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Example 2

Let us consider

@ an irreducible CT Markov chain /, on a finite space F, with an
invariant distribution v,

@ for each i € F, a smooth vector field F), on RY, d > 1.
We consider the process X verifying

V>0, 9X = FI(Xp).
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Model and examples Description of the model
Example 1

Example 2

Let us consider

@ an irreducible CT Markov chain /, on a finite space F, with an
invariant distribution v,

@ for each i € F, a smooth vector field F), on RY, d > 1.
We consider the process X verifying

V>0, 9X = FI(Xp).

The couple (X, /) is Markovian and is generated by
Lf(x, i) = FO(x) - Vif(x, i) + / (F(x. ) = f(x. 1)) Q(i. ).
F

— We can also assume that Q depends on the continuous
component X.
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Model and examples Description of the model
xam 1

Motivations

@ Chemostat (Collet, Martinez, Méléard, San Martin, 2012)

@ Gene Network (Crudu, Debussche, Muller, Radulescu, 2012)

@ Storage modelling (Boxma, Kaspi, Kella, Perry, 2005)

@ Neuronal activity (Genadot, Pakdaman, Thieullen, Wainrib, 2012)
@ Molecular biology (Faggionato, Gabrielli, Crivellari, 2008)

— Natural questions :

@ Ergodicity criterion : L(X;) — 7
@ Rate of convergence dist(L(X;), ) < p(Xo, 1)
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An explosive switched vector fields

FIGURE: First vector field : F(" : x — A; - x
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An explosive switched vector fields

FIGURE: Second vector field : F® : x — A - x
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Example 1
Example 2

Explosive switched vector fields

Let a > 0, we consider the following generator :
Lf(x,i) = Ai - Vxf(x, i)+ a(f(x,1 — i) — f(x,1)),

where x € R?, i € {0,1} and f is smooth.

/24
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Example 2

Explosive switched vector fields

Let a > 0, we consider the following generator :
Lf(x,i) = Ai - Vxf(x, i)+ a(f(x,1 — i) — f(x,1)),

where x € R2, i € {0,1} and f is smooth. If we fix i € {0, 1} then the
solutions of
Vt >0, Oyt = Aint

satisfy
Iyt < Ce™||yoll-
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Model and examples Description of the model

Example 2

Explosive switched vector fields

Let a > 0, we consider the following generator :
Lf(x,i) = Ai - Vxf(x, i)+ a(f(x,1 — i) — f(x,1)),

where x € R2, i € {0,1} and f is smooth. If we fix i € {0, 1} then the
solutions of

Vit > 07 31% = A,'y[
satisfy
Iyl < Ce~!yol-
Nevertheless if a is large enough then

lim X; = +o0

t—+o0

/34
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FIGURE: A trajectory of the second example
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Example 2

The most elementary example

Let us consider that / is a Markov Chain on {—1, 1}, the continuous
component belongs to R and satisfies

OrXt = — I X;.

We have
X = e—tx}j: Isds
Birkhoff’s ergodic theorem gives that
° X, — 0if X, iv(i) =v(1) —v(-1) >0,
@ X; — +ooif Y2 iv(i) =v(1) —v(-1) <0.
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Model and examples Description of the model
Example 1
Example 2

The most elementary example

Let us consider that / is a Markov Chain on {—1, 1}, the continuous
component belongs to R and satisfies

OrXt = — I X;.

We have .
X; = e—tx}j; lsds

Birkhoff’s ergodic theorem gives that
° X, — 0if X, iv(i) =v(1) —v(-1) >0,
@ X; — +ooif Y2 iv(i) =v(1) —v(-1) <0.

— Rates of convergence ?
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Example 1
Example 2

Non convergence with the usual distance

If Xo # 0then X; # 0, vt > 0. In particular,
vVt >0, ||[L(X;) — dollrv =P(To > ) =1.

In general
lim E[X{] = +o0,
t——+o0

and then there is no convergence in L' —norm and

lim W(L(X;), ) = +00.

t—+4o00

— We have to modify the distance !
Convergence of the moment ?

