy

2

νB(y/2)

EνB
[
1{ξ−u ≤y , ξu≥y/2}

] .
I Statistical inference: introduce a kernel function to estimate
νB ...



Final estimator

I Final estimator

B̂n(y) =
y

2

n−1
∑

u∈Un Kh(ξu − y/2)

n−1
∑

u∈Un
1
τu−

1{ξu− ≤ y , ξu ≥ y/2}
∨
$
,

I The estimator B̂n(y) is specified by K , the bandwidth h and
the threshold $.

I Error estimates If B ∈ Hs , for appropriate bandwidths, we
have

Eµ
[
‖B̂n − B‖2L2(D)

]1/2
. (log n)n−s/(2s+1)

I This rate is almost optimal and is to be compared with the
indirect approach.



Quid of a deterministic transcription of our ”final
estimator” ?

Remember the key representation:

B(y) =
κy

2

νB(y/2)

EνB
[
1{ξ−u ≤y , ξu≥y/2}

] =
κy

2

νB(y/2)
y∫
y
2

νB(x)dx

.

Genealogical scheme: the conservative equation replaces the
growth-fragmentation equation:

∂tn(t, x) + ∂x
(
κx n(t, x)

)
+ B(x)n(t, x) = 2B(2x)n(t, 2x).

Asymptotic behaviour: steady state:

∂x
(
κx N(x)

)
+ B(x)N(x) = 2B(2x)N(2x).



Quid of a deterministic transcription of our ”final
estimator” ?

We measure ξu distributed along νB(x) ≡ 2B(2x)N(2x)
Write the PDE in terms of BN :

∂x
(
κx N(x)

)
= 2B(2x)N(2x)− B(x)N(x).

Integrate:

κyN(y) =

y∫
0

(2B(2x)N(2x)− B(x)N(x))dx =

2y∫
y

BN(x)dx

So that if we measure BN (or 2BN(2x)) we estimate B through

B(y) =
BN(y)

N(y)
= κy

BN(y)
2y∫
y
BN(x)dx

=
νB( y2 )

2κy
y∫
y
2

νB(x)dx



Comparison of the convergence rates

I Deterministic problem: well-posed! Degree of ill-posedness
a = 0 - estimate in O(ε)

I Statistical viewpoint: density estimate, H−1/2 to L2 so that
a = 1/2

εs/(s+1/2) = n−s/(2s+1)

I to be compared to the indirect method: error in the order of
εs/(s+3/2) = n−s/(2s+3).



5. Back to the data

To test a model:

I calibrate it (aboveseen method)

I simulate the age-size PDE model:

∂

∂t
n +

∂

∂a
n +

∂

∂x

(
κxn
)

= −B(a, x)n(t, a, x),

n(t, a = 0, x) = 4

∞∫
0

B(a, 2x)n(t, a, 2x)da

till it reaches its asymptotic behaviour

I compare data and simulations

I if possible: conclude...



5. Back to the data...

Figure: Age Size Distribution for all cells - whole tree data



5. Back to the data...

Figure: Age Size Distribution for all cells - tree branches data



5. Back to the data: testing the Age Model

Figure: Age Size simulation for the Age Model - whole tree data



5. Back to the data: testing the Age Model

Figure: Age Size simulation for the Age Model - branch tree data



5. Back to the data: testing the Age Model

I This model as it is is rejected

I theoretical reason: exponential growth + age-dependent
division rate leads to accumulation towards 0.

I Refer to theoretical results for the asymptotic regime: we need
B(x)
x ∈ L10...

I Numerical tests even with constant growth rate not
satisfactory.



5. Back to the data: testing the Size Model

Figure: Reconstruction of the division rate - green: whole tree, blue:
branches data



5. Size Model: reconstruction for B
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5. Back to the data: testing the Size Model

Figure: Age Size simulation for the Size Model - whole tree data



5. Back to the data: testing the Size Model

Figure: Age Size experimental data - whole tree data



5. Back to the data: testing the Size Model

Figure: Age Size simulation for the Size Model - branch tree data



5. Back to the data: testing the Size Model

Figure: Age Size experimental data - branch tree data



5. Back to the data: testing the Size Model

I This model as it is is... reasonable

I errors in L2 distance are in the order of what is expected: Min

of O(n
− s

2s+1

1 ) and O(n
− s

2s+3

2 ), with n1 : number of data at
division, n2 : total number of data.



Conclusion

I In bacterial growth, size is a structuring variable, age is not

I Method may be adapted to other cases

I Indirect observation scheme: ill-posed problem.

I Full observation scheme: ”well-posed” problem (rejoins
density estimation).

I Strong coherence and complementarity between PDE and
statistical approaches

I Many open problems: improve the model, investigate the
influence of variability...



Conclusion

I Indirect observation scheme: ill-posed problem.

I Full observation scheme: ”well-posed” problem (rejoins
density estimation).

I Link between stochastic and deterministic modelling via
many-to-one formulas for transport-fragmentation processes.

I Strong coherence and complementarity between PDE and
statistical approaches

I Variability encompassed into richer stochastic models, with
deterministic counterparts if we enlarge the state space

I Other issues: adaptivity, relative size of two offsprings, age
dependence.



Extensions of the model

Variability:
∂

∂t
n(t, x , v) +

∂

∂x

(
vxn(t, x , v)

)
=

−B(x)n(t, x , v) + 2

∞∫
x

∞∫
0

B(y)k(y , x)ρ(v ′, v)n(t, y , v ′)dy , dv ′

with
∫∞
0 ρ(v ′, v)dv = 1

Age + variability:

∂
∂t n(t, a, x , v) + ∂

∂x

(
vxn(t, a, x , v)

)
= −B(a, x)n(t, a, x , v),

n(t, a = 0, x , v) = 2
∞∫
x

∞∫
0

B(a, y)k(y , x)ρ(v ′, v)n(t, a, y , v ′)dydv ′da

(related (maturity) models: Lebowitz, Rubinow, 1977 - Rotenberg,
1983 - Mischler, Perthame, Ryzhik, 2002,...)
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5. Incorporating variability

Figure: Effect on the distribution of growth rate variability



5. Incorporating variability

Figure: Effect on the distribution of variability in daughter sizes



5. What about an Age-Size Model ?
To test it, we would need an extra variable:

Figure: Age distribution: data and fit by the age model



5. What about an Age-Size Model ?
To test it, we would need an extra variable:

Figure: Size distribution: data and fit by the age model


