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Description of the model
Example 1
Example 2

Model

Let us consider
an irreducible CT Markov chain I, on a finite space F , with an
invariant distribution ν,
for each i ∈ F , a smooth vector field F (i), on Rd , d ≥ 1.

We consider the process X verifying

∀t ≥ 0, ∂tXt = F (It )(Xt ).

The couple (X , I) is Markovian and is generated by

Lf (x , i) = F (i)(x) · ∇x f (x , i) +

∫
F

(f (x , j)− f (x , i))Q(i ,dj).

→We can also assume that Q depends on the continuous
component X .
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Generalisation

Description of the model
Example 1
Example 2

Motivations

Chemostat (Collet, Martinez, Méléard, San Martin, 2012)

Gene Network (Crudu, Debussche, Muller, Radulescu, 2012)
Storage modelling (Boxma, Kaspi, Kella, Perry, 2005)
Neuronal activity (Genadot, Pakdaman, Thieullen, Wainrib, 2012)
Molecular biology (Faggionato, Gabrielli, Crivellari, 2008)

→ Natural questions :
Ergodicity criterion : L(Xt )→ π

Rate of convergence dist(L(Xt ), π) ≤ ϕ(X0, t)
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An explosive switched vector fields

FIGURE: First vector field : F (1) : x 7→ A1 · x
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An explosive switched vector fields

FIGURE: Second vector field : F (2) : x 7→ A2 · x
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Description of the model
Example 1
Example 2

Explosive switched vector fields

Let a > 0, we consider the following generator :

Lf (x , i) = Ai · ∇x f (x , i) + a(f (x ,1− i)− f (x , i)),

where x ∈ R2, i ∈ {0,1} and f is smooth.

If we fix i ∈ {0,1} then the
solutions of

∀t ≥ 0, ∂tyt = Aiyt

satisfy
‖yt‖ ≤ Ce−t‖y0‖.

Nevertheless if a is large enough then

lim
t→+∞

Xt = +∞
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FIGURE: A trajectory of the second example
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Description of the model
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Example 2

The most elementary example

Let us consider that I is a Markov Chain on {−1,1}, the continuous
component belongs to R and satisfies

∂tXt = −ItXt .

We have
Xt = e−

t× 1
t

∫ t

0
Isds

Birkhoff’s ergodic theorem gives that
Xt → 0 if

∑
i iν(i) = ν(1)− ν(−1) > 0,

Xt → +∞ if
∑

i iν(i) = ν(1)− ν(−1) < 0.

→ Rates of convergence ?
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Non convergence with the usual distance

If X0 6= 0 then Xt 6= 0, ∀t ≥ 0.

In particular,

∀t ≥ 0, ‖L(Xt )− δ0‖TV = P(T0 > t) = 1.

In general
lim

t→+∞
E [Xt ] = +∞,

and then there is no convergence in L1−norm and

lim
t→+∞

W(L(Xt ), δ0) = +∞.

→We have to modify the distance !
Convergence of the moment ?

E
[
X p

t

]
= E

[
e−
∫ t

0
pIsds

]
, p ∈ (0,1).
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Description of the model
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Example 2

Moments properties

Feynman-Kac formula :

E
[
e−
∫ t

0
pIsds

]
= µ0et(A−pId)1

≈ e−λp t .

We have λ0 = 0 and

∂pλp p=0 =
∑
i∈F

iν(i).

Hence ∑
i∈F

iν(i) > 0⇒ ∃p > 0, λp > 0.

⇒ Convergence in "Lp-norm" and in a weaker Wasserstein distance.
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More generally

Lemma
Let α be a function on F. If∑

i

α(i)ν(i) > 0

then there exist C, c, λ,p > 0 such that

ce−λt ≤ E
[
e−
∫ t

0
pα(Is)ds

]
≤ Ce−λt

→ See (Bardet, Guerin, Malrieu, 2010).
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Definition of the Wasserstein distance
A limit theorem
Idea of the proof

Wasserstein distance

For any probability measures µ1, µ2 on (E ,d) :

Wd (µ1, µ2) = inf
Π

∫
E×E

d(x , y)Π(dx ,dy)

= inf
X1∼µ1,X2∼µ2

E [d(X1,X2)] .

