Random Polynomials and their Zeros ${ }^{\dagger}$

Aaron Yeager
College of Coastal Georgia

\dagger Joint work with Christopher Corley and Andrew Ledoan

Definitions/Brief History

Let

$$
\boldsymbol{\Phi}_{n}(z)=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z),
$$

where $\left\{\eta_{j}\right\}$ are standard normal complex-valued random variables, and $\left\{\phi_{j}\right\}$ are polynomials such that $\operatorname{deg} \phi_{j}=j$ with $\phi_{0}=1$.

Definitions/Brief History

Let

$$
\boldsymbol{\Phi}_{n}(z)=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z),
$$

where $\left\{\eta_{j}\right\}$ are standard normal complex-valued random variables, and $\left\{\phi_{j}\right\}$ are polynomials such that $\operatorname{deg} \phi_{j}=j$ with $\phi_{0}=1$.

For $\mathbf{v} \in \mathbb{C}$, we denote $N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)$ as the number of complex roots in $\Theta \subset \mathbb{C}$ of $\boldsymbol{\Phi}_{n}=\mathbf{v}$.

Definitions/Brief History

Let

$$
\boldsymbol{\Phi}_{n}(z)=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z),
$$

where $\left\{\eta_{j}\right\}$ are standard normal complex-valued random variables, and $\left\{\phi_{j}\right\}$ are polynomials such that $\operatorname{deg} \phi_{j}=j$ with $\phi_{0}=1$.

For $\mathbf{v} \in \mathbb{C}$, we denote $N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)$ as the number of complex roots in $\Theta \subset \mathbb{C}$ of $\boldsymbol{\Phi}_{n}=\mathbf{v}$.

Set $\mathbb{E}\left[N_{\mathrm{v}}^{\boldsymbol{\Phi}_{\mathrm{n}}}(\Theta)\right]$ to be the expected number of level crossings of $\boldsymbol{\Phi}_{n}$ at level \mathbf{v}.

Definitions/Brief History

Let

$$
\boldsymbol{\Phi}_{n}(z)=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z),
$$

where $\left\{\eta_{j}\right\}$ are standard normal complex-valued random variables, and $\left\{\phi_{j}\right\}$ are polynomials such that $\operatorname{deg} \phi_{j}=j$ with $\phi_{0}=1$.

For $\mathbf{v} \in \mathbb{C}$, we denote $N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)$ as the number of complex roots in $\Theta \subset \mathbb{C}$ of $\boldsymbol{\Phi}_{n}=\mathbf{v}$.

Set $\mathbb{E}\left[N_{v}^{\Phi_{n}}(\Theta)\right]$ to be the expected number of level crossings of $\boldsymbol{\Phi}_{n}$ at level \mathbf{v}.

1. $\mathbf{v}=0$ and $\phi_{j}(z)=z^{j}$: Hammersley (1956) and Arnold (1966)

Definitions/Brief History

Let

$$
\boldsymbol{\Phi}_{n}(z)=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z),
$$

where $\left\{\eta_{j}\right\}$ are standard normal complex-valued random variables, and $\left\{\phi_{j}\right\}$ are polynomials such that $\operatorname{deg} \phi_{j}=j$ with $\phi_{0}=1$.

For $\mathbf{v} \in \mathbb{C}$, we denote $N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)$ as the number of complex roots in $\Theta \subset \mathbb{C}$ of $\boldsymbol{\Phi}_{n}=\mathbf{v}$.

Set $\mathbb{E}\left[N_{v}^{\Phi_{n}}(\Theta)\right]$ to be the expected number of level crossings of $\boldsymbol{\Phi}_{n}$ at level \mathbf{v}.

1. $\mathbf{v}=0$ and $\phi_{j}(z)=z^{j}$: Hammersley (1956) and Arnold (1966)
2. $\phi_{j}(z)=z^{j}$: Farahmand (1997)

Definitions/Brief History

Let

$$
\boldsymbol{\Phi}_{n}(z)=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z)
$$

where $\left\{\eta_{j}\right\}$ are standard normal complex-valued random variables, and $\left\{\phi_{j}\right\}$ are polynomials such that $\operatorname{deg} \phi_{j}=j$ with $\phi_{0}=1$.

For $\mathbf{v} \in \mathbb{C}$, we denote $N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)$ as the number of complex roots in $\Theta \subset \mathbb{C}$ of $\boldsymbol{\Phi}_{n}=\mathbf{v}$.

Set $\mathbb{E}\left[N_{\mathbf{v}}^{\boldsymbol{\Phi}_{\mathbf{n}}}(\Theta)\right]$ to be the expected number of level crossings of $\boldsymbol{\Phi}_{n}$ at level \mathbf{v}.

1. $\mathbf{v}=0$ and $\phi_{j}(z)=z^{j}$: Hammersley (1956) and Arnold (1966)
2. $\phi_{j}(z)=z^{j}$: Farahmand (1997)
3. $\mathbf{v}=0$: Shiffman and Zelditch (2006), Ledoan (2016), Y. (2016), ...

Definitions/Brief History

Let

$$
\boldsymbol{\Phi}_{n}(z)=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z)
$$

where $\left\{\eta_{j}\right\}$ are standard normal complex-valued random variables, and $\left\{\phi_{j}\right\}$ are polynomials such that $\operatorname{deg} \phi_{j}=j$ with $\phi_{0}=1$.

For $\mathbf{v} \in \mathbb{C}$, we denote $N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)$ as the number of complex roots in $\Theta \subset \mathbb{C}$ of $\boldsymbol{\Phi}_{n}=\mathbf{v}$.

Set $\mathbb{E}\left[N_{\mathbf{v}}^{\boldsymbol{\Phi}_{\mathbf{n}}}(\Theta)\right]$ to be the expected number of level crossings of $\boldsymbol{\Phi}_{n}$ at level \mathbf{v}.