E[X’]=E {e fotp’sds] , pe(0,1).
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Feynman-Kac formula :
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Model and examples Description of the model
Example 1
Example 2

Moments properties

Feynman-Kac formula :

E {e j:plsds} _ uoet(A_pld)‘l a e—/\pt'

We have \; = 0 and
FpAp|po = > iv(i).
ieF

Hence
> iv(i)>0= 3p>0, A, >0.
ieF
= Convergence in "LP-norm" and in a weaker Wasserstein distance.
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Example 1
Example 2

More generally

Lemma

Let o be a function on F. If

Z a(iv(i) >0

1

then there exist C, c, A\, p > 0 such that

t
ceM<E {e_fo pa(’s)d5:| < Ce M
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Model and examples Description of the model
Example 1
Example 2

More generally

Lemma

Let o be a function on F. If

Z a(iv(i) >0

1

then there exist C, c, A\, p > 0 such that

t
ceM<E {e_fo pa(’s)d5:| < Ce M

— See (Bardet, Guerin, Malrieu, 2010).
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@ Definition of the Wasserstein distance
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Idea of the proof

Wasserstein distance

@ For any probability measures p1, 2 on (E, d) :

Wa(p1, p2) = inf d(x, y)N(dx, dy)
N JexE

= inf E [d(X1 s X2)] .
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Definition of the Wasserstein distance
Limit theorem in the constant case A limit theorem
Idea of the proof

Wasserstein distance

@ For any probability measures p1, 2 on (E, d) :

Wa(p1, p2) = inf d(x, y)N(dx, dy)
N JexE

= inf E [d(X1 s X2)] .

Xiropr,Xoropo

@ Convergence with Wy < Convergence in law + first moment.

@ Also called Kantorovich, Mallows, Monge, Fréchet, optimal
transport, coupling, minimum-L"...
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Wasserstein distance

Duality of Kantorovich-Rubinstein :

Wa(p, p2) = sup [ fdpuq —/fduz
Lip(f)<1
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Definition of the Wasserstein distance
Limit theorem in the constant case A limit theorem
Idea of the proof

Wasserstein distance

Duality of Kantorovich-Rubinstein :

Wa(p, p2) = sup [ fdpuq —/fduz
Lip(f)<1

If d(x,y) = 1xzy then Wy = || - |lvr and
1
Wajin.pi2) = = sup | fdjus / fdua.

2 |jfl| o <1

If E=Randd(x,y)=|x—y|A1then Wy = drm and

Walur, i2) = / foluy / fdie.
Hf\loo+|\f’|\x<1
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Definition o
Limit theorem in the constant case A limit theorem
Idea of the proof

Contraction Assumption

Assume that Vi € F, 3p(i) € R such that

(X =y, FO0) = FOy)) < —p(DlIx = yI2, X,y € R,
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Definition o
Limit theorem in the constant case A limit theorem
Idea of the proof

Contraction Assumption

Assume that Vi € F, 3p(i) € R such that
(x =y, FO0) = FOy)) < —p(i)lix = yI2, x,y € RY,
Note that if p(/) > 0 then 3!x; such that all the solutions (y;):>o to
Oyr = F(y), t=>0,

verify
vt >0, [y — x| < e " Mlyo — x|l

29/ 24



Definition of the Wasserstein distance
Limit theorem in the constant case A limit theorem
Idea of the proof

Wasserstein exponential ergodicity

Theorem
If
> uli)eli) >0,
icF
then (Xt)t>0 = (X, It)1>0 admits a unique invariant probability
measure w and there exist C, A\, {y > 0 and p € (0, 1) such that

Vit > ty, Wa(L(Xs), m) < Ce (1 + W 1o (L(Xo), 7)),

where

d((x; 1), (.1)) = Vigj + Vi (1 A [1x = y[I°).

22/ 24
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Definition of the Wasserstein distance
Limit theorem in the constant case A limit theorem
Idea of the proof

Wasserstein exponential ergodicity

Theorem
If
> uli)eli) >0,
icF
then (Xt)t>0 = (X, It)1>0 admits a unique invariant probability
measure w and there exist C, A\, {y > 0 and p € (0, 1) such that

Vit > ty, Wa(L(Xs), m) < Ce (1 + W 1o (L(Xo), 7)),

where
d((x, 1), (y.))) = iz + 11 A [Ix = y|[P).

