Exponential ergodicity for switching dynamical system

Bertrand CLOEZ - Université Paris-Est Marne-la-Vallée, Joint work with Martin HAIRER - University of Warwick

Workshop : Piecewise Deterministic Markov Processes Labex Lebesgue, Rennes, May 16th

- Description of the model
- Example 1
- Example 2

2 Limit theorem in the constant case

- Definition of the Wasserstein distance
- A limit theorem
- Idea of the proof

3 Generalisation

- Hypoelliptic case
- Fully coupled PDMP
- General Markov processes with switching

Description of the model Example 1 Example 2

Model and examples

- Description of the model
- Example 1
- Example 2

2 Limit theorem in the constant case

- Definition of the Wasserstein distance
- A limit theorem
- Idea of the proof

3 Generalisation

- Hypoelliptic case
- Fully coupled PDMP
- General Markov processes with switching

Description of the model Example 1 Example 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Model

Let us consider

- an irreducible CT Markov chain *I*, on a finite space *F*, with an invariant distribution ν,
- for each $i \in F$, a smooth vector field $F^{(i)}$, on \mathbb{R}^d , $d \ge 1$.

We consider the process X verifying

$$\forall t \geq 0, \ \partial_t X_t = F^{(I_t)}(X_t).$$

Model

Let us consider

- an irreducible CT Markov chain *I*, on a finite space *F*, with an invariant distribution ν,
- for each $i \in F$, a smooth vector field $F^{(i)}$, on \mathbb{R}^d , $d \ge 1$.

We consider the process X verifying

$$\forall t \geq 0, \ \partial_t X_t = F^{(l_t)}(X_t).$$

The couple (X, I) is Markovian and is generated by

$$\mathbf{L}f(x,i) = \mathbf{F}^{(i)}(x) \cdot \nabla_x f(x,i) + \int_{\mathbf{F}} (f(x,j) - f(x,i)) Q(i,dj).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Model

Let us consider

- an irreducible CT Markov chain *I*, on a finite space *F*, with an invariant distribution ν,
- for each $i \in F$, a smooth vector field $F^{(i)}$, on \mathbb{R}^d , $d \ge 1$.

We consider the process X verifying

$$\forall t \geq 0, \ \partial_t X_t = F^{(l_t)}(X_t).$$

The couple (X, I) is Markovian and is generated by

$$\mathbf{L}f(x,i) = F^{(i)}(x) \cdot \nabla_x f(x,i) + \int_F (f(x,j) - f(x,i))Q(i,dj).$$

 \rightarrow We can also assume that *Q* depends on the continuous component *X*.

Description of the model Example 1 Example 2

Motivations

• Chemostat (Collet, Martinez, Méléard, San Martin, 2012)

Motivations

- Chemostat (Collet, Martinez, Méléard, San Martin, 2012)
- Gene Network (Crudu, Debussche, Muller, Radulescu, 2012)

Description of the model

and examples Description of the model constant case Example 1 Generalisation Example 2

Motivations

- Chemostat (Collet, Martinez, Méléard, San Martin, 2012)
- Gene Network (Crudu, Debussche, Muller, Radulescu, 2012)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Storage modelling (Boxma, Kaspi, Kella, Perry, 2005)

Motivations

- Chemostat (Collet, Martinez, Méléard, San Martin, 2012)
- Gene Network (Crudu, Debussche, Muller, Radulescu, 2012)
- Storage modelling (Boxma, Kaspi, Kella, Perry, 2005)
- Neuronal activity (Genadot, Pakdaman, Thieullen, Wainrib, 2012)

Motivations

- Chemostat (Collet, Martinez, Méléard, San Martin, 2012)
- Gene Network (Crudu, Debussche, Muller, Radulescu, 2012)
- Storage modelling (Boxma, Kaspi, Kella, Perry, 2005)
- Neuronal activity (Genadot, Pakdaman, Thieullen, Wainrib, 2012)
- Molecular biology (Faggionato, Gabrielli, Crivellari, 2008)

Motivations

- Chemostat (Collet, Martinez, Méléard, San Martin, 2012)
- Gene Network (Crudu, Debussche, Muller, Radulescu, 2012)
- Storage modelling (Boxma, Kaspi, Kella, Perry, 2005)
- Neuronal activity (Genadot, Pakdaman, Thieullen, Wainrib, 2012)
- Molecular biology (Faggionato, Gabrielli, Crivellari, 2008)

ightarrow Natural questions :

- Ergodicity criterion : $\mathcal{L}(X_t) \rightarrow \pi$
- Rate of convergence dist $(\mathcal{L}(X_t), \pi) \leq \varphi(X_0, t)$

mit theorem in the constant case Generalisation Description of the model Example 1 Example 2

An explosive switched vector fields

FIGURE: First vector field : $F^{(1)}: x \mapsto A_1 \cdot x$

Limit theorem in the constant case Generalisation Description of the model Example 1 Example 2

An explosive switched vector fields

FIGURE: Second vector field : $F^{(2)} : x \mapsto A_2 \cdot x$

Explosive switched vector fields

Let a > 0, we consider the following generator :

$$\mathsf{L}f(x,i) = \mathsf{A}_i \cdot \nabla_x f(x,i) + \mathsf{a}(f(x,1-i) - f(x,i)),$$

where $x \in \mathbb{R}^2$, $i \in \{0, 1\}$ and f is smooth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Explosive switched vector fields