1. $\mathbf{v}=0$ and $\phi_{j}(z)=z^{j}$: Hammersley (1956) and Arnold (1966)
2. $\phi_{j}(z)=z^{j}$: Farahmand (1997)
3. $\mathbf{v}=0$: Shiffman and Zelditch (2006), Ledoan (2016), Y. (2016), ...
4. general setting: Corley and Ledoan (2020)

Overview of our results

Recall that

$$
\boldsymbol{\Phi}_{n}(z)=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z)
$$

where $\left\{\eta_{j}\right\}$ are standard normal complex-valued random variables, and $\left\{\phi_{j}\right\}$ are polynomials such that $\operatorname{deg} \phi_{j}=j$ with $\phi_{0}=1$. And $\mathbb{E}\left[N_{\mathrm{v}}^{\Phi_{\mathrm{n}}}(\Theta)\right]$, with $\Theta \subset \mathbb{C}$, is the expected number of level crossings of $\boldsymbol{\Phi}_{n}$ at level $\mathbf{v} \in \mathbb{C}$.

Overview of our results

Recall that

$$
\boldsymbol{\Phi}_{n}(z)=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z)
$$

where $\left\{\eta_{j}\right\}$ are standard normal complex-valued random variables, and $\left\{\phi_{j}\right\}$ are polynomials such that $\operatorname{deg} \phi_{j}=j$ with $\phi_{0}=1$. And $\mathbb{E}\left[N_{\mathrm{v}}^{\Phi_{\mathrm{n}}}(\Theta)\right]$, with $\Theta \subset \mathbb{C}$, is the expected number of level crossings of $\boldsymbol{\Phi}_{n}$ at level $\mathbf{v} \in \mathbb{C}$.
(1) A new proof for the formula of $\mathbb{E}\left[N_{v}^{\Phi_{n}}(\Theta)\right]$

Overview of our results

Recall that

$$
\boldsymbol{\Phi}_{n}(z)=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z)
$$

where $\left\{\eta_{j}\right\}$ are standard normal complex-valued random variables, and $\left\{\phi_{j}\right\}$ are polynomials such that $\operatorname{deg} \phi_{j}=j$ with $\phi_{0}=1$. And $\mathbb{E}\left[N_{\mathrm{v}}^{\Phi_{\mathrm{n}}}(\Theta)\right]$, with $\Theta \subset \mathbb{C}$, is the expected number of level crossings of $\boldsymbol{\Phi}_{n}$ at level $\mathbf{v} \in \mathbb{C}$.
(1) A new proof for the formula of $\mathbb{E}\left[N_{v}^{\Phi_{n}}(\Theta)\right]$
(2) The behavior of this formula as $|\mathbf{v}| \rightarrow \infty$

Overview of our results

Recall that

$$
\boldsymbol{\Phi}_{n}(z)=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z),
$$

where $\left\{\eta_{j}\right\}$ are standard normal complex-valued random variables, and $\left\{\phi_{j}\right\}$ are polynomials such that $\operatorname{deg} \phi_{j}=j$ with $\phi_{0}=1$. And $\mathbb{E}\left[N_{v}^{\Phi_{n}}(\Theta)\right]$, with $\Theta \subset \mathbb{C}$, is the expected number of level crossings of $\boldsymbol{\Phi}_{n}$ at level $\mathbf{v} \in \mathbb{C}$.
(1) A new proof for the formula of $\mathbb{E}\left[N_{\mathbf{v}}^{\Phi_{n}}(\Theta)\right]$
(2) The behavior of this formula as $|\mathbf{v}| \rightarrow \infty$
(3) Asymptotics for $\mathbb{E}\left[N_{v}^{\Phi_{n}}(\Theta)\right]$ and its related density function, as $n \rightarrow \infty$, in $D \subseteq \mathbb{D}$ when ϕ_{j} are orthogonal polynomials on the unit circle or Bergman polynomials

Overview of our results

Recall that

$$
\boldsymbol{\Phi}_{n}(z)=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z),
$$

where $\left\{\eta_{j}\right\}$ are standard normal complex-valued random variables, and $\left\{\phi_{j}\right\}$ are polynomials such that $\operatorname{deg} \phi_{j}=j$ with $\phi_{0}=1$. And $\mathbb{E}\left[N_{v}^{\Phi_{n}}(\Theta)\right]$, with $\Theta \subset \mathbb{C}$, is the expected number of level crossings of $\boldsymbol{\Phi}_{n}$ at level $\mathbf{v} \in \mathbb{C}$.
(1) A new proof for the formula of $\mathbb{E}\left[N_{\mathbf{v}}^{\Phi_{n}}(\Theta)\right]$
(2) The behavior of this formula as $|\mathbf{v}| \rightarrow \infty$
© Asymptotics for $\mathbb{E}\left[N_{\mathrm{v}}^{\Phi_{\mathrm{n}}}(\Theta)\right]$ and its related density function, as $n \rightarrow \infty$, in $D \subseteq \mathbb{D}$ when ϕ_{j} are orthogonal polynomials on the unit circle or Bergman polynomials
(-) Numerical simulations

Main Result \#1: The Contour Integral Formula

For $z, w \in \mathbb{C}$, and k and I nonnegative integers, let

$$
K_{n}(z, w)=\sum_{j=0}^{n} \phi_{j}(z) \overline{\phi_{j}(w)}, \quad \text { and } \quad K_{n}^{(k, l)}(z, w)=\sum_{j=0}^{n} \phi_{j}^{(k)}(z) \overline{\phi_{j}^{(l)}(w)}
$$

Main Result \#1: The Contour Integral Formula

For $z, w \in \mathbb{C}$, and k and I nonnegative integers, let

$$
K_{n}(z, w)=\sum_{j=0}^{n} \phi_{j}(z) \overline{\phi_{j}(w)}, \quad \text { and } \quad K_{n}^{(k, l)}(z, w)=\sum_{j=0}^{n} \phi_{j}^{(k)}(z) \overline{\phi_{j}^{(l)}(w)}
$$