Convergence withWd ⇔ Convergence in law + first moment.
Also called Kantorovich, Mallows, Monge, Fréchet, optimal
transport, coupling, minimum-L1...
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Wasserstein distance

Duality of Kantorovich-Rubinstein :

Wd (µ1, µ2) = sup
Lip(f )≤1

∫
fdµ1 −

∫
fdµ2

If d(x , y) = 1x 6=y thenWd = ‖ · ‖VT and

Wd (µ1, µ2) =
1
2

sup
‖f‖∞≤1

∫
fdµ1 −

∫
fdµ2.

If E = R and d(x , y) = |x − y | ∧ 1 thenWd = dFM and

Wd (µ1, µ2) = sup
‖f‖∞+‖f ′‖∞≤1

∫
fdµ1 −

∫
fdµ2.
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Contraction Assumption

Assume that ∀i ∈ F , ∃ρ(i) ∈ R such that

〈x − y ,F (i)(x)− F (i)(y)〉 ≤ −ρ(i)‖x − y‖2, x , y ∈ Rd ,

Note that if ρ(i) > 0 then ∃!xi such that all the solutions (yt )t≥0 to

∂tyt = F (i)(yt ), t ≥ 0,

verify
∀t ≥ 0, ‖yt − xi‖ ≤ e−ρ(i)t‖y0 − xi‖.

22/ 34
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Wasserstein exponential ergodicity

Theorem
If ∑

i∈F

ν(i)ρ(i) > 0,

then (Xt )t≥0 = (Xt , It )t≥0 admits a unique invariant probability
measure π and there exist C, λ, t0 > 0 and p ∈ (0,1) such that

∀t ≥ t0, Wd(L(Xt ),π) ≤ Ce−λt (1 +W‖·‖p (L(X0),π)),

where
d((x , i), (y , j)) = 1i 6=j + 1i=j (1 ∧ ‖x − y‖p).

→ Already proved in (Benaïm, Le Borgne, Malrieu, Zitt 12).
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A general form of Harris theorem
→ Proof based on a theorem of (Hairer, Mattingly, Scheutzow, 09).

It
is enough to prove :

i) There exist V and C,K , λ > 0 such that

E[V (Xt )] ≤ Ce−λtE[V (X0)] + K , t ≥ 0.

ii) For all A > 0 there exist εA > 0 and tA > 0 such that for all t ≥ tA,

Wd(L(Xt ),L(Yt )) ≤ 1− εA

for any starting distributions X0,Y0 ∈ {V ≤ A}.
iii) There exist α ∈ (0,1) and a time t such that

Wd(L(Xt ),L(Yt )) ≤ αd(X0,Y0),

for any starting distributions X0,Y0 ∈ E = E × F verifying
d(X0,Y0) < 1.

24/ 34



Model and examples
Limit theorem in the constant case

Generalisation

Definition of the Wasserstein distance
A limit theorem
Idea of the proof

A general form of Harris theorem
→ Proof based on a theorem of (Hairer, Mattingly, Scheutzow, 09). It
is enough to prove :

i) There exist V and C,K , λ > 0 such that

E[V (Xt )] ≤ Ce−λtE[V (X0)] + K , t ≥ 0.

ii) For all A > 0 there exist εA > 0 and tA > 0 such that for all t ≥ tA,

Wd(L(Xt ),L(Yt )) ≤ 1− εA

for any starting distributions X0,Y0 ∈ {V ≤ A}.
iii) There exist α ∈ (0,1) and a time t such that

Wd(L(Xt ),L(Yt )) ≤ αd(X0,Y0),

for any starting distributions X0,Y0 ∈ E = E × F verifying
d(X0,Y0) < 1.

24/ 34



Model and examples
Limit theorem in the constant case

Generalisation

Definition of the Wasserstein distance
A limit theorem
Idea of the proof

A general form of Harris theorem
→ Proof based on a theorem of (Hairer, Mattingly, Scheutzow, 09). It
is enough to prove :

i) There exist V and C,K , λ > 0 such that

E[V (Xt )] ≤ Ce−λtE[V (X0)] + K , t ≥ 0.

ii) For all A > 0 there exist εA > 0 and tA > 0 such that for all t ≥ tA,

Wd(L(Xt ),L(Yt )) ≤ 1− εA

for any starting distributions X0,Y0 ∈ {V ≤ A}.

iii) There exist α ∈ (0,1) and a time t such that

Wd(L(Xt ),L(Yt )) ≤ αd(X0,Y0),

for any starting distributions X0,Y0 ∈ E = E × F verifying
d(X0,Y0) < 1.