Let a > 0, we consider the following generator :

$$\mathbf{L}f(x,i) = \mathbf{A}_i \cdot \nabla_x f(x,i) + \mathbf{a}(f(x,1-i) - f(x,i)),$$

where $x \in \mathbb{R}^2$, $i \in \{0, 1\}$ and f is smooth. If we fix $i \in \{0, 1\}$ then the solutions of

$$\forall t \geq \mathbf{0}, \ \partial_t \mathbf{y}_t = \mathbf{A}_i \mathbf{y}_t$$

satisfy

$$\|\boldsymbol{y}_t\| \leq \boldsymbol{C}\boldsymbol{e}^{-t}\|\boldsymbol{y}_0\|.$$

Explosive switched vector fields

Let a > 0, we consider the following generator :

$$\mathbf{L}f(x,i) = \mathbf{A}_i \cdot \nabla_x f(x,i) + \mathbf{a}(f(x,1-i) - f(x,i)),$$

where $x \in \mathbb{R}^2$, $i \in \{0, 1\}$ and f is smooth. If we fix $i \in \{0, 1\}$ then the solutions of

$$\forall t \geq \mathbf{0}, \ \partial_t \mathbf{y}_t = \mathbf{A}_i \mathbf{y}_t$$

satisfy

$$\|\boldsymbol{y}_t\| \leq \boldsymbol{C}\boldsymbol{e}^{-t}\|\boldsymbol{y}_0\|.$$

Nevertheless if a is large enough then

$$\lim_{t\to+\infty}X_t=+\infty$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Limit theorem in the constant case Generalisation Description of the model Example 1 Example 2

Explosive switched vector fields

FIGURE: A typical trajectory

Limit theorem in the constant case Generalisation Description of the model Example 1 Example 2

Explosive switched vector fields

FIGURE: A typical trajectory

Limit theorem in the constant case Generalisation Description of the model Example 1 Example 2

Explosive switched vector fields

FIGURE: A typical trajectory

Limit theorem in the constant case Generalisation Description of the model Example 1 Example 2

Explosive switched vector fields

FIGURE: A typical trajectory

Limit theorem in the constant case Generalisation Description of the model Example 1 Example 2

Explosive switched vector fields

FIGURE: A typical trajectory

Generalisation

Description of the mode Example 1 Example 2

The most elementary example

FIGURE: A trajectory of the second example

Description of the mode Example 1 Example 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The most elementary example

Let us consider that / is a Markov Chain on $\{-1, 1\}$, the continuous component belongs to \mathbb{R} and satisfies

$$\partial_t X_t = -I_t X_t.$$

Description of the mode Example 1 Example 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The most elementary example

Let us consider that *I* is a Markov Chain on $\{-1, 1\}$, the continuous component belongs to \mathbb{R} and satisfies

$$\partial_t X_t = -I_t X_t.$$

We have

$$X_t = e^- \int_0^t I_s ds$$

Description of the mode Example 1 Example 2

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The most elementary example

Let us consider that *I* is a Markov Chain on $\{-1, 1\}$, the continuous component belongs to \mathbb{R} and satisfies

$$\partial_t X_t = -I_t X_t.$$

We have

$$m{X}_t = m{e}^{-t imes rac{1}{t} \int_0^t m{I}_{ extsf{s}} ds}$$

Birkhoff's ergodic theorem gives that

•
$$X_t \to 0$$
 if $\sum_i i\nu(i) = \nu(1) - \nu(-1) > 0$,

• $X_t \to +\infty$ if $\sum_i i\nu(i) = \nu(1) - \nu(-1) < 0$.

Description of the mode Example 1 Example 2

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The most elementary example

Let us consider that *I* is a Markov Chain on $\{-1, 1\}$, the continuous component belongs to \mathbb{R} and satisfies

$$\partial_t X_t = -I_t X_t.$$

We have

$$m{X}_t = m{e}^{-t imes rac{1}{t} \int_0^t m{I}_{s} ds}$$

Birkhoff's ergodic theorem gives that

•
$$X_t \to 0$$
 if $\sum_i i\nu(i) = \nu(1) - \nu(-1) > 0$,

• $X_t \to +\infty$ if $\sum_i i\nu(i) = \nu(1) - \nu(-1) < 0$.

 \rightarrow Rates of convergence ?

Description of the mode Example 1 Example 2

Non convergence with the usual distance

If $X_0 \neq 0$ then $X_t \neq 0, \forall t \ge 0$.