Theorem (Contour Integral Formula)

Let $\boldsymbol{\Phi}_{n}=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z)$, where $\left\{\eta_{j}\right\}$ are standard normal complex-valued random variables, and $\left\{\phi_{j}\right\}$ are polynomials such that $\operatorname{deg} \phi_{j}=j$ with $\phi_{0}=1$. For every domain $\Theta \subset \mathbb{C}$ and every fixed positive integer n, if $N_{\mathbf{v}}^{\boldsymbol{\Phi}_{\mathrm{n}}}(\Theta)$ denotes the number of complex roots in Θ of $\boldsymbol{\Phi}_{n}=\mathbf{v}$, then

$$
\mathbb{E}\left[N_{v}^{\Phi_{n}}(\Theta)\right]=\frac{1}{2 \pi i} \oint_{\partial \Theta} \frac{\overline{K_{n}^{(0,1)}(z, z)}}{K_{n}(z, z)} \exp \left[-\frac{|\mathbf{v}|^{2}}{K_{n}(z, z)}\right] d z
$$

Main Ideas of the Proof of the Contour Integral Formula

Assume for simplicity that $\boldsymbol{\Phi}_{n}-\mathbf{v}$ has no zeros on $\partial \Theta$. Since $\boldsymbol{\Phi}_{n}-\mathbf{v}$ is holomorphic within and on Θ, by the argument principle, we have

$$
N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)=\frac{1}{2 \pi i} \oint_{\partial \Theta}\left(\frac{\boldsymbol{\Phi}_{n}^{\prime}(z)}{\boldsymbol{\Phi}_{n}(z)-\mathbf{v}}\right) d z .
$$

Main Ideas of the Proof of the Contour Integral Formula

Assume for simplicity that $\boldsymbol{\Phi}_{n}-\mathbf{v}$ has no zeros on $\partial \Theta$. Since $\boldsymbol{\Phi}_{n}-\mathbf{v}$ is holomorphic within and on Θ, by the argument principle, we have

$$
N_{v}^{\boldsymbol{\Phi}_{n}}(\Theta)=\frac{1}{2 \pi i} \oint_{\partial \Theta}\left(\frac{\boldsymbol{\Phi}_{n}^{\prime}(z)}{\boldsymbol{\Phi}_{n}(z)-\mathbf{v}}\right) d z .
$$

Then

$$
\mathbb{E}\left[N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)\right]=\mathbb{E}\left[\frac{1}{2 \pi i} \oint_{\partial \Theta}\left(\frac{\boldsymbol{\Phi}_{n}^{\prime}(z)}{\boldsymbol{\Phi}_{n}(z)-\mathbf{v}}\right) d z\right]
$$

Main Ideas of the Proof of the Contour Integral Formula

Assume for simplicity that $\boldsymbol{\Phi}_{n}-\mathbf{v}$ has no zeros on $\partial \Theta$. Since $\boldsymbol{\Phi}_{n}-\mathbf{v}$ is holomorphic within and on Θ, by the argument principle, we have

$$
N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)=\frac{1}{2 \pi i} \oint_{\partial \Theta}\left(\frac{\boldsymbol{\Phi}_{n}^{\prime}(z)}{\boldsymbol{\Phi}_{n}(z)-\mathbf{v}}\right) d z .
$$

Then

$$
\begin{aligned}
\mathbb{E}\left[N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)\right] & =\mathbb{E}\left[\frac{1}{2 \pi i} \oint_{\partial \Theta}\left(\frac{\boldsymbol{\Phi}_{n}^{\prime}(z)}{\boldsymbol{\Phi}_{n}(z)-\mathbf{v}}\right) d z\right] \\
& =\frac{1}{2 \pi i} \oint_{\partial \Theta} \mathbb{E}\left[\left(\frac{\boldsymbol{\Phi}_{n}^{\prime}(z)}{\boldsymbol{\Phi}_{n}(z)-\mathbf{v}}\right)\right] d z .
\end{aligned}
$$

Main Ideas of the Proof of the Contour Integral Formula

Assume for simplicity that $\boldsymbol{\Phi}_{n}-\mathbf{v}$ has no zeros on $\partial \Theta$. Since $\boldsymbol{\Phi}_{n}-\mathbf{v}$ is holomorphic within and on Θ, by the argument principle, we have

$$
N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)=\frac{1}{2 \pi i} \oint_{\partial \Theta}\left(\frac{\boldsymbol{\Phi}_{n}^{\prime}(z)}{\boldsymbol{\Phi}_{n}(z)-\mathbf{v}}\right) d z .
$$

Then

$$
\begin{aligned}
\mathbb{E}\left[N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)\right] & =\mathbb{E}\left[\frac{1}{2 \pi i} \oint_{\partial \Theta}\left(\frac{\boldsymbol{\Phi}_{n}^{\prime}(z)}{\boldsymbol{\Phi}_{n}(z)-\mathbf{v}}\right) d z\right] \\
& =\frac{1}{2 \pi i} \oint_{\partial \Theta} \mathbb{E}\left[\left(\frac{\boldsymbol{\Phi}_{n}^{\prime}(z)}{\boldsymbol{\Phi}_{n}(z)-\mathbf{v}}\right)\right] d z .
\end{aligned}
$$

(1) Justification of the exchange of the expectation and contour integral

Main Ideas of the Proof of the Contour Integral Formula

Assume for simplicity that $\boldsymbol{\Phi}_{n}-\mathbf{v}$ has no zeros on $\partial \Theta$. Since $\boldsymbol{\Phi}_{n}-\mathbf{v}$ is holomorphic within and on Θ, by the argument principle, we have

$$
N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)=\frac{1}{2 \pi i} \oint_{\partial \Theta}\left(\frac{\boldsymbol{\Phi}_{n}^{\prime}(z)}{\boldsymbol{\Phi}_{n}(z)-\mathbf{v}}\right) d z .
$$