— Already proved in (Benaim, Le Borgne, Malrieu, Zitt 12).
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Limit theorem in the constant case
Idea of the proof

A general form of Harris theorem

— Proof based on a theorem of (Hairer, Mattingly, Scheutzow, 09).
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A general form of Harris theorem

— Proof based on a theorem of (Hairer, Mattingly, Scheutzow, 09). It
is enough to prove :

i) There exist V and C, K, A > 0 such that

E[V(X))] < Ce ME[V(Xo)] + K, t>0.

i) Forall A> 0there exist e4 > 0 and t4 > 0 such that for all { > i,
Wa(L(X:), L(Y:)) <1 —e€n

for any starting distributions Xg, Yy € {V < A}.
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Limit theorem in the constant case A limit theorem
Idea of the proof

A general form of Harris theorem

— Proof based on a theorem of (Hairer, Mattingly, Scheutzow, 09). It
is enough to prove :

i) There exist V and C, K, A > 0 such that

E[V(X))] < Ce ME[V(Xo)] + K, t>0.

i) Forall A> 0there exist e4 > 0 and t4 > 0 such that for all { > i,
Wa(L(X:), L(Y:)) <1 —e€n

for any starting distributions Xg, Yy € {V < A}.
iii) There exist o € (0,1) and a time t such that

Wa(L(X:), L(Y:)) < ad(Xo, Yo),

for any starting distributions Xy, Yo € E = E x F verifying
(:’(Xo7 Yo) < 1.

24/ 34
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Definition
Limit theorem in the constant case
Idea of the proof

Point i)

We set V(x,i) = V(x) = ||x||P.Using the generator and Gronwall
Lemma, we find

t
EwumgK/ [ fmmﬂw+mv&mﬂ = Jy poth) }.
0
But we can find p € (0, 1) in such a way to obtain

[e j;jpp(/u)du} < Ce M.

It gives that V is a Lyapunov function ; that is,

E[V(X)] < CeME[V(X)] + K, t> 0.

N5/ 34
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Idea of the proof

Point i)

We want to prove that for all A > 0 there exist ¢4 > 0 and t4 > 0 such
that for all t > ta,
Wa(L(X:), L(Y1)) <1 —€a

for any starting distribution X, Yo € {V < A}
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We want to prove that for all A > 0 there exist ¢4 > 0 and t4 > 0 such
that for all t > ta,
Wa(L(X:), L(Y1)) <1 —€a

for any starting distribution X, Yo € {V < A}
Let us fix two starting point Xp, Yo € {V < A}.
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for any starting distribution X, Yo € {V < A}
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that p(ip) > 0, we easily explicit a coupling verifying

d(X:, ;) < 1yCe"®d(Xy, Yo) + 1y



Definition
Limit theorem in the constant case
Idea of the proof

Point i)

We want to prove that for all A > 0 there exist ¢4 > 0 and t4 > 0 such
that for all t > ta,
Wa(L(X:), L(Y1)) <1 —€a

for any starting distribution X, Yo € {V < A}
Let us fix two starting point Xy, Yo € {V < A}. As there exists iy such
that p(ip) > 0, we easily explicit a coupling verifying

d(X:, ;) < 1yCe"®d(Xy, Yo) + 1y

Finally as {V < A} is bounded, it ends the proof of ii).

26/ 34



Definition of the Wasserstein distance
Limit theorem in the constant case A limit theorem
Idea of the proof

Point jii)

We want to prove the existence of a € (0,1) and a time t such that
Wa(L(X), L£(Y1)) < ad(Xo, Yo),

for any starting distribution verifying d(Xo, Yo) < 1.
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Point jii)

We want to prove the existence of a € (0,1) and a time t such that
Wa(L(X), L£(Y1)) < ad(Xo, Yo),
for any starting distribution verifying d(Xo, Yo) < 1.

But d(X07Yo) <1= Io = Jo
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Limit theorem in the constant case A limit theorem
Idea of the proof

Point jii)

We want to prove the existence of a € (0,1) and a time t such that
Wa(L(X1), £(Y1)) < ad(Xo, Yo),
for any starting distribution verifying d(Xo, Yo) < 1.
But d(Xo,Yo) < 1=l =Jp and then
Wa(2(X). L(Y) < E [ #9%] dixa, Yo

< Cei)\td(X()7 Yo)
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ein distance
Limit theorem in the constant case A limit theorem
Idea of the proof

Point jii)

We want to prove the existence of a € (0,1) and a time t such that
Wa(L(X1), £(Y1)) < ad(Xo, Yo),
for any starting distribution verifying d(Xo, Yo) < 1.
But d(Xo,Yo) < 1=l =Jp and then
Wa(2(X). L(Y) < E [ #9%] dixa, Yo