Description of the mode Example 1 Example 2

Non convergence with the usual distance

If $X_0 \neq 0$ then $X_t \neq 0$, $\forall t \ge 0$. In particular,

$$\forall t \geq 0, \ \|\mathcal{L}(X_t) - \delta_0\|_{TV} = \mathbb{P}(T_0 > t) = 1.$$

Description of the mode Example 1 Example 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Non convergence with the usual distance

If $X_0 \neq 0$ then $X_t \neq 0$, $\forall t \ge 0$. In particular,

$$\forall t \geq \mathbf{0}, \ \|\mathcal{L}(X_t) - \delta_{\mathbf{0}}\|_{TV} = \mathbb{P}(T_0 > t) = \mathbf{1}.$$

In general

$$\lim_{t\to+\infty} E[X_t] = +\infty,$$

Description of the mode Example 1 Example 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Non convergence with the usual distance

If $X_0 \neq 0$ then $X_t \neq 0$, $\forall t \ge 0$. In particular,

$$\forall t \geq \mathbf{0}, \ \|\mathcal{L}(X_t) - \delta_{\mathbf{0}}\|_{TV} = \mathbb{P}(T_0 > t) = \mathbf{1}.$$

In general

$$\lim_{t\to+\infty} E[X_t] = +\infty,$$

and then there is no convergence in L^1 -norm and

$$\lim_{t\to+\infty}\mathcal{W}(\mathcal{L}(X_t),\delta_0)=+\infty.$$

Description of the mode Example 1 Example 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Non convergence with the usual distance

If $X_0 \neq 0$ then $X_t \neq 0$, $\forall t \ge 0$. In particular,

$$\forall t \geq \mathbf{0}, \ \|\mathcal{L}(X_t) - \delta_{\mathbf{0}}\|_{TV} = \mathbb{P}(T_0 > t) = \mathbf{1}.$$

In general

$$\lim_{t\to+\infty} E[X_t] = +\infty,$$

and then there is no convergence in L^1 -norm and

$$\lim_{t\to+\infty}\mathcal{W}(\mathcal{L}(X_t),\delta_0)=+\infty.$$

 \rightarrow We have to modify the distance !

Description of the mode Example 1 Example 2

Non convergence with the usual distance

If $X_0 \neq 0$ then $X_t \neq 0$, $\forall t \ge 0$. In particular,

$$\forall t \geq 0, \ \|\mathcal{L}(X_t) - \delta_0\|_{TV} = \mathbb{P}(T_0 > t) = 1.$$

In general

$$\lim_{t\to+\infty} E[X_t] = +\infty,$$

and then there is no convergence in L^1 -norm and

$$\lim_{t\to+\infty}\mathcal{W}(\mathcal{L}(X_t),\delta_0)=+\infty.$$

 \rightarrow We have to modify the distance ! Convergence of the moment ?

$$\mathbb{E}\left[X_{t}^{p}
ight]=\mathbb{E}\left[e^{-\int_{0}^{t}pl_{s}ds}
ight],\quad p\in(0,1).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Description of the model Example 1 Example 2

Moments properties

Feynman-Kac formula :

$$\mathbb{E}\left[e^{-\int_0^t \rho l_s ds}\right] = \mu_0 e^{t(A-\rho ld)} \mathbf{1}$$

Description of the model Example 1 Example 2

Moments properties

Feynman-Kac formula :

$$\mathbb{E}\left[\boldsymbol{e}^{-\int_{0}^{t}\boldsymbol{p}l_{s}ds}\right]=\mu_{0}\boldsymbol{e}^{t(\boldsymbol{A}-\boldsymbol{p}\boldsymbol{l}d)}\mathbf{1}\approx\boldsymbol{e}^{-\lambda_{p}t}.$$

Description of the model Example 1 Example 2

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Moments properties

Feynman-Kac formula :

$$\mathbb{E}\left[\boldsymbol{e}^{-\int_{0}^{t}\boldsymbol{\rho}\boldsymbol{l}_{s}ds}\right]=\mu_{0}\boldsymbol{e}^{t(\boldsymbol{A}-\boldsymbol{\rho}\boldsymbol{l}d)}\boldsymbol{1}\approx\boldsymbol{e}^{-\lambda_{\boldsymbol{\rho}}t}.$$

We have $\lambda_0 = 0$ and

$$\partial_p \lambda_p|_{p=0} = \sum_{i \in F} i \nu(i).$$
Description of the model Example 1 Example 2

Moments properties

Feynman-Kac formula :

$$\mathbb{E}\left[e^{-\int_0^t p l_s ds}\right] = \mu_0 e^{t(A-pld)} \mathbf{1} \approx e^{-\lambda_p t}.$$

We have $\lambda_0 = 0$ and

$$\partial_p \lambda_p|_{p=0} = \sum_{i \in F} i \nu(i).$$

Hence

$$\sum_{i\in F}i\nu(i)>0\Rightarrow \ \exists \rho>0, \ \lambda_{\rho}>0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Description of the model Example 1 Example 2

Moments properties

Feynman-Kac formula :

$$\mathbb{E}\left[e^{-\int_0^t p l_s ds}\right] = \mu_0 e^{t(A-pld)} \mathbf{1} \approx e^{-\lambda_p t}.$$

We have $\lambda_0 = 0$ and

$$\partial_p \lambda_p|_{p=0} = \sum_{i \in F} i \nu(i).$$

Hence

$$\sum_{i\in F}i\nu(i)>0\Rightarrow \ \exists p>0,\ \lambda_p>0.$$

 \Rightarrow Convergence in "L^p-norm" and in a weaker Wasserstein distance.