Then

$$
\begin{aligned}
\mathbb{E}\left[N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)\right] & =\mathbb{E}\left[\frac{1}{2 \pi i} \oint_{\partial \Theta}\left(\frac{\boldsymbol{\Phi}_{n}^{\prime}(z)}{\boldsymbol{\Phi}_{n}(z)-\mathbf{v}}\right) d z\right] \\
& =\frac{1}{2 \pi i} \oint_{\partial \Theta} \mathbb{E}\left[\left(\frac{\boldsymbol{\Phi}_{n}^{\prime}(z)}{\boldsymbol{\Phi}_{n}(z)-\mathbf{v}}\right)\right] d z .
\end{aligned}
$$

(1) Justification of the exchange of the expectation and contour integral
(2) Computation of the integrand: Apply the mean ratio of complex normal random variables method given by Shaohan Wu (2019)

Main Result \#2: The Area Integral Formula

From

$$
\mathbb{E}\left[N_{\mathbf{v}}^{\boldsymbol{\Phi}_{\mathrm{n}}}(\Theta)\right]=\frac{1}{2 \pi i} \oint_{\partial \Theta} \frac{\overline{K_{n}^{(0,1)}(z, z)}}{K_{n}(z, z)} \exp \left[-\frac{|\mathbf{v}|^{2}}{K_{n}(z, z)}\right] d z
$$

by Green's Theorem we the following:

Theorem (Area Integral Formula)

For every domain $\Theta \subset \mathbb{C}$ and every fixed positive integer n,

$$
\mathbb{E}\left[N_{v}^{\boldsymbol{\Phi}_{n}}(\Theta)\right]=\iint_{\Theta} \rho_{n, \mathbf{v}}(z) d x d y
$$

where

$$
\begin{aligned}
\rho_{n, \mathbf{v}}(z)=\frac{1}{\pi} & {\left[\frac{K_{n}^{(1,1)}(z, z)}{K_{n}(z, z)}-\frac{\left|K_{n}^{(0,1)}(z, z)\right|^{2}}{K_{n}(z, z)^{2}}\left(1-\frac{|\mathbf{v}|^{2}}{K_{n}(z, z)}\right)\right] } \\
& \cdot \exp \left[-\frac{|\mathbf{v}|^{2}}{K_{n}(z, z)}\right] .
\end{aligned}
$$

Corollary \#1

Corollary

For every domain $\Theta \subset \mathbb{C}$ and every fixed positive integer n,

$$
\lim _{|v| \rightarrow \infty} \mathbb{E}\left[N_{v}^{\Phi_{n}}(\Theta)\right]=0
$$

and

$$
\lim _{|\mathbf{v}| \rightarrow \infty} \rho_{n, \mathbf{v}}(z)=0 .
$$

Corollary \#2

Corollary

For every domain $\Theta \subset \mathbb{C}$ and every fixed positive integer n, if $\mathbf{v}=0$, then the mean number of zeros in Θ of $\boldsymbol{\Phi}_{n}$ is

$$
\frac{1}{2 \pi i} \oint_{\partial \Theta} \frac{\overline{K_{n}^{(0,1)}(z, z)}}{K_{n}(z, z)} d z
$$

or, equivalently,

$$
\iint_{\Theta} \rho_{n, 0}(z) d x d y
$$

where

$$
\rho_{n, 0}(z)=\frac{K_{n}(z, z) K_{n}^{(1,1)}(z, z)-\left|K_{n}^{(0,1)}(z, z)\right|^{2}}{\pi K_{n}(z, z)^{2}} .
$$

Applications: Random Orthogonal Polynomials (ROP)

For $\boldsymbol{\Phi}_{n}=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z)$ we take $\left\{\phi_{j}\right\}$ to be either
(1) Orthogonal Polynomials on the Unit Circle (OPUC); $\left\{\phi_{j}\right\}$ such that

$$
\int_{\mathbb{T}} \phi_{j}\left(e^{i \theta}\right) \overline{\phi_{k}\left(e^{i \theta}\right)} d \mu\left(e^{i \theta}\right)=\delta_{j k}, \quad j, k \in \mathbb{N} \cup\{0\} .
$$

Applications: Random Orthogonal Polynomials (ROP)

For $\boldsymbol{\Phi}_{n}=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z)$ we take $\left\{\phi_{j}\right\}$ to be either
(1) Orthogonal Polynomials on the Unit Circle (OPUC); $\left\{\phi_{j}\right\}$ such that

$$
\int_{\mathbb{T}} \phi_{j}\left(e^{i \theta}\right) \overline{\phi_{k}\left(e^{i \theta}\right)} d \mu\left(e^{i \theta}\right)=\delta_{j k}, \quad j, k \in \mathbb{N} \cup\{0\} .
$$

Ex.) $\left\{z^{j}\right\}$ with $d \mu=d \theta / 2 \pi$

Applications: Random Orthogonal Polynomials (ROP)

For $\boldsymbol{\Phi}_{n}=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z)$ we take $\left\{\phi_{j}\right\}$ to be either
(1) Orthogonal Polynomials on the Unit Circle (OPUC); $\left\{\phi_{j}\right\}$ such that

$$
\int_{\mathbb{T}} \phi_{j}\left(e^{i \theta}\right) \overline{\phi_{k}\left(e^{i \theta}\right)} d \mu\left(e^{i \theta}\right)=\delta_{j k}, \quad j, k \in \mathbb{N} \cup\{0\} .
$$

Ex.) $\left\{z^{j}\right\}$ with $d \mu=d \theta / 2 \pi$
Ex.) $\left\{\sqrt{2 /((j+1)(j+2))} \sum_{k=0}^{j}(k+1) z^{k}\right\}, d \mu=(1-\cos \theta) d \theta$