24/ 34



Model and examples
Limit theorem in the constant case

Generalisation

Definition of the Wasserstein distance
A limit theorem
Idea of the proof

A general form of Harris theorem
→ Proof based on a theorem of (Hairer, Mattingly, Scheutzow, 09). It
is enough to prove :

i) There exist V and C,K , λ > 0 such that

E[V (Xt )] ≤ Ce−λtE[V (X0)] + K , t ≥ 0.

ii) For all A > 0 there exist εA > 0 and tA > 0 such that for all t ≥ tA,

Wd(L(Xt ),L(Yt )) ≤ 1− εA

for any starting distributions X0,Y0 ∈ {V ≤ A}.
iii) There exist α ∈ (0,1) and a time t such that

Wd(L(Xt ),L(Yt )) ≤ αd(X0,Y0),

for any starting distributions X0,Y0 ∈ E = E × F verifying
d(X0,Y0) < 1.

24/ 34



Model and examples
Limit theorem in the constant case

Generalisation

Definition of the Wasserstein distance
A limit theorem
Idea of the proof

Point i)

We set V (x , i) = V (x) = ‖x‖p.

Using the generator and Gronwall
Lemma, we find

E[V (Xt )] ≤ K
∫ t

0
E
[
e−
∫ t

s
pρ(Iu)du

]
ds + E[V (X0)]E

[
e−
∫ t

0
pρ(Iu)du

]
.

But we can find p ∈ (0,1) in such a way to obtain[
e−
∫ t

0
pρ(Iu)du

]
≤ Ce−λt .

It gives that V is a Lyapunov function ; that is,

E[V (Xt )] ≤ Ce−λtE[V (X0)] + K , t ≥ 0.
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Point ii)

We want to prove that for all A > 0 there exist εA > 0 and tA > 0 such
that for all t ≥ tA,

Wd(L(Xt ),L(Yt )) ≤ 1− εA
for any starting distribution X0,Y0 ∈ {V ≤ A}.

Let us fix two starting point X0,Y0 ∈ {V ≤ A}. As there exists i0 such
that ρ(i0) > 0, we easily explicit a coupling verifying

d(Xt ,Yt ) ≤ 1UCe−ρ(i0)td(X0,Y0) + 1Uc

Finally as {V ≤ A} is bounded, it ends the proof of ii).
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Point iii)

We want to prove the existence of α ∈ (0,1) and a time t such that

Wd(L(Xt ),L(Yt )) ≤ αd(X0,Y0),

for any starting distribution verifying d(X0,Y0) < 1.

But d(X0,Y0) < 1⇒ I0 = J0 and then

Wd(L(Xt ),L(Yt )) ≤ E
[
e−
∫ t

0
pρ(Iu)du

]
d(X0,Y0)

≤ Ce−λtd(X0,Y0).

→ Finally i),ii),iii) holds and the theorem is proved.

27/ 34



Model and examples
Limit theorem in the constant case

Generalisation

Definition of the Wasserstein distance
A limit theorem
Idea of the proof

Point iii)

We want to prove the existence of α ∈ (0,1) and a time t such that

Wd(L(Xt ),L(Yt )) ≤ αd(X0,Y0),

for any starting distribution verifying d(X0,Y0) < 1.

But d(X0,Y0) < 1⇒ I0 = J0

and then

Wd(L(Xt ),L(Yt )) ≤ E
[
e−
∫ t

0
pρ(Iu)du

]
d(X0,Y0)

≤ Ce−λtd(X0,Y0).

→ Finally i),ii),iii) holds and the theorem is proved.

27/ 34



Model and examples
Limit theorem in the constant case

Generalisation

Definition of the Wasserstein distance
A limit theorem
Idea of the proof

Point iii)

We want to prove the existence of α ∈ (0,1) and a time t such that

Wd(L(Xt ),L(Yt )) ≤ αd(X0,Y0),

for any starting distribution verifying d(X0,Y0) < 1.

But d(X0,Y0) < 1⇒ I0 = J0 and then

Wd(L(Xt ),L(Yt )) ≤ E
[
e−
∫ t

0
pρ(Iu)du

]
d(X0,Y0)

≤ Ce−λtd(X0,Y0).