Description of the model Example 1 Example 2

▲□▶▲□▶▲□▶▲□▶ □ のQで

More generally

Lemma

Let α be a function on F. If

$$\sum_i \alpha(i)\nu(i) > 0$$

then there exist $C, c, \lambda, p > 0$ such that

$$ce^{-\lambda t} \leq \mathbb{E}\left[e^{-\int_{0}^{t}plpha(l_{s})ds}
ight] \leq Ce^{-\lambda t}$$

Description of the model Example 1 Example 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

More generally

Lemma

Let α be a function on F. If

$$\sum_i \alpha(i)\nu(i) > 0$$

then there exist $C, c, \lambda, p > 0$ such that

$$ce^{-\lambda t} \leq \mathbb{E}\left[e^{-\int_{0}^{t} plpha(l_{s})ds}
ight] \leq Ce^{-\lambda t}$$

 \rightarrow See (Bardet, Guerin, Malrieu, 2010).

Model and examples Definition of th Limit theorem in the constant case Generalisation Idea of the pro-

Model and examples

- Description of the model
- Example 1
- Example 2

2 Limit theorem in the constant case

- Definition of the Wasserstein distance
- A limit theorem
- Idea of the proof

3 Generalisation

- Hypoelliptic case
- Fully coupled PDMP
- General Markov processes with switching

・ロト ・雪 ト ・ ヨ ト ・

э

Definition of the Wasserstein distance A limit theorem Idea of the proof

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Wasserstein distance

• For any probability measures μ_1, μ_2 on (E, d):

$$\mathcal{W}_{d}(\mu_{1},\mu_{2}) = \inf_{\Pi} \int_{E \times E} d(x,y) \Pi(dx,dy)$$
$$= \inf_{X_{1} \sim \mu_{1}, X_{2} \sim \mu_{2}} \mathbb{E} \left[d(X_{1},X_{2}) \right].$$

Definition of the Wasserstein distance A limit theorem Idea of the proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Wasserstein distance

For any probability measures μ₁, μ₂ on (E, d) :

$$\mathcal{W}_{d}(\mu_{1},\mu_{2}) = \inf_{\Pi} \int_{E \times E} d(x,y) \Pi(dx,dy)$$
$$= \inf_{X_{1} \sim \mu_{1}, X_{2} \sim \mu_{2}} \mathbb{E} \left[d(X_{1},X_{2}) \right].$$

• Convergence with $\mathcal{W}_d \Leftrightarrow$ Convergence in law + first moment.

Definition of the Wasserstein distance A limit theorem Idea of the proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Wasserstein distance

For any probability measures μ₁, μ₂ on (E, d) :

$$\mathcal{W}_d(\mu_1, \mu_2) = \inf_{\Pi} \int_{E \times E} d(x, y) \Pi(dx, dy)$$
$$= \inf_{X_1 \sim \mu_1, X_2 \sim \mu_2} \mathbb{E} \left[d(X_1, X_2) \right].$$

- Convergence with $\mathcal{W}_d \Leftrightarrow$ Convergence in law + first moment.
- Also called Kantorovich, Mallows, Monge, Fréchet, optimal transport, coupling, minimum-L¹...

Definition of the Wasserstein distance A limit theorem Idea of the proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Wasserstein distance

Duality of Kantorovich-Rubinstein :

$$\mathcal{W}_{d}(\mu_{1},\mu_{2}) = \sup_{\operatorname{Lip}(f) \leq 1} \int f d\mu_{1} - \int f d\mu_{2}$$

Definition of the Wasserstein distance A limit theorem Idea of the proof

Wasserstein distance

Duality of Kantorovich-Rubinstein :

$$\mathcal{W}_{d}(\mu_{1},\mu_{2}) = \sup_{\operatorname{Lip}(f) \leq 1} \int f d\mu_{1} - \int f d\mu_{2}$$

If $d(x, y) = \mathbf{1}_{x \neq y}$ then $\mathcal{W}_d = \| \cdot \|_{\mathsf{VT}}$ and

$$\mathcal{W}_d(\mu_1,\mu_2)=\frac{1}{2}\sup_{\|f\|_{\infty}\leq 1}\int fd\mu_1-\int fd\mu_2.$$

Definition of the Wasserstein distance A limit theorem Idea of the proof

Wasserstein distance

Duality of Kantorovich-Rubinstein :

$$\mathcal{W}_{d}(\mu_{1},\mu_{2}) = \sup_{\mathsf{Lip}(f) \leq 1} \int f d\mu_{1} - \int f d\mu_{2}$$

If $d(x, y) = \mathbf{1}_{x \neq y}$ then $\mathcal{W}_d = \| \cdot \|_{\mathsf{VT}}$ and

$$\mathcal{W}_{d}(\mu_{1},\mu_{2})=rac{1}{2}\sup_{\|f\|_{\infty}\leq 1}\int fd\mu_{1}-\int fd\mu_{2}.$$

If $E = \mathbb{R}$ and $d(x, y) = |x - y| \wedge 1$ then $\mathcal{W}_d = d_{\mathsf{FM}}$ and

$$\mathcal{W}_{d}(\mu_{1},\mu_{2}) = \sup_{\|f\|_{\infty} + \|f'\|_{\infty} \leq 1} \int f d\mu_{1} - \int f d\mu_{2}.$$

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のへの

Definition of the Wasserstein distance A limit theorem Idea of the proof

Contraction Assumption

Assume that $\forall i \in F$, $\exists \rho(i) \in \mathbb{R}$ such that

$$\langle x-y, F^{(i)}(x)-F^{(i)}(y)
angle\leq -
ho(i)\|x-y\|^2, \quad x,y\in R^d,$$