Applications: Random Orthogonal Polynomials (ROP)

For $\boldsymbol{\Phi}_{n}=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z)$ we take $\left\{\phi_{j}\right\}$ to be either
(1) Orthogonal Polynomials on the Unit Circle (OPUC); $\left\{\phi_{j}\right\}$ such that

$$
\int_{\mathbb{T}} \phi_{j}\left(e^{i \theta}\right) \overline{\phi_{k}\left(e^{i \theta}\right)} d \mu\left(e^{i \theta}\right)=\delta_{j k}, \quad j, k \in \mathbb{N} \cup\{0\} .
$$

Ex.) $\left\{z^{j}\right\}$ with $d \mu=d \theta / 2 \pi$
Ex.) $\left\{\sqrt{2 /((j+1)(j+2))} \sum_{k=0}^{j}(k+1) z^{k}\right\}, d \mu=(1-\cos \theta) d \theta$
(2) Bergman Polynomials on the Unit Disk; $\left\{\phi_{j}\right\}$ such that

$$
\int_{\mathbb{D}} \phi_{j}(z) \overline{\phi_{k}(z)} d \mu(z)=\delta_{j k}, \quad j, k \in \mathbb{N} \cup\{0\} .
$$

Applications: Random Orthogonal Polynomials (ROP)

For $\boldsymbol{\Phi}_{n}=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z)$ we take $\left\{\phi_{j}\right\}$ to be either
(1) Orthogonal Polynomials on the Unit Circle (OPUC); $\left\{\phi_{j}\right\}$ such that

$$
\int_{\mathbb{T}} \phi_{j}\left(e^{i \theta}\right) \overline{\phi_{k}\left(e^{i \theta}\right)} d \mu\left(e^{i \theta}\right)=\delta_{j k}, \quad j, k \in \mathbb{N} \cup\{0\} .
$$

Ex.) $\left\{z^{j}\right\}$ with $d \mu=d \theta / 2 \pi$
Ex.) $\left\{\sqrt{2 /((j+1)(j+2))} \sum_{k=0}^{j}(k+1) z^{k}\right\}, d \mu=(1-\cos \theta) d \theta$
(2) Bergman Polynomials on the Unit Disk; $\left\{\phi_{j}\right\}$ such that

$$
\int_{\mathbb{D}} \phi_{j}(z) \overline{\phi_{k}(z)} d \mu(z)=\delta_{j k}, \quad j, k \in \mathbb{N} \cup\{0\} .
$$

Ex.) $\left\{\sqrt{(j+1) / \pi} z^{j}\right\}, d \mu=d A(z)$

Applications: Random Orthogonal Polynomials (ROP)

For $\boldsymbol{\Phi}_{n}=\sum_{j=0}^{n} \eta_{j} \phi_{j}(z)$ we take $\left\{\phi_{j}\right\}$ to be either
(1) Orthogonal Polynomials on the Unit Circle (OPUC); $\left\{\phi_{j}\right\}$ such that

$$
\int_{\mathbb{T}} \phi_{j}\left(e^{i \theta}\right) \overline{\phi_{k}\left(e^{i \theta}\right)} d \mu\left(e^{i \theta}\right)=\delta_{j k}, \quad j, k \in \mathbb{N} \cup\{0\} .
$$

Ex.) $\left\{z^{j}\right\}$ with $d \mu=d \theta / 2 \pi$
Ex.) $\left\{\sqrt{2 /((j+1)(j+2))} \sum_{k=0}^{j}(k+1) z^{k}\right\}, d \mu=(1-\cos \theta) d \theta$
(2) Bergman Polynomials on the Unit Disk; $\left\{\phi_{j}\right\}$ such that

$$
\int_{\mathbb{D}} \phi_{j}(z) \overline{\phi_{k}(z)} d \mu(z)=\delta_{j k}, \quad j, k \in \mathbb{N} \cup\{0\} .
$$

Ex.) $\left\{\sqrt{(j+1) / \pi} z^{j}\right\}, d \mu=d A(z)$
Ex.) $\left\{\sqrt{(j+1)(j+k+1) /(k \pi)} z^{j}\right\}, k>0, d \mu=\left(1-|z|^{2 k}\right) d A(z)$

Classes of OPUC we take as basis functions

(1) $\left\{\phi_{j}\right\}$ are said to be from the Szegő class if $d \mu=W(\theta) d \theta$, where $W(\theta) \geq 0$ on $[-\pi, \pi]$, and $\int_{-\pi}^{\pi} W(\theta) d \theta$ and $\int_{-\pi}^{\pi}|\log W(\theta)| d \theta$ both exist.

Classes of OPUC we take as basis functions

(1) $\left\{\phi_{j}\right\}$ are said to be from the Szegő class if $d \mu=W(\theta) d \theta$, where $W(\theta) \geq 0$ on $[-\pi, \pi]$, and $\int_{-\pi}^{\pi} W(\theta) d \theta$ and $\int_{-\pi}^{\pi}|\log W(\theta)| d \theta$ both exist. A consequence from this we employ is that locally uniformly for $|z|<1$ one has

$$
\lim _{n \rightarrow \infty} \phi_{n+1}^{*}(z)=\frac{1}{D(z)}, \text { where } \phi_{n}^{*}(z)=z^{n} \overline{\phi_{n}(1 / \bar{z})}
$$

and

$$
D(\xi)=\exp \left[\frac{1}{4 \pi} \int_{-\pi}^{\pi} \log W(\theta)\left(\frac{1+\xi e^{-i \theta}}{1-\xi e^{-i \theta}}\right) d \theta\right]
$$

is uniquely determined by W, analytic and nonzero whenever $|\xi|<1$, and $D(0)>0$.