→ Finally i),ii),iii) holds and the theorem is proved.

27/ 34



Model and examples
Limit theorem in the constant case

Generalisation

Definition of the Wasserstein distance
A limit theorem
Idea of the proof

Point iii)

We want to prove the existence of α ∈ (0,1) and a time t such that

Wd(L(Xt ),L(Yt )) ≤ αd(X0,Y0),

for any starting distribution verifying d(X0,Y0) < 1.

But d(X0,Y0) < 1⇒ I0 = J0 and then

Wd(L(Xt ),L(Yt )) ≤ E
[
e−
∫ t

0
pρ(Iu)du

]
d(X0,Y0)

≤ Ce−λtd(X0,Y0).

→ Finally i),ii),iii) holds and the theorem is proved.

27/ 34



Model and examples
Limit theorem in the constant case

Generalisation

Hypoelliptic case
Fully coupled PDMP
General Markov processes with switching

1 Model and examples
Description of the model
Example 1
Example 2

2 Limit theorem in the constant case
Definition of the Wasserstein distance
A limit theorem
Idea of the proof

3 Generalisation
Hypoelliptic case
Fully coupled PDMP
General Markov processes with switching

28/ 34



Model and examples
Limit theorem in the constant case

Generalisation

Hypoelliptic case
Fully coupled PDMP
General Markov processes with switching

Hypoellipticity assumption

By (Benaïm, Le Borgne, Malrieu, Zitt 12) and (Bakhtin, Hurth, 12), if
the family (F (i))i verifies an Hörmander-type condition, then the
process X verifies a regularising assumption.

→ Hörmander-type condition + Lyapunov funtion⇒ Exponential
convergence in ‖ · ‖TV .

Lemma
If there exists V s.t.

F (i)(x) · ∇V (x) ≤ −λiV (x) + Ki ,

where ∑
i∈F

λiν(i) > 0,

then (X , I) admits a Lyapunov function.
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Wasserstein exponential ergodicity in the
non-constant case

If F = {−1,1} and

Lf (x , i) = F (i)(x) · ∇x f (x , i) + a(x , i)(f (x ,−i)− f (x , i)),

where we consider ρ(1) > 0, ρ(−1) < 0 and

a(1) = inf
x

a(x ,1) and ā(−1) = sup
x

a(x ,−1)

Theorem
If a is Lipschitz and

ā(−1)ρ(1) + a(1)ρ(−1) > 0

then X admits an invariant probability measure and converges
exponentially fast to it in a Wasserstein distance.
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Wasserstein curvature

Definition

The Wasserstein curvature of a Markov semigroup (Pt )t≥0 is the
largest constant ρ such that

W(µPt , νPt ) ≤ e−ρtW(µ, ν),

for any probability measure µ, ν and any t ≥ 0.

introduced independently by Joulin (2007), Ollivier (2007) and
Sammer (2005).
Motivated by generalizing Bakry-Emery curvature of diffusion
processes or Ricci curvature of Riemannian Manifold.
By the Kantorovich-Rubinstein duality, we have

ρ = sup
t>0
−1

t
ln ‖Pt‖Lip(d)→Lip(d).
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Some examples of curvature

See for instance
(Sturm, Von Renesse, 2005) for Brownian motion on Riemannian
manifold
(Chafaï, Joulin, 2012) for birth and death processes
(Cloez, 2012) for stochastically monotonous processes
(Eberle, 2011) and (Cattiaux, Guillin, 2013) for inhomogeneous
diffusion

Now, we assume that (Xt )t≥0 = (Xt , It )t≥0 is generated by

Lf (x , i) = L(i)f (x , i) +

∫
F

(f (x , j)− f (x , i))Q(i ,dj),
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Wasserstein exponential ergodicity

Theorem
If ∑

i∈F

ν(i)ρ(i) > 0,

then (Xt )t≥0 = (Xt , It )t≥0 admits a unique invariant probability
measure π and there exist C, λ, t0 > 0 and p ∈ (0,1) such that

∀t ≥ t0, Wd(L(Xt ),π) ≤ Ce−λt (1 +W‖·‖p (L(X0),π)),

where
d((x , i), (y , j)) = 1i 6=j + 1i=j (1 ∧ ‖x − y‖p).
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Thank you for your attention !
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