Definition of the Wasserstein distance A limit theorem Idea of the proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Contraction Assumption

Assume that $\forall i \in F$, $\exists \rho(i) \in \mathbb{R}$ such that

$$\langle x-y, F^{(i)}(x)-F^{(i)}(y)
angle\leq -
ho(i)\|x-y\|^2, \quad x,y\in R^d,$$

Note that if $\rho(i) > 0$ then $\exists ! x_i$ such that all the solutions $(y_t)_{t \ge 0}$ to

$$\partial_t \mathbf{y}_t = \mathbf{F}^{(i)}(\mathbf{y}_t), \quad t \ge \mathbf{0},$$

verify

$$\forall t \geq 0, \|y_t - x_i\| \leq e^{-\rho(i)t} \|y_0 - x_i\|.$$

Definition of the Wasserstein distance A limit theorem Idea of the proof

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Wasserstein exponential ergodicity

Theorem

lf

 $\sum_{i\in F}\nu(i)\rho(i)>0,$

then $(\mathbf{X}_t)_{t\geq 0} = (X_t, I_t)_{t\geq 0}$ admits a unique invariant probability measure π and there exist $C, \lambda, t_0 > 0$ and $p \in (0, 1)$ such that

$$orall t \geq t_0, \ \mathcal{W}_{\mathsf{d}}(\mathcal{L}(\mathsf{X}_t), \pi) \leq C e^{-\lambda t} (1 + \mathcal{W}_{\|\cdot\|^p}(\mathcal{L}(\mathsf{X}_0), \pi)),$$

where

$$\mathbf{d}((x,i),(y,j)) = \mathbf{1}_{i\neq j} + \mathbf{1}_{i=j}(1 \wedge ||x-y||^p).$$

23/34

Definition of the Wasserstein distance A limit theorem Idea of the proof

Wasserstein exponential ergodicity

Theorem

lf

 $\sum_{i\in F}\nu(i)\rho(i)>0,$

then $(\mathbf{X}_t)_{t\geq 0} = (X_t, I_t)_{t\geq 0}$ admits a unique invariant probability measure π and there exist $C, \lambda, t_0 > 0$ and $p \in (0, 1)$ such that

$$orall t \geq t_0, \ \mathcal{W}_{\mathsf{d}}(\mathcal{L}(\mathsf{X}_t), \pi) \leq C e^{-\lambda t} (1 + \mathcal{W}_{\|\cdot\|^p}(\mathcal{L}(\mathsf{X}_0), \pi)),$$

where

$$\mathbf{d}((x,i),(y,j)) = \mathbf{1}_{i\neq j} + \mathbf{1}_{i=j}(1 \wedge ||x-y||^p).$$

 \rightarrow Already proved in (Benaïm, Le Borgne, Malrieu, Zitt 12).

A general form of Harris theorem

 \rightarrow Proof based on a theorem of (Hairer, Mattingly, Scheutzow, 09).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A general form of Harris theorem

 \rightarrow Proof based on a theorem of (Hairer, Mattingly, Scheutzow, 09). It is enough to prove :

i) There exist V and $C, K, \lambda > 0$ such that

 $\mathbb{E}[V(X_t)] \leq C e^{-\lambda t} \mathbb{E}[V(X_0)] + K, \quad t \geq 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A general form of Harris theorem

 \rightarrow Proof based on a theorem of (Hairer, Mattingly, Scheutzow, 09). It is enough to prove :

i) There exist V and $C, K, \lambda > 0$ such that

$$\mathbb{E}[V(X_t)] \leq C e^{-\lambda t} \mathbb{E}[V(X_0)] + K, \quad t \geq 0.$$

ii) For all A > 0 there exist $\epsilon_A > 0$ and $t_A > 0$ such that for all $t \ge t_A$,

$$\mathcal{W}_{\mathsf{d}}(\mathcal{L}(\mathsf{X}_t), \mathcal{L}(\mathsf{Y}_t)) \leq 1 - \epsilon_A$$

for any starting distributions X_0 , $Y_0 \in \{V \le A\}$.

A general form of Harris theorem

 \rightarrow Proof based on a theorem of (Hairer, Mattingly, Scheutzow, 09). It is enough to prove :

i) There exist V and $C, K, \lambda > 0$ such that

$$\mathbb{E}[V(X_t)] \leq Ce^{-\lambda t}\mathbb{E}[V(X_0)] + K, \quad t \geq 0.$$

ii) For all A > 0 there exist $\epsilon_A > 0$ and $t_A > 0$ such that for all $t \ge t_A$,

 $\mathcal{W}_{\mathbf{d}}(\mathcal{L}(\mathbf{X}_t), \mathcal{L}(\mathbf{Y}_t)) \leq 1 - \epsilon_A$

for any starting distributions X_0 , $Y_0 \in \{V \leq A\}$.

iii) There exist $\alpha \in (0, 1)$ and a time *t* such that

$$\mathcal{W}_{\mathsf{d}}(\mathcal{L}(\mathsf{X}_t), \mathcal{L}(\mathsf{Y}_t)) \leq \alpha \mathsf{d}(\mathsf{X}_0, \mathsf{Y}_0),$$

for any starting distributions $X_0, Y_0 \in \mathbf{E} = E \times F$ verifying $\mathbf{d}(\mathbf{X}_0, \mathbf{Y}_0) < 1$.