Classes of OPUC we take as basis functions

(1) $\left\{\phi_{j}\right\}$ are said to be from the Szegő class if $d \mu=W(\theta) d \theta$, where $W(\theta) \geq 0$ on $[-\pi, \pi]$, and $\int_{-\pi}^{\pi} W(\theta) d \theta$ and $\int_{-\pi}^{\pi}|\log W(\theta)| d \theta>0$ both exist. A consequence from this we employ is that locally uniformly for $|z|<1$ one has

$$
\lim _{n \rightarrow \infty} \phi_{n+1}^{*}(z)=\frac{1}{D(z)}, \text { where } \phi_{n}^{*}(z)=z^{n} \overline{\phi_{n}(1 / \bar{z})}
$$

(c) $\left\{\phi_{j}\right\}$ are said to be from the Nevai class when

$$
\lim _{n \rightarrow \infty} \frac{\phi_{n}(z)}{\phi_{n}^{*}(z)}=0 .
$$

Classes of OPUC we take as basis functions

(1) $\left\{\phi_{j}\right\}$ are said to be from the Szegő class if $d \mu=W(\theta) d \theta$, where $W(\theta) \geq 0$ on $[-\pi, \pi]$, and $\int_{-\pi}^{\pi} W(\theta) d \theta$ and $\int_{-\pi}^{\pi}|\log W(\theta)| d \theta>0$ both exist. A consequence from this we employ is that locally uniformly for $|z|<1$ one has

$$
\lim _{n \rightarrow \infty} \phi_{n+1}^{*}(z)=\frac{1}{D(z)}, \text { where } \phi_{n}^{*}(z)=z^{n} \overline{\phi_{n}(1 / \bar{z})}
$$

(c) $\left\{\phi_{j}\right\}$ are said to be from the Nevai class when

$$
\lim _{n \rightarrow \infty} \frac{\phi_{n}(z)}{\phi_{n}^{*}(z)}=0 .
$$

(3) $\left\{\phi_{j}\right\}$ are said be Sthal, Totik, and Ullman (STU) regular when the leading coefficient κ_{j} of ϕ_{j} satisfies

$$
\lim _{j \rightarrow \infty} \sqrt[j]{\kappa_{j}}=1
$$

Main Tool used on ROP spanned by OPUC

For $z, w \in \mathbb{C}$ with $\bar{w} z \neq 1$, the Christoffel-Darboux formula gives

$$
\sum_{j=0}^{n} \phi_{j}(z) \overline{\phi_{j}(w)}=\frac{\overline{\phi_{n+1}^{*}(w)} \phi_{n+1}^{*}(z)-\overline{\phi_{n+1}(w)} \phi_{n+1}(z)}{1-\bar{w} z}
$$

Main Tool used on ROP spanned by OPUC

For $z, w \in \mathbb{C}$ with $\bar{w} z \neq 1$, the Christoffel-Darboux formula gives

$$
\sum_{j=0}^{n} \phi_{j}(z) \overline{\phi_{j}(w)}=\frac{\overline{\phi_{n+1}^{*}(w)} \phi_{n+1}^{*}(z)-\overline{\phi_{n+1}(w)} \phi_{n+1}(z)}{1-\bar{w} z}=K_{n}(z, w)
$$

Main Tool used on ROP spanned by OPUC

For $z, w \in \mathbb{C}$ with $\bar{w} z \neq 1$, the Christoffel-Darboux formula gives

$$
\sum_{j=0}^{n} \phi_{j}(z) \overline{\phi_{j}(w)}=\frac{\overline{\phi_{n+1}^{*}(w)} \phi_{n+1}^{*}(z)-\overline{\phi_{n+1}(w)} \phi_{n+1}(z)}{1-\bar{w} z}=K_{n}(z, w)
$$

Thus

$$
K_{n}(z, z)=\frac{\left|\phi_{n+1}^{*}(z)\right|^{2}-\left|\phi_{n+1}(z)\right|^{2}}{1-|z|^{2}}
$$

Main Tool used on ROP spanned by OPUC

For $z, w \in \mathbb{C}$ with $\bar{w} z \neq 1$, the Christoffel-Darboux formula gives

$$
\sum_{j=0}^{n} \phi_{j}(z) \overline{\phi_{j}(w)}=\frac{\overline{\phi_{n+1}^{*}(w)} \phi_{n+1}^{*}(z)-\overline{\phi_{n+1}(w)} \phi_{n+1}(z)}{1-\bar{w} z}=K_{n}(z, w)
$$

Thus

$$
\begin{aligned}
K_{n}(z, z) & =\frac{\left|\phi_{n+1}^{*}(z)\right|^{2}-\left|\phi_{n+1}(z)\right|^{2}}{1-|z|^{2}} \\
& =\frac{\left|\phi_{n+1}^{*}(z)\right|^{2}\left(1-\left|\phi_{n+1}(z)\right|^{2} /\left|\phi_{n+1}^{*}(z)\right|^{2}\right)}{1-|z|^{2}}
\end{aligned}
$$

Main Tool used on ROP spanned by OPUC

For $z, w \in \mathbb{C}$ with $\bar{w} z \neq 1$, the Christoffel-Darboux formula gives

$$
\sum_{j=0}^{n} \phi_{j}(z) \overline{\phi_{j}(w)}=\frac{\overline{\phi_{n+1}^{*}(w)} \phi_{n+1}^{*}(z)-\overline{\phi_{n+1}(w)} \phi_{n+1}(z)}{1-\bar{w} z}=K_{n}(z, w)
$$

Thus

$$
\begin{aligned}
K_{n}(z, z) & =\frac{\left|\phi_{n+1}^{*}(z)\right|^{2}-\left|\phi_{n+1}(z)\right|^{2}}{1-|z|^{2}} \\
& =\frac{\left|\phi_{n+1}^{*}(z)\right|^{2}\left(1-\left|\phi_{n+1}(z)\right|^{2} /\left|\phi_{n+1}^{*}(z)\right|^{2}\right)}{1-|z|^{2}} \\
& =\frac{\left|\phi_{n+1}^{*}(z)\right|^{2}(1-o(1))}{1-|z|^{2}},
\end{aligned}
$$

locally uniformly if $z \in \mathbb{D}$ and $\left\{\phi_{j}\right\}$ are from the Nevai Class.