< Cei)\td(X()7 Yo)
— Finally i),ii),iii) holds and the theorem is proved.
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Hypoelliptic case

Generalisation Ge h switching

Hypoellipticity assumption

By (Benaim, Le Borgne, Malrieu, Zitt 12) and (Bakhtin, Hurth, 12), if
the family (F()); verifies an Hérmander-type condition, then the
process X verifies a regularising assumption.
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Hypoelliptic case
Fully coupled PDMP
Generalisation General Markov processes with switching

Hypoellipticity assumption

By (Benaim, Le Borgne, Malrieu, Zitt 12) and (Bakhtin, Hurth, 12), if
the family (F()); verifies an Hérmander-type condition, then the
process X verifies a regularising assumption.

— Hérmander-type condition + Lyapunov funtion = Exponential
convergence in || - ||rv.

Lemma
If there exists V s.t.

FO(x)-VV(x) < -\V(x)+ K,

where

> (i) >0,

ieF

then (X, I) admits a Lyapunov function.
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Generalisation

Wasserstein exponential ergod|C|ty in the
non-constant case

If F={-1,1} and
Lf(x, i) = FD(x) - Vif(x, i) + a(x, ))(f(x, —i) — f(x, 1)),
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Generalisation Genel ocesses with switching

Wasserstein exponential ergod|C|ty in the
non-constant case

If F={-1,1} and
Lf(x, i) = FD(x) - Vif(x, i) + a(x, ))(f(x, —i) — f(x, 1)),
where we consider p(1) > 0,p(—1) < 0 and

g(1):igfa(x,1) and a(—1) =supa(x,—1)

If a is Lipschitz and

a(—1)p(1) +a(1)p(-1) >0

then X admits an invariant probability measure and converges
exponentially fast to it in a Wasserstein distance.
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Hypoelliptic case
Fully coupled PDMP
Generalisation General Markov processes with switching

Wasserstein curvature

Definition
The Wasserstein curvature of a Markov semigroup (P;)s>o is the
largest constant p such that

W(,LtPt,l/Pt) < eiptW([L, l/)7

for any probability measure p, v and any t > 0.
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Hypoellipti se
Fully coupled PDMP
Generalisation General Markov processes with switching

Wasserstein curvature

Definition
The Wasserstein curvature of a Markov semigroup (P;)s>o is the
largest constant p such that

W(,U,Pt,l/Pt) e ptW(H, l/)

for any probability measure p, v and any t > 0.

@ introduced independently by Joulin (2007), Ollivier (2007) and
Sammer (2005).

@ Motivated by generalizing Bakry-Emery curvature of diffusion
processes or Ricci curvature of Riemannian Manifold.
@ By the Kantorovich-Rubinstein duality, we have

]
p=Sup—- In || Pt | Lip(a) —Lip(a)-
t>0
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Some examples of curvature

See for instance

@ (Sturm, Von Renesse, 2005) for Brownian motion on Riemannian
manifold

@ (Chafai, Joulin, 2012) for birth and death processes
@ (Cloez, 2012) for stochastically monotonous processes

@ (Eberle, 2011) and (Cattiaux, Guillin, 2013) for inhomogeneous
diffusion
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Some examples of curvature

See for instance

@ (Sturm, Von Renesse, 2005) for Brownian motion on Riemannian
manifold

@ (Chafai, Joulin, 2012) for birth and death processes
@ (Cloez, 2012) for stochastically monotonous processes

@ (Eberle, 2011) and (Cattiaux, Guillin, 2013) for inhomogeneous
diffusion

Now, we assume that (X;)r>0 = (X:, It)t>0 iS generated by

Lf(x,i) = LOF(x, i) + /F (f(x,)) — f(x,))Q(, dj),
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Wasserstein exponential ergodicity

Theorem
If

S uli)oli) > 0,

ieF
then (Xt)t>0 = (X, It)1>0 admits a unique invariant probability
measure w and there exist C, \,t{y > 0 and p € (0, 1) such that

Vt > to, Wa(L(X;), m) < Ce (1 + W 1o (£(Xo), 7)),

where
d((x, 1), (¥,))) = Vizj + 1ii(1 A lIx = yIIP).
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Thank you for your attention !
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