Model and examples Definition of the Wasserstein distance Limit theorem in the constant case A limit theorem Generalisation Idea of the proof

Point i)

We set $V(x, i) = V(x) = ||x||^{p}$.

 Model and examples
 Definition of the Wasserstein distance

 Limit theorem in the constant case
 A limit theorem

 Generalisation
 Idea of the proof

Point i)

We set $V(x, i) = V(x) = ||x||^{p}$. Using the generator and Gronwall Lemma, we find

$$\mathbb{E}[V(X_t)] \leq K \int_0^t \mathbb{E}\left[e^{-\int_s^t p_{\rho}(l_u) du}\right] ds + \mathbb{E}[V(X_0)] \mathbb{E}\left[e^{-\int_0^t p_{\rho}(l_u) du}\right].$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 Model and examples
 Definition of the Wasserstein distance

 Limit theorem in the constant case
 A limit theorem

 Generalisation
 Idea of the proof

Point i)

We set $V(x, i) = V(x) = ||x||^{p}$. Using the generator and Gronwall Lemma, we find

$$\mathbb{E}[V(X_t)] \leq K \int_0^t \mathbb{E}\left[e^{-\int_s^t p_{\rho}(l_u) du}\right] ds + \mathbb{E}[V(X_0)] \mathbb{E}\left[e^{-\int_0^t p_{\rho}(l_u) du}\right]$$

But we can find $p \in (0, 1)$ in such a way to obtain

$$\left[\boldsymbol{e}^{-\int_0^t \boldsymbol{p}\rho(l_u)du}\right] \leq \boldsymbol{C}\boldsymbol{e}^{-\lambda t}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

 Model and examples
 Definition of the Wasserstein distance

 Limit theorem in the constant case
 A limit theorem

 Generalisation
 Idea of the proof

Point i)

We set $V(x, i) = V(x) = ||x||^{p}$. Using the generator and Gronwall Lemma, we find

$$\mathbb{E}[V(X_t)] \leq K \int_0^t \mathbb{E}\left[e^{-\int_s^t p_{\rho}(I_u) du}\right] ds + \mathbb{E}[V(X_0)] \mathbb{E}\left[e^{-\int_0^t p_{\rho}(I_u) du}\right].$$

But we can find $p \in (0, 1)$ in such a way to obtain

$$\left[e^{-\int_0^t p\rho(l_u)du}\right] \leq Ce^{-\lambda t}.$$

It gives that V is a Lyapunov function; that is,

$$\mathbb{E}[V(X_t)] \leq Ce^{-\lambda t}\mathbb{E}[V(X_0)] + K, \quad t \geq 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We want to prove that for all A > 0 there exist $\epsilon_A > 0$ and $t_A > 0$ such that for all $t \ge t_A$,

$$\mathcal{W}_{\mathsf{d}}(\mathcal{L}(\mathsf{X}_t),\mathcal{L}(\mathsf{Y}_t)) \leq 1 - \epsilon_{\mathcal{A}}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

for any starting distribution $X_0, Y_0 \in \{V \le A\}$.

We want to prove that for all A > 0 there exist $\epsilon_A > 0$ and $t_A > 0$ such that for all $t \ge t_A$,

$$\mathcal{W}_{\mathsf{d}}(\mathcal{L}(\mathsf{X}_t), \mathcal{L}(\mathsf{Y}_t)) \leq 1 - \epsilon_{\mathsf{A}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for any starting distribution $X_0, Y_0 \in \{V \le A\}$. Let us fix two starting point $X_0, Y_0 \in \{V \le A\}$.

We want to prove that for all A > 0 there exist $\epsilon_A > 0$ and $t_A > 0$ such that for all $t \ge t_A$,

$$\mathcal{W}_{\mathsf{d}}(\mathcal{L}(\mathbf{X}_t), \mathcal{L}(\mathbf{Y}_t)) \leq 1 - \epsilon_{\mathcal{A}}$$

for any starting distribution X_0 , $Y_0 \in \{V \le A\}$. Let us fix two starting point X_0 , $Y_0 \in \{V \le A\}$. As there exists i_0 such that $\rho(i_0) > 0$, we easily explicit a coupling verifying

$$\mathsf{d}(\mathsf{X}_t,\mathsf{Y}_t) \leq \mathbf{1}_U C e^{-
ho(i_0)t} d(X_0,Y_0) + \mathbf{1}_{U^c}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We want to prove that for all A > 0 there exist $\epsilon_A > 0$ and $t_A > 0$ such that for all $t \ge t_A$,

$$\mathcal{W}_{\mathsf{d}}(\mathcal{L}(\mathbf{X}_t), \mathcal{L}(\mathbf{Y}_t)) \leq 1 - \epsilon_{\mathcal{A}}$$

for any starting distribution X_0 , $Y_0 \in \{V \le A\}$. Let us fix two starting point X_0 , $Y_0 \in \{V \le A\}$. As there exists i_0 such that $\rho(i_0) > 0$, we easily explicit a coupling verifying

$$\mathsf{d}(\mathsf{X}_t,\mathsf{Y}_t) \leq \mathbf{1}_U C e^{-
ho(i_0)t} d(X_0,Y_0) + \mathbf{1}_{U^c}$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

Finally as $\{V \le A\}$ is bounded, it ends the proof of ii).