ROP spanned by OPUC from the Nevai Class

Theorem

Let the basis functions for $\boldsymbol{\Phi}_{n}$ be OPUC $\left\{\phi_{j}\right\}_{j=0}^{\infty}$ obeying the Nevai class. Then for $z \in \mathbb{D}$, locally uniformly as $n \rightarrow \infty$ we have

$$
\begin{aligned}
\rho_{n, \mathbf{v}}(z)=\frac{1}{\pi}(& \frac{1}{\left(1-|z|^{2}\right)^{2}} \\
& \left.+\frac{|\mathbf{v}|^{2}\left[1-|z|^{2}+o(1)\right]}{\left|\phi_{n+1}^{*}(z)\right|^{2}}\left|\frac{z}{1-|z|^{2}}+\frac{\overline{\phi_{n+1}^{* \prime}(z)}+o(1)}{\phi_{n+1}^{*}(z)}\right|^{2}\right) \\
& \cdot \exp \left[-\frac{|\mathbf{v}|^{2}\left(1-|z|^{2}\right)}{\left|\phi_{n+1}^{*}(z)\right|^{2}}+o(1)\right] .
\end{aligned}
$$

ROP spanned by OPUC from the Szegő Class

Theorem

Let the basis functions for $\boldsymbol{\Phi}_{n}$ be OPUC $\left\{\phi_{j}\right\}_{j=0}^{\infty}$ obeying the Szegő class. Then locally uniformly whenever $|z|<1$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \rho_{n, \mathbf{v}}(z)=\frac{1}{\pi}(& \frac{1}{\left(1-|z|^{2}\right)^{2}} \\
& \left.+|\mathbf{v}|^{2}\left(1-|z|^{2}\right)|D(z)|^{2}\left|\frac{z}{1-|z|^{2}}-\frac{\overline{D^{\prime}(z)}}{\overline{D(z)}}\right|^{2}\right) \\
& \cdot \exp \left[-|\mathbf{v}|^{2}\left(1-|z|^{2}\right)|D(z)|^{2}\right]
\end{aligned}
$$

ROP spanned by the monomials

Corollary

Let the basis functions for $\boldsymbol{\Phi}_{n}$ be $\phi_{j}(z)=z^{j}$, then, for every open circular disk $D_{\varrho} \subset \mathbb{D}$,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}\left(D_{\varrho}\right)\right]=\frac{\varrho^{2}}{1-\varrho^{2}} \exp \left[-|\mathbf{v}|^{2}\left(1-\varrho^{2}\right)\right]
$$

ROP spanned by STU regular OPUC

Theorem

Let the measure μ of orthogonality for OPUC $\left\{\phi_{j}\right\}_{j=0}^{\infty}$ be a strictly positive Borel measure on $[-\pi, \pi)$, absolutely continuous with respect to the Lebesgue measure, and regular in the sense of Sthal, Totik, and Ullman. Assume that μ has a positive weight function that is continuous on \mathbb{T}. When $\boldsymbol{\Phi}_{n}$ has such basis functions ϕ_{j}, it follows that

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[N_{v}^{\Phi_{n}}(\mathbb{D})\right]}{n}=\frac{1}{2}
$$

ROP spanned by Bergman Polynomials

When $\left\{\phi_{j}\right\}$ are Bergman Polynomials on the unit disk, it is known that locally uniformly for $z, w \in \mathbb{D}$ we have

$$
\lim _{n \rightarrow \infty} K_{n}(z, w)=\frac{1}{\pi(1-z \bar{w})^{2}} .
$$

ROP spanned by Bergman Polynomials

When $\left\{\phi_{j}\right\}$ are Bergman Polynomials on the unit disk, it is known that locally uniformly for $z, w \in \mathbb{D}$ we have

$$
\lim _{n \rightarrow \infty} K_{n}(z, w)=\frac{1}{\pi(1-z \bar{w})^{2}}
$$

Taking respective derivatives of the above and then evaluating on the diagonal, after much algebraic simplification we achieve

Theorem

Let the basis functions for $\boldsymbol{\Phi}_{n}$ be Bergman polynomials $\left\{\phi_{j}\right\}_{j=0}^{\infty}$ on \mathbb{D}. Then locally uniformly for every $z \in \mathbb{D}$,

$$
\lim _{n \rightarrow \infty} \rho_{n, \mathbf{v}}(z)=\frac{2}{\pi}\left(\frac{1}{\left(1-|z|^{2}\right)^{2}}+2 \pi|\mathbf{v} z|^{2}\right) \exp \left[-\pi|\mathbf{v}|^{2}\left(1-|z|^{2}\right)^{2}\right] .
$$

ROP spanned by Bergman Polynomials

Corollary

Let the basis functions for $\boldsymbol{\Phi}_{n}$ be Bergman polynomials $\left\{\phi_{j}\right\}_{j=0}^{\infty}$ on \mathbb{D}.
Then for every open circular disk $D_{\varrho} \subset \mathbb{D}$ with $\varrho<1$,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[N_{v}^{\boldsymbol{\Phi}_{n}}\left(D_{\varrho}\right)\right]=\frac{2 \varrho^{2}}{1-\varrho^{2}} \exp \left[-\pi|\mathbf{v}|^{2}\left(1-|z|^{2}\right)^{2}\right]
$$