We want to prove the existence of $\alpha \in (0, 1)$ and a time *t* such that

 $\mathcal{W}_{\mathbf{d}}(\mathcal{L}(\mathbf{X}_t), \mathcal{L}(\mathbf{Y}_t)) \leq \alpha \mathbf{d}(\mathbf{X}_0, \mathbf{Y}_0),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for any starting distribution verifying $d(X_0, Y_0) < 1$.

We want to prove the existence of $\alpha \in (0, 1)$ and a time *t* such that

$$\mathcal{W}_{\mathsf{d}}(\mathcal{L}(\mathsf{X}_t), \mathcal{L}(\mathsf{Y}_t)) \leq \alpha \mathsf{d}(\mathsf{X}_0, \mathsf{Y}_0),$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

for any starting distribution verifying $\boldsymbol{d}(\boldsymbol{X}_0,\boldsymbol{Y}_0) < 1.$

But $\mathbf{d}(\mathbf{X}_0, \mathbf{Y}_0) < 1 \Rightarrow I_0 = J_0$

We want to prove the existence of $\alpha \in (0, 1)$ and a time *t* such that

$$\mathcal{W}_{\mathsf{d}}(\mathcal{L}(\mathsf{X}_t), \mathcal{L}(\mathsf{Y}_t)) \leq \alpha \mathsf{d}(\mathsf{X}_0, \mathsf{Y}_0),$$

for any starting distribution verifying $d(X_0, Y_0) < 1$.

But $\mathbf{d}(\mathbf{X}_0, \mathbf{Y}_0) < 1 \Rightarrow I_0 = J_0$ and then

$$egin{aligned} \mathcal{W}_{\mathsf{d}}(\mathcal{L}(\mathsf{X}_t),\mathcal{L}(\mathsf{Y}_t)) &\leq \mathbb{E}\left[e^{-\int_0^t p
ho(l_u)du}
ight] \mathsf{d}(\mathsf{X}_0,\mathsf{Y}_0) \ &\leq C e^{-\lambda t} \mathsf{d}(\mathsf{X}_0,\mathsf{Y}_0). \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

We want to prove the existence of $\alpha \in (0, 1)$ and a time *t* such that

$$\mathcal{W}_{\mathsf{d}}(\mathcal{L}(\mathsf{X}_t), \mathcal{L}(\mathsf{Y}_t)) \leq \alpha \mathsf{d}(\mathsf{X}_0, \mathsf{Y}_0),$$

for any starting distribution verifying $d(X_0, Y_0) < 1$.

But $\boldsymbol{d}(\boldsymbol{X}_0,\boldsymbol{Y}_0) < 1 \Rightarrow \textit{I}_0 = \textit{J}_0~~\text{and then}$

$$egin{aligned} \mathcal{W}_{\mathbf{d}}(\mathcal{L}(\mathbf{X}_t),\mathcal{L}(\mathbf{Y}_t)) &\leq \mathbb{E}\left[oldsymbol{e}^{-\int_0^t p
ho(l_u)du}
ight]\mathbf{d}(\mathbf{X}_0,\mathbf{Y}_0) \ &\leq oldsymbol{C}oldsymbol{e}^{-\lambda t}\mathbf{d}(\mathbf{X}_0,\mathbf{Y}_0). \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 \rightarrow Finally i),ii),iii) holds and the theorem is proved.

Model and examples Hypoelliptic case Limit theorem in the constant case Fully coupled PDMP Generalisation General Markov processes with switch

Model and examples

- Description of the model
- Example 1
- Example 2

2 Limit theorem in the constant case

- Definition of the Wasserstein distance
- A limit theorem
- Idea of the proof

3 Generalisation

- Hypoelliptic case
- Fully coupled PDMP
- General Markov processes with switching

Hypoelliptic case Fully coupled PDMP General Markov processes with switching

Hypoellipticity assumption

By (Benaïm, Le Borgne, Malrieu, Zitt 12) and (Bakhtin, Hurth, 12), if the family $(F^{(i)})_i$ verifies an Hörmander-type condition, then the process *X* verifies a regularising assumption.

Hypoelliptic case Fully coupled PDMP General Markov processes with switching

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hypoellipticity assumption

By (Benaïm, Le Borgne, Malrieu, Zitt 12) and (Bakhtin, Hurth, 12), if the family $(F^{(i)})_i$ verifies an Hörmander-type condition, then the process *X* verifies a regularising assumption.

 \rightarrow Hörmander-type condition + Lyapunov funtion \Rightarrow Exponential convergence in $\|\cdot\|_{{\mathcal TV}}.$

Hypoelliptic case Fully coupled PDMP General Markov processes with switching

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Hypoellipticity assumption

By (Benaïm, Le Borgne, Malrieu, Zitt 12) and (Bakhtin, Hurth, 12), if the family $(F^{(i)})_i$ verifies an Hörmander-type condition, then the process *X* verifies a regularising assumption.

 \rightarrow Hörmander-type condition + Lyapunov funtion \Rightarrow Exponential convergence in $\|\cdot\|_{{\mathcal TV}}.$

Lemma

If there exists V s.t.

$$F^{(i)}(x) \cdot \nabla V(x) \leq -\lambda_i V(x) + K_i$$

where

$$\sum_{i\in F}\lambda_i\nu(i)>0,$$

then (X, I) admits a Lyapunov function.

Model and examples Hypoelliptic case Limit theorem in the constant case Fully coupled PDMP Generalisation General Markov proces

Wasserstein exponential ergodicity in the non-constant case

If $F = \{-1, 1\}$ and

 $\mathbf{L}f(x,i) = \mathbf{F}^{(i)}(x) \cdot \nabla_x f(x,i) + \mathbf{a}(x,i)(f(x,-i) - f(x,i)),$
Wasserstein exponential ergodicity in the non-constant case

If $F = \{-1, 1\}$ and

$$\mathbf{L}f(x,i) = \mathbf{F}^{(i)}(x) \cdot \nabla_x f(x,i) + \mathbf{a}(x,i)(f(x,-i) - f(x,i)),$$

where we consider $\rho(1) > 0, \rho(-1) < 0$ and

$$\underline{a}(1) = \inf_{x} a(x, 1)$$
 and $\overline{a}(-1) = \sup_{x} a(x, -1)$

Theorem

If a is Lipschitz and

$$\bar{a}(-1)\rho(1) + \underline{a}(1)\rho(-1) > 0$$

then X admits an invariant probability measure and converges exponentially fast to it in a Wasserstein distance.

Hypoelliptic case Fully coupled PDMP General Markov processes with switching

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Wasserstein curvature

Definition

The Wasserstein curvature of a Markov semigroup $(P_t)_{t\geq 0}$ is the largest constant ρ such that

$$\mathcal{W}(\mu P_t, \nu P_t) \leq e^{-\rho t} \mathcal{W}(\mu, \nu),$$

for any probability measure μ, ν and any $t \ge 0$.

Wasserstein curvature

Definition

The Wasserstein curvature of a Markov semigroup $(P_t)_{t\geq 0}$ is the largest constant ρ such that

$$\mathcal{W}(\mu \boldsymbol{P}_t, \nu \boldsymbol{P}_t) \leq \boldsymbol{e}^{-\rho t} \mathcal{W}(\mu, \nu),$$

for any probability measure μ , ν and any $t \ge 0$.

- introduced independently by Joulin (2007), Ollivier (2007) and Sammer (2005).
- Motivated by generalizing Bakry-Emery curvature of diffusion processes or Ricci curvature of Riemannian Manifold.
- By the Kantorovich-Rubinstein duality, we have

$$\rho = \sup_{t>0} -\frac{1}{t} \ln \| \boldsymbol{P}_t \|_{\operatorname{Lip}(d) \to \operatorname{Lip}(d)}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Hypoelliptic case Fully coupled PDMP General Markov processes with switching

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Some examples of curvature

See for instance

- (Sturm, Von Renesse, 2005) for Brownian motion on Riemannian manifold
- (Chafaï, Joulin, 2012) for birth and death processes
- (Cloez, 2012) for stochastically monotonous processes
- (Eberle, 2011) and (Cattiaux, Guillin, 2013) for inhomogeneous diffusion

Hypoelliptic case Fully coupled PDMP General Markov processes with switching

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Some examples of curvature

See for instance

- (Sturm, Von Renesse, 2005) for Brownian motion on Riemannian manifold
- (Chafaï, Joulin, 2012) for birth and death processes
- (Cloez, 2012) for stochastically monotonous processes
- (Eberle, 2011) and (Cattiaux, Guillin, 2013) for inhomogeneous diffusion

Now, we assume that $(\mathbf{X}_t)_{t \ge 0} = (X_t, I_t)_{t \ge 0}$ is generated by

$$\mathbf{L}f(\mathbf{x},i) = \mathcal{L}^{(i)}f(\mathbf{x},i) + \int_{F} (f(\mathbf{x},j) - f(\mathbf{x},i))Q(i,dj),$$

Model and examples Limit theorem in the constant case Generalisation Hypoelliptic case Fully coupled PDMP General Markov processes with switching

<ロト < 同ト < 回ト < 回ト = 三日

Wasserstein exponential ergodicity

Theorem

lf

$$\sum_{i\in F}\nu(i)\rho(i)>0,$$

then $(\mathbf{X}_t)_{t\geq 0} = (X_t, I_t)_{t\geq 0}$ admits a unique invariant probability measure π and there exist $C, \lambda, t_0 > 0$ and $p \in (0, 1)$ such that

$$\forall t \geq t_0, \ \mathcal{W}_{\mathbf{d}}(\mathcal{L}(\mathbf{X}_t), \pi) \leq C e^{-\lambda t} (1 + \mathcal{W}_{\|\cdot\|^p}(\mathcal{L}(\mathbf{X}_0), \pi)),$$

where

$$\mathbf{d}((x,i),(y,j)) = \mathbf{1}_{i\neq j} + \mathbf{1}_{i=j}(1 \wedge ||x-y||^{p}).$$

33/34

Model and examples Hypoelliptic case Limit theorem in the constant case Folly coupled PDMP General Markov processes with switching

Thank you for your attention !