ROP spanned by STU regular Bergman Polynomials

Theorem

Let μ be the measure of orthogonality for Bergman polynomials $\left\{\phi_{j}\right\}_{j=0}^{\infty}$ be a strictly positive Borel measure on \mathbb{D}, absolutely continuous with respect to the Lebesgue measure, and regular in the sense of Sthal, Totik, and Ullman. Assume that μ has a positive weight function that is continuous on \mathbb{T}. When $\boldsymbol{\Phi}_{n}$ has such basis functions ϕ_{j}, it follows that

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[N_{v}^{\Phi_{n}}(\mathbb{D})\right]}{n}=\frac{2}{3}
$$

Numerical Simulations

We now show some examples of numerical simulation of $\boldsymbol{\Phi}_{n}$ spanned by Bergman polynomials ϕ_{j} at various v level-crossings. Consider the Bergman polynomials

$$
\phi_{j}(z)=\sqrt{\frac{(j+1)(j+2+1)}{2 \pi}} z^{j}, \quad j=0, \ldots, n,
$$

with weight function $w(z)=1-|z|^{2 \cdot 2}$

Numerical Simulations

We now show some examples of numerical simulation of $\boldsymbol{\Phi}_{n}$ spanned by Bergman polynomials ϕ_{j} at various v level-crossings. Consider the Bergman polynomials

$$
\phi_{j}(z)=\sqrt{\frac{(j+1)(j+2+1)}{2 \pi}} z^{j}, \quad j=0, \ldots, n,
$$

with weight function $w(z)=1-|z|^{2 \cdot 2}$
The functions $\phi_{j}(z)$ satisfy the STU regularity (i.e. the root asymptotic)

Numerical Simulations

We now show some examples of numerical simulation of $\boldsymbol{\Phi}_{n}$ spanned by Bergman polynomials ϕ_{j} at various v level-crossings. Consider the Bergman polynomials

$$
\phi_{j}(z)=\sqrt{\frac{(j+1)(j+2+1)}{2 \pi}} z^{j}, \quad j=0, \ldots, n,
$$

with weight function $w(z)=1-|z|^{2 \cdot 2}$
The functions $\phi_{j}(z)$ satisfy the STU regularity (i.e. the root asymptotic)
In the following numerical simulations we will take a close examination at the relationship between the mean $\mathbb{E}\left[N_{\mathbf{v}}^{\boldsymbol{\Phi}_{n}}(\Theta)\right]$ and \mathbf{v} level-crossings, to study the profiles of the density $\rho_{n, \mathbf{v}}$ and roots of $\boldsymbol{\Phi}_{n}=\mathbf{v}$ for some values of the parameters n and \mathbf{v}, and to compare the analytical results to numerical evidence

Numerical Simulations

We now show some examples of numerical simulation of $\boldsymbol{\Phi}_{n}$ spanned by Bergman polynomials ϕ_{j} at various v level-crossings. Consider the Bergman polynomials

$$
\phi_{j}(z)=\sqrt{\frac{(j+1)(j+2+1)}{2 \pi}} z^{j}, \quad j=0, \ldots, n,
$$

with weight function $w(z)=1-|z|^{2 \cdot 2}$
The functions $\phi_{j}(z)$ satisfy the STU regularity (i.e. the root asymptotic)
In the following numerical simulations we will take a close examination at the relationship between the mean $\mathbb{E}\left[N_{v}^{\Phi_{n}}(\Theta)\right]$ and \mathbf{v} level-crossings, to study the profiles of the density $\rho_{n, \mathbf{v}}$ and roots of $\boldsymbol{\Phi}_{n}=\mathbf{v}$ for some values of the parameters n and \mathbf{v}, and to compare the analytical results to numerical evidence

In what follows, all images were made in Wolfram Mathematica ${ }^{\circledR}$ version 12.3.1

Numerical Simulations

Figure: The effect of selection of different \mathbf{v} level-crossings on $\mathbb{E}\left[N_{v}^{\Phi_{n}}(\Theta)\right]$ represented by small dots with $\mathbf{v}=0+i 0,10+i 10, \ldots, 200+i 200$ in the order left-to-right.

As \mathbf{v} increases with n, we can visualize the relationship between $\mathbb{E}\left[N_{\mathbf{v}}^{\Phi_{n}}(\Theta)\right]$ and \mathbf{v} using strings of numerical values, which initially shift to the right rather than moving upward due to the fewer number of roots being counted.

Numerical Simulations

Figure: The effect of selection of different \mathbf{v} level-crossings on $\mathbb{E}\left[N_{v}^{\Phi_{n}}(\Theta)\right]$ represented by small dots with $\mathbf{v}=0+i 0,10+i 10, \ldots, 200+i 200$ in the order left-to-right.

As \mathbf{v} increases with n, we can visualize the relationship between $\mathbb{E}\left[N_{v}^{\Phi_{n}}(\Theta)\right]$ and \mathbf{v} using strings of numerical values, which initially shift to the right rather than moving upward due to the fewer number of roots being counted.

The differences between the numerical values about $\mathbf{v}=0+i 0$ and those about the other levels seem to decrease to 0 when \mathbf{v} is an increasing function of n. This is in agreement with our corollary on $|\mathbf{v}| \rightarrow \infty$.

Zeros of 30,000 different $\boldsymbol{\Phi}_{10}(z)$: Analytical vs Numerical

$$
\mathbf{v}=0+i 0
$$

Zeros of 30,000 different $\boldsymbol{\Phi}_{10}(z)$: Analytical vs Numerical

Zeros of 30,000 different $\boldsymbol{\Phi}_{10}(z)$: Analytical vs Numerical

Work in Progress

We are currently working on analogs some of the results given in the presentation when $\left\{\eta_{j}\right\}$ are real-valued standard normal random variables, as well as the variance of the number of level crossings for $\boldsymbol{\Phi}_{n}(z)$

Acknowledgments

I would like to thank
(1) my co-authors Christopher Corley and Andrew Ledoan
(2) the organizers of the Geometry of Random Nodal Domains Conference
(3) the audience for their